1
|
Wu S, Qi Y, Guo Y, Zhu Q, Pan W, Wang C, Sun H. The role of iron materials in the abiotic transformation and biotransformation of polybrominated diphenyl ethers (PBDEs): A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134594. [PMID: 38754233 DOI: 10.1016/j.jhazmat.2024.134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, easily enter the environment, thus posing environmental and health risks. Iron materials play a key role during the migration and transformation of PBDEs. This article reviews the processes and mechanisms of adsorption, degradation, and biological uptake and transformation of PBDEs affected by iron materials in the environment. Iron materials can effectively adsorb PBDEs through hydrophobic interactions, π-π interactions, hydrogen/halogen bonds, electrostatic interactions, coordination interactions, and pore filling interactions. In addition, they are beneficial for the photodegradation, reduction debromination, and advanced oxidation degradation and debromination of PBDEs. The iron material-microorganism coupling technology affects the uptake and transformation of PBDEs. In addition, iron materials can reduce the uptake of PBDEs in plants, affecting their bioavailability. The species, concentration, and size of iron materials affect plant physiology. Overall, iron materials play a bidirectional role in the biological uptake and transformation of PBDEs. It is necessary to strengthen the positive role of iron materials in reducing the environmental and health risks caused by PBDEs. This article provides innovative ideas for the rational use of iron materials in controlling the migration and transformation of PBDEs in the environment.
Collapse
Affiliation(s)
- Sai Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yaxin Guo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weijie Pan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Xue M, Shi Y, Xiang J, Zhang Y, Qiu H, Chen W, Zhang J. 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) at Environmental Levels Influenced Photosynthesis in the Mangrove Species Kandelia obovata. TOXICS 2024; 12:456. [PMID: 39058108 PMCID: PMC11281169 DOI: 10.3390/toxics12070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
2,2',4,4'-tetra-bromodiphenytol ether (BDE-47) is one of the ubiquitous organic pollutants in mangrove sediments. To reveal the toxic effects of BDE-47 on mangrove plants, the mangrove species Kandelia obovate was used to investigate the photosynthetic capacity effects and the molecular mechanisms involved after BDE-47 exposure at environment-related levels (50, 500, and 5000 ng g-1 dw). After a 60-day exposure, the photosynthetic capacity was inhibited in K. obovata seedlings, and a decrease in the stomatal density and damage in the chloroplast ultrastructure in the leaves were found. Transcriptome sequencing showed that, following exposure to BDE-47, gene expression in photosynthesis-related pathways was predominantly suppressed in the leaves. The bioinformatics analysis indicated that BDE-47 exerts toxicity by inhibiting photosystem I activity and chlorophyll a/b-binding protein-related genes in the leaves of K. obovata. Thus, this study provides preliminary theoretical evidence for the toxic mechanism effect of BDE-47 on photosynthesis in mangrove species.
Collapse
Affiliation(s)
- Meijing Xue
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (M.X.); (Y.S.); (J.X.); (Y.Z.); (H.Q.); (W.C.)
| | - Yajun Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (M.X.); (Y.S.); (J.X.); (Y.Z.); (H.Q.); (W.C.)
| | - Jing Xiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (M.X.); (Y.S.); (J.X.); (Y.Z.); (H.Q.); (W.C.)
| | - Yan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (M.X.); (Y.S.); (J.X.); (Y.Z.); (H.Q.); (W.C.)
| | - Hanxun Qiu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (M.X.); (Y.S.); (J.X.); (Y.Z.); (H.Q.); (W.C.)
| | - Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (M.X.); (Y.S.); (J.X.); (Y.Z.); (H.Q.); (W.C.)
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (M.X.); (Y.S.); (J.X.); (Y.Z.); (H.Q.); (W.C.)
- Hainan Provincial Key Laboratory of Ecological Civilization and Integrated Land-Sea Development, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
3
|
Leri AC, Hettithanthri O, Bolan S, Zhang T, Unrine J, Myneni S, Nachman DR, Tran HT, Phillips AJ, Hou D, Wang Y, Vithanage M, Padhye LP, Jasemi Zad T, Heitz A, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Bromine contamination and risk management in terrestrial and aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133881. [PMID: 38422740 PMCID: PMC11380803 DOI: 10.1016/j.jhazmat.2024.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.
Collapse
Affiliation(s)
- Alessandra C Leri
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States.
| | - Oshadi Hettithanthri
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, United States; Kentucky Water Research Institute, University of Kentucky, Lexington, KY 40506, United States
| | - Satish Myneni
- Department of Geosciences, Princeton Univ., Princeton, NJ 08544, United States
| | - Danielle R Nachman
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145, India
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yidong Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemi Zad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Anna Heitz
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| |
Collapse
|
4
|
Lan Y, Gao X, Xu H, Li M. 20 years of polybrominated diphenyl ethers on toxicity assessments. WATER RESEARCH 2024; 249:121007. [PMID: 38096726 DOI: 10.1016/j.watres.2023.121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.
Collapse
Affiliation(s)
- Yingying Lan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
5
|
Szafranski GT, Granek EF. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. MARINE POLLUTION BULLETIN 2023; 196:115595. [PMID: 37852064 DOI: 10.1016/j.marpolbul.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.
Collapse
Affiliation(s)
- Geoffrey T Szafranski
- Environmental Science & Management, Portland State University, Portland, OR, United States of America
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, United States of America.
| |
Collapse
|
6
|
Jiang Y, Wang Q, Du Y, Yang D, Xu J, Yan C. Occurrence and Distribution of Tetrabromobisphenol A and Diversity of Microbial Community Structure in the Sediments of Mangrove. BIOLOGY 2023; 12:biology12050757. [PMID: 37237569 DOI: 10.3390/biology12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The occurrence and distribution characteristics of tetrabromobisphenol A (TBBPA) and its relationship with microbial community diversity in different mangrove sediments need further investigation. The results of this study indicated levels of TBBPA in mangrove sediments from the Zhangjiang Estuary (ZJ), Jiulongjiang Estuary (JLJ), and Quanzhou Bay (QZ) in Southeast China ranging from 1.80 to 20.46, 3.47 to 40.77, and 2.37 to 19.83 ng/g dry weight (dw), respectively. Mangrove sediments from JLJ contained higher levels of TBBPA, possibly due to agricultural pollution. A correlation analysis revealed a significant correlation between total organic carbon (TOC), total nitrogen (TN), and TBBPA distribution in ZJ and JLJ mangrove sediments, but not in QZ mangrove sediments. TOC significantly affected the distribution of TBBPA in mangrove sediments, but pH had no effect. High-throughput 16S rRNA gene sequencing showed that Pseudomonadota dominated the sediment bacteria followed by Chloroflexota, Actinobacteota, Bacillota, Acidobacteriota, Bacteroidota, and Aminicenantes in mangrove sediments. Although the microbial community structure of the ZJ, JLJ, and QZ mangrove sediments was similar, the taxonomic profile of their sensitive responders differed markedly. The genus Anaerolinea was dominant in the mangrove sediments and was responsible for the in situ dissipation of TBBPA. Based on redundancy analysis, there was a correlation between TBBPA, TOC, TN, C/N, pH, and microbial community structure at the genus level. Combining TBBPA, TN, and TOC may induce variations in the microbial community of mangrove sediments.
Collapse
Affiliation(s)
- Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunling Du
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Dong Yang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongling Yan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Gao H, Chen J, Wang C, Wang P, Wang R, Hu Y, Pan Y. Diversity and interaction of bacterial and microeukaryotic communities in sediments planted with different submerged macrophytes: Responses to decabromodiphenyl ether. CHEMOSPHERE 2023; 322:138186. [PMID: 36806803 DOI: 10.1016/j.chemosphere.2023.138186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although various persistent organic pollutants (POPs) can affect microbial communities and functions in aquatic ecosystems, little is known about how bacteria and microeukaryotes respond to the POPs in sediments planted with different submerged macrophytes. Here, a 60-day microcosm experiment was carried out to investigate the changes in the diversity and interaction of bacterial and microeukaryotic communities in sediments collected from Taihu lake, either with decabromodiphenyl ether (BDE-209) own or combined with two common submerged macrophyte species (Vallisneria natans and Hydrilla verticillate). The results showed that BDE-209 significantly decreased the bacterial α-diversity but increased the microeukaryotic one. In sediments planted with submerged macrophytes, the negative effect of BDE-209 on bacterial diversity was weakened, and its positive effect on microeukaryotic one was strengthened. Co-occurrence network analysis revealed that the negative relationship was dominant in bacterial and microeukaryotic communities, while the cooperative relationship between microbial species was increased in planted sediments. Among nine keystone species, one belonging to bacterial family Thermoanaerobaculaceae was enriched by BDE-209, and others were inhibited. Notably, such inhibition was weakened, and the stimulation was enhanced in planted sediments. Together, these observations indicate that the responses of bacteria and microeukaryotes to BDE-209 are different, and their communities under BDE-209 contamination are more stable in sediments planted with submerged macrophytes. Moreover, the effects of plant species on the microbial responses to BDE-209 need to be explored by more specific field studies in the future.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China
| |
Collapse
|
8
|
Entezari S, Al MA, Mostashari A, Ganjidoust H, Ayati B, Yang J. Microplastics in urban waters and its effects on microbial communities: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88410-88431. [PMID: 36327084 DOI: 10.1007/s11356-022-23810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects. However, until now, no standardized methodical protocols have been proposed for comparing the results of studies in different environments, especially in urban water and wastewater. This review briefly discusses MPs' sources, fate, and transport in urban waters and explains methodological uncertainty. The effects of MPs on urban water microbiomes, including urban runoff, sewage wastewater, stagnant water in plumbing networks, etc., are also examined in depth. Furthermore, this study highlights the pathway of MPs and their transport vectors to different parts of ecosystems and human life, particularly through mediating microbial communities, antibiotic-resistant genes, and biogeochemical cycles. Overall, we have briefly highlighted the present research gaps, the lack of appropriate policy for evaluating microplastics and their interactions with urban water microbiomes, and possible future initiatives.
Collapse
Affiliation(s)
- Saber Entezari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Amir Mostashari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Hossein Ganjidoust
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran.
| | - Bita Ayati
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
9
|
Gao H, Wang C, Chen J, Wang P, Zhang J, Zhang B, Wang R, Wu C. Enhancement effects of decabromodiphenyl ether on microbial sulfate reduction in eutrophic lake sediments: A study on sulfate-reducing bacteria using dsrA and dsrB amplicon sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157073. [PMID: 35780888 DOI: 10.1016/j.scitotenv.2022.157073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Although sulfate (SO42-) reduction by sulfate-reducing bacteria (SRB) is an important sulfur cycling processes, little is known about how the persistent organic pollutants affect the SO42- reduction process in the eutrophic lake sediments. Here, we carried out a 120-day microcosm experiment to explore the effects of decabromodiphenyl ether (BDE-209) on SO42- reduction mediated by SRB in sediment collected from Taihu Lake, a typical eutrophic lake in China. The results showed that BDE-209 contamination significantly enhanced the activity of dissimilatory sulfite reductase (DSR) (r = 0.83), which led to an increased concentration of sulfide produced by SO42- reduction. This stimulatory effect of BDE-209 on DSR activity was closely related to variations in the dsrA- and dsrB-type SRB communities. The abundances and diversities of the dsrA- and dsrB-containing SRB increased and their community composition varied in response to BDE-209 contamination. The gene copies (r = 0.72), Chao 1 (r = 0.50), Shannon (r = 0.55), and Simpson (r = 0.70) indices of dsrB-containing SRB was positively correlated with BDE-209 contamination. Co-occurrence network analysis revealed that network complexity, connectivity, and the interspecific cooperative relationship in SRB were strengthened by BDE-209 contamination. The keystone species identified in the SRB community mainly belonged to the genera Candidatus Sulfopaludibacter for the dsrA-containing SRB and Desulfatiglans for the dsrB-containing SRB, and their relative abundances were positively correlated with DSR activity in the sediment. The relative abundance of the keystone species and SRB diversity were important microbial factors directly contributing to the variations in DSR activity based on structural equation modeling analysis. Notably, the results of abundance, community structure, and interspecific relationships showed that the dsrB-containing SRB may be more sensitive to the BDE-209 contamination than the dsrA-containing SRB. These results will help us understand the effects of BDE-209 on microbial sulfate reduction in eutrophic lakes.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Cheng Wu
- Kunming Engineering Corporation Limited, Power China, 115 People's East Road, Kunming 650051, PR China
| |
Collapse
|
10
|
Li H, Ma Y, Yao T, Ma L, Zhang J, Li C. Biodegradation Pathway and Detoxification of β-cyfluthrin by the Bacterial Consortium and Its Bacterial Community Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7626-7635. [PMID: 35698868 DOI: 10.1021/acs.jafc.2c00574] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the process of microbial degradation of pyrethroid pesticides, the synergistic effect of the microbial community is more conducive to the complete degradation of toxic compounds than a single strain. At present, the degradation pathway of pyrethroids in a single strain has been well revealed, but the synergistic metabolism at the community level has not been well explained. This study elucidated the bacterial community succession, metabolic pathway, and phytotoxicity assessment during β-cyfluthrin biodegradation by a novel bacterial consortium enriched from contaminated soil. The results showed that the half-life of β-cyfluthrin at different initial concentrations of 0.25, 0.5, 0.75, and 1.0 mg mL-1 were 4.16, 7.34, 12.81, and 22.73 days, respectively. Enterobacter was involved in β-cyfluthrin degradation metabolism in the initial stage, and other bacterial genera (Microbacterium, Ochrobactrum, Pseudomonas, Hyphomicrobiaceae, Achromobacter, etc.) significantly contribute to the degradation of intermediate metabolites in the later stages. Functional gene prediction and metabolite analysis showed that xenobiotic biodegradation and metabolism, especially benzoate degradation and metabolism by cytochrome P450 were the major means of β-cyfluthrin degradation. Further, two degradation pathways of β-cyfluthrin were proposed, which were mainly ester hydrolysis and oxidation to degrade β-cyfluthrin through the production of carboxylesterase and oxidoreductase. In addition, the inoculated bacterial consortium could degrade β-cyfluthrin residues in water and soil and reduce its phytotoxicity in Medicago sativa. Hence, this novel bacterial consortium has important application in the remediation environments polluted by β-cyfluthrin.
Collapse
Affiliation(s)
- Haiyun Li
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yachun Ma
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Tuo Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Jiangui Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Changning Li
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| |
Collapse
|
11
|
Big Data Technology Oriented to Wetland Resource Ecosystem Value Evaluation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6815102. [PMID: 35676946 PMCID: PMC9170450 DOI: 10.1155/2022/6815102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
In order to study a big data technology research for the evaluation of wetland resource ecosystem value. This paper proposes a wetland dimension oriented to the evaluation of wetland ecosystem services space attribute through big data coupling analysis framework. The framework used China's coastal wetlands as a case for empirical research and summarized the future direction of the research on the value evaluation of wetland ecosystem services in the era of big data. The result shows: Wetland Ecosystem Observation Network can obtain long-term series of dynamic data, remote sensing Earth observation can realize the integrated observation of space, space, and Earth, the combination of the two will help to build a wetland ecological big data observation system. The service value of China's coastal wetland ecosystem is 5010.32 × 108 yuan. The research results can effectively solve the problem of geographical heterogeneity and have reference value for the protection and management of the wetland ecosystem.
Collapse
|
12
|
Zhao X, Jia P, Chen L, Yang Y, Yang Y, Gao D. Combination of biodegradation and fenton process for efficient removal of PDM/ZnO. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114013. [PMID: 34735834 DOI: 10.1016/j.jenvman.2021.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
In the present study, an investigation was conducted on the removal of polydiallyldimethylammonium chloride-acrylic-acrylamide-hydroxyethyl acrylate/ZnO nanocomposites (PDM/ZnO) through biodegradation and Fenton process coupled treatments. As revealed from the results of the chemical oxygen demand, the total organic carbon, the biochemical oxygen demand and the CO2 production analysis, PDM/ZnO could be partially biodegraded. The optimal initial pH, the mixed liquid suspended solids concentration and additional carbon source (glucose) dosage in the biodegradation were 7.0, 4.0 g/L and 1.0 g/L, respectively. On the whole, NaCl, the coexisted metal cations (Cu2+, Zn2+ and Cr3+) and additional NH4Cl inhibited the biodegradation of PDM/ZnO. PDM/ZnO was suggested to adversely affect on microbial community structure and activity. Optimum conditions for Fenton treatment were 50 mg/L Fe2+, 20 mL/L H2O2 and pH 2.0. Biodegradation showed that 64% of PDM/ZnO was removed. Besides, the combination of Fenton post-treatment could achieve an over 97% removal of PDM/ZnO. Thus, Fenton process combined biodegradation pre-treatment can act as an effective method to remove PDM/ZnO.
Collapse
Affiliation(s)
- Xia Zhao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Pengju Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yong Yang
- School of Arts and Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yuhao Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Dangge Gao
- College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
13
|
Girones L, Oliva AL, Negrin VL, Marcovecchio JE, Arias AH. Persistent organic pollutants (POPs) in coastal wetlands: A review of their occurrences, toxic effects, and biogeochemical cycling. MARINE POLLUTION BULLETIN 2021; 172:112864. [PMID: 34482253 DOI: 10.1016/j.marpolbul.2021.112864] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Coastal wetlands, such as mangroves, seagrass beds, and salt marshes, are highly threatened by increasing anthropic pressures, including chemical pollution. Persistent organic pollutants (POPs) have attracted attention in these particularly vulnerable ecosystems, due to their bioaccumulative, pervasive, and ecotoxic behavior. This article reviews and summarizes available information regarding current levels, biogeochemical cycling, and effects of POPs on coastal wetlands. Sediment POP levels were compared with international quality guidelines, revealing many areas where compounds could cause damage to biota. Despite this, toxicological studies on some coastal wetland plants and microorganisms showed a high tolerance to those levels. These taxonomic groups are likely to play a key role in the cycling of the POPs, with an active role in their accumulation, immobilization, and degradation. Toxicity and biogeochemical processes varied markedly along three main axes; namely species, environmental conditions, and type of pollutant. While more focused research on newly and unintentionally produced POPs is needed, mainly in salt marshes and seagrass beds, with the information available so far, the environmental behavior, spatial distribution, and toxicity level of the studied POPs showed similar patterns across the three studied ecosystems.
Collapse
Affiliation(s)
- Lautaro Girones
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina.
| | - Ana L Oliva
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina
| | - Vanesa L Negrin
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Universidad Tecnológica Nacional (UTN)-FRBB, Bahía Blanca, Argentina; Universidad FASTA, Mar del Plata, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
14
|
Tong T, Li R, Chai M, Wang Q, Yang Y, Xie S. Metagenomic analysis of microbial communities continuously exposed to Bisphenol A in mangrove rhizosphere and non-rhizosphere soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148486. [PMID: 34465064 DOI: 10.1016/j.scitotenv.2021.148486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/31/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is widely distributed in littoral zones and may cause adverse impacts on mangrove ecosystem. Biodegradation and phytoremediation are two primary processes for BPA dissipation in mangrove soils. However, the rhizosphere effects of different mangrove species on BPA elimination are still unresolved. In this study, three typical mangrove seedlings, namely Avicennia marina, Bruguiera gymnorrhiza (L.) and Aegiceras corniculatum, were cultivated in soil microcosms for four months and then subjected to 28-day continuous BPA amendment. Un-planted soil microcosms (as control) were also set up. The BPA residual rates and root exudates were monitored, and the metabolic pathways as well as functional microbial communities were also investigated to decipher the rhizosphere effects based on metagenomic analysis. The BPA residual rates in all planted soils were significantly lower than that in un-planted soil on day 7. Both plantation and BPA dosage had significant effects on bacterial abundance. A distinct separation of microbial structure was found between planted and un-planted soil microcosms. Genera Pseudomonas and Lutibacter got enriched with BPA addition and may play important roles in BPA biodegradation. The shifts in bacterial community structure upon BPA addition were different among the microcosms with different mangrove species. Genus Novosphingobium increased in Avicennia marina and Bruguiera gymnorrhiza (L.) rhizosphere soils but decreased in Aegiceras corniculatum rhizosphere soil. Based on KEGG annotation and binning analysis, the proposal of BPA degradation pathways and the quantification of relevant functional genes were achieved. The roles of Pseudomonas and Novosphingobium may differ in lower BPA degradation pathways. The quantity variation patterns of functional genes during the 28-day BPA amendment were different among soil microcosms and bacterial genera.
Collapse
Affiliation(s)
- Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruili Li
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| | - Minwei Chai
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Qian Wang
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
15
|
Wang C, Gao H, Chen J, Wang P, Zhang J, Hu Y, Pan Y. Long-term effects of decabromodiphenyl ether on denitrification in eutrophic lake sediments: Different sensitivity of six-type denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145147. [PMID: 33609823 DOI: 10.1016/j.scitotenv.2021.145147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 05/28/2023]
Abstract
The widespread use of polybrominated diphenyl ethers inevitably results in their increased release into natural waters and subsequent deposition in sediments. However, their long-term effects on the bacteria participating in each step of denitrification in eutrophic lake sediments are still unknown. Here, we conducted a one-year microcosm experiment to determine the long-term effects of decabromodiphenyl ether (BDE-209), at low (2 mg kg-1 dry weight) and high (20 mg kg-1 dry weight) contamination levels, on six-type denitrifying bacteria and their activities in sediments collected from Taihu Lake, a typical eutrophic lake in China. At the end of the experiment, sediment denitrifying reductase activities were inhibited by BDE-209 at both levels, with the greatest inhibition seen for nitric oxide reductase activity. The higher nitrate concentration in the contaminated sediments was attributed to the inhibition of nitrate reductase activities. The abundances of six-type denitrifying genes (narG, napA, nirK, nirS, norB, and nosZ) significantly decreased under high BDE-209 treatment, and narG and napA genes were more sensitive to the toxicity of BDE-209. The results from pyrosequencing showed that BDE-209, at either treatment concentration, decreased the six-type denitrifying bacterial diversities and altered their community composition. This shift of six-type denitrifying bacterial communities might also be driven by the debrominated products concentrations of BDE-209 and variations in sediment inorganic nitrogen concentrations. In particular, some genera from phylum Proteobacteria such as Pseudomonas, Cupriavidus, and Azoarcus were decreased significantly because of BDE-209 and its debrominated products.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
16
|
Wang G, Jiang N, Liu Y, Wang X, Liu Y, Jiao D, Wang H. Competitive microbial degradation among PBDE congeners in anaerobic wetland sediments: Implication by multiple-line evidences including compound-specific stable isotope analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125233. [PMID: 33513555 DOI: 10.1016/j.jhazmat.2021.125233] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread contaminants in the environment. Microbial reductive debromination is one of the important attenuation processes for PBDEs in the anaerobic sediments. This study first investigated the interaction between BDE-47 and BDE-153 during the microbial degradation in wetland sediments by the multiple-line approaches including biodegradation kinetics, microbial community structures and stable isotope composition. BDE-47 and BDE-153 biodegradation fitted pseudo-zero-order kinetics, with the higher degradation rates in single than combined exposure, indicating the mutual inhibition in co-exposure condition. BDE-47 and BDE-153 shared the common dehalogenators (genus Dehalococcoides and Acinetobacter) with enrichment in combined exposure, indicating the potential competition in dehalogenating bacteria during biodegradation. Microbial degradation could lead to the isotopic fractionation of BDE-47 and BDE-153, with the smaller changes in δ13C in combined than single exposure. The apparent kinetic isotope effect of carbon (AKIEC) was different between BDE-47 and BDE-153 in single exposure, whilst identical in combined exposure, indicating the similar degradation mechanism for BDE-47 and BDE-153 in co-exposure condition. These results revealed that the competition on microbial degradation occurred among PBDEs in co-exposure condition, which was important for the comprehensive risk assessment of simultaneous exposure to multiple PBDE congeners in the environment.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Na Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian 116026, China
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuxin Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dian Jiao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
17
|
Zhang P, Lu G, Liu J, Yan Z, Dong H, Zhou R. Biodegradation of 2-ethylhexyl-4-methoxycinnamate in river sediments and its impact on microbial communities. J Environ Sci (China) 2021; 104:307-316. [PMID: 33985734 DOI: 10.1016/j.jes.2020.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms, but little is known about their biodegradation in river sediments and their impact on microorganisms. We have set up the sterile and microbiological systems in the laboratory, adding 2-ethylhexyl-4-methoxycinnamate (EHMC), one of organic UV filters included in the list of high yield chemicals, at concentrations of 2, 20 and 200 μg/L, and characterized the microbial community composition and diversity in sediments. Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system (3.49 days) was much shorter than that in the sterile system (7.55 days). Two potential degradation products, 4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system. Furthermore, high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi, Acidobacteria, Bacteroidetes and Nitrospirae; Eukaryota_uncultured fungus dominated the sediment fungal assemblages. Correlation analysis demonstrated that two bacterium genera (Anaerolineaceae_uncultured and Burkholderiaceae_uncultured) were significantly correlated with the biodegradation of EHMC. These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities, which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agriculture and Animal Husbandry College, Linzhi 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
18
|
Khalid F, Hashmi MZ, Jamil N, Qadir A, Ali MI. Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10474-10487. [PMID: 33411303 DOI: 10.1007/s11356-020-11996-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 05/21/2023]
Abstract
Electronic waste is termed as e-waste and on recycling it produces environmental pollution. Among these e-waste pollutants, polychlorinated biphenyls (PCBs) are significantly important due to ubiquitous, organic in nature and serious health and environmental hazards. PCBs are used in different electrical equipment such as in transformers and capacitors for the purposes of exchange of heat and hydraulic fluids. Bioremediation is a reassuring technology for the elimination of the PCBs from the environment. In spite of their chemical stability, there are several microbes which can bio-transform or mineralize the PCBs aerobically or anaerobically. In this review paper, our objective was to summarize the information regarding PCB-degrading enzymes and microbes. The review suggested that the most proficient PCB degraders during anaerobic condition are Dehalobacter, Dehalococcoides, and Desulfitobacterium and in aerobic condition are Burkholderia, Achromobacter, Comamonas, Ralstonia, Pseudomonas, Bacillus, and Alcaligenes etc., showing the broadest substrate among bacterial strains. Enzymes found in soil such as dehydrogenases and fluorescein diacetate (FDA) esterases have the capability to breakdown PCBs. Biphenyl upper pathway involves four enzymes: dehydrogenase (bphB), multicomponent dioxygenase (bphA, E, F, and G), second dioxygenase (bphC), hydrolase, and (bphD). Biphenyl dioxygenase is considered as the foremost enzyme used for aerobic degradation of PCBs in metabolic pathway. It has been proved that several micro-organisms are responsible for the PCB metabolization. The review provides novel strategies for e-waste-contaminated soil management.
Collapse
Affiliation(s)
- Foqia Khalid
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaffar Hashmi
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 44000, Pakistan.
- Pakistan Academy of Science, 3-Constitution Avenue Sector G-5/2, Islamabad, Pakistan.
| | - Nadia Jamil
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
19
|
Yao B, Luo Z, Zhi D, Hou D, Luo L, Du S, Zhou Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123674. [PMID: 33264876 DOI: 10.1016/j.jhazmat.2020.123674] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
The widespread of polybrominated diphenyl ethers (PBDEs) in the environment has caused rising concerns, and it is an urgent endeavor to find a proper way for PBDEs remediation. Various techniques such as adsorption, hydrothermal and thermal treatment, photolysis, photocatalytic degradation, reductive debromination, advanced oxidation processes (AOPs) and biological degradation have been developed for PBDEs decontamination. A comprehensive review of different PBDEs remediation techniques is urgently needed. This work focused on the environmental source and occurrence of PBDEs, their removal and degradation methods from water and soil, and prospects for PBDEs remediation techniques. According to the up-to-date literature obtained from Web of Science, it could be concluded that (i) photocatalysis and photocatalytic degradation is the most widely reported method for PBDEs remediation, (ii) BDE-47 and BDE-209 are the most investigated PBDE congeners, (iii) considering the recalcitrance nature of PBDEs and more toxic intermediates could be generated because of incomplete degradation, the combination of different techniques is the most potential solution for PBDEs removal, (iv) further researches about the development of novel and effective PBDEs remediation techniques are still needed. This review provides the latest knowledge on PBDEs remediation techniques, as well as future research needs according to the up-to-date literature.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dongmei Hou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shizhi Du
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
20
|
Farzana S, Cheung SG, Kong RYC, Wong YS, Tam NFY. Enhanced remediation of BDE-209 in contaminated mangrove sediment by planting and aquaculture effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142094. [PMID: 32911149 DOI: 10.1016/j.scitotenv.2020.142094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Toxic and persistent flame retardant (BDE-209) and aquaculture effluent (AE) are ubiquitous in coastal environments, but how their co-existence influences their fate is not yet investigated. This study investigated AE effects on remediation and uptake of BDE-209 by Kandelia obovata (Ko) and Avicennia marina (Am), true and dominant mangrove species. After 12-months, a significant removal of BDE-209 was achieved in planted mangrove sediment and the removal was significantly enhanced by AE addition, possibly due to the enhancement of nitrogen (N) and phosphorous (P) content in sediment. Residual percentages of parent BDE-209 in Ko and Am planted sediments without AE were 61.4% and 70.9%, respectively, but decreased to 46.9% and 48.0% with AE addition after 12-months. A similar trend was found in unplanted sediment, with 86.5% and 65.3% of BDE-209 retained in sediments without and with AE addition, respectively. The results demonstrated that AE addition not only increased the debromination of BDE-209 in all treated sediments with the production of debrominated congeners (de-PBDEs) like di- to nona-BDEs in unplanted and planted sediments, but also enhanced the take up of BDE-209 in Ko root, and de-PBDEs in both Ko and Am, thus enhancing the phytoremediation of BDE-209 in contaminated sediments.
Collapse
Affiliation(s)
- Shazia Farzana
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - R Y C Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuk Shan Wong
- School of Science and Technology, The Open University of Hong Kong, Homantin, Kowloon, Hong Kong, China
| | - Nora Fung Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; School of Science and Technology, The Open University of Hong Kong, Homantin, Kowloon, Hong Kong, China.
| |
Collapse
|
21
|
White-Rot Fungi for Bioremediation of Polychlorinated Biphenyl Contaminated Soil. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Ma J, Zhang Q, Chen F, Zhu Q, Wang Y, Liu G. Remediation of PBDEs-metal co-contaminated soil by the combination of metal stabilization, persulfate oxidation and bioremediation. CHEMOSPHERE 2020; 252:126538. [PMID: 32220720 DOI: 10.1016/j.chemosphere.2020.126538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Laboratory experiments were performed to investigate the efficiency of a simultaneous metal stabilization, persulfate oxidation and bioremediation for decontaminating polybrominated diphenyl ethers (PBDEs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Biochar and bentonite were applied to the soil for immobilizing heavy metals (Cu, Pb, Zn and Ni). It was found that the toxicity level declined most significantly in the case of 20 g/kg biochar +20 g/kg bentonite. A low dose of persulfate (20 mmol/kg soil) was found to be suitable for oxidizing soil PBDEs and enhancing the bioavailability of PBDEs residue. Persulfate oxidation reduced the soil organic matter content, and caused dramatic decrease of bacterial density. Nevertheless, microbial activity and number recovered on the whole during 90 days of bioremediation. Finally, a degradation efficiency of 94.6% and a mineralization efficiency of 60.3% were obtained by the hybrid treatment scheme. The pyrosequencing analysis indicates that soil bacterial community changed obviously during the treatments, and there was an enrichment of PBDE-degrading populations during bioremediation relative to that of oxidized soil.
Collapse
Affiliation(s)
- Jing Ma
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, 221008, China
| | - Qi Zhang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221008, China
| | - Fu Chen
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, 221008, China; School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221008, China.
| | - Qianlin Zhu
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, 221008, China
| | - Yifei Wang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221008, China
| | - Gangjun Liu
- Geospatial Science, College of Science, Engineering and Health, RMIT University, Melbourne, 3000, Australia
| |
Collapse
|
23
|
Jiang Y, Lu H, Xia K, Wang Q, Yang J, Hong H, Liu J, Yan C. Effect of mangrove species on removal of tetrabromobisphenol A from contaminated sediments. CHEMOSPHERE 2020; 244:125385. [PMID: 31790995 DOI: 10.1016/j.chemosphere.2019.125385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/23/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The increase levels of tetrabromobisphenol A (TBBPA) in mangrove wetlands is of concern due to its potential toxic impacts on ecosystem. A 93-day greenhouse pot experiment was conducted to investigate the effects of mangrove plants, A. marina and K. obovata, on TBBPA degradation in sediment and to reveal the associated contributing factor(s) for its degradation. Results show that both mangrove species could uptake, translocate, and accumulate TBBPA from mangrove sediments. Compared to the unplanted sediment, urease and dehydrogenase activity as well as total bacterial abundance increased significantly (p < 0.05) in the sediment planted with mangrove plants, especially for K. obovata. In the mangrove-planted sediment, the Anaerolineae genus was the dominant bacteria, which has been reported to enhance TBBPA dissipation, and its abundance increased significantly in the sediment at early stage (0-35 day) of the greenhouse experiment. Compared to A. marina-planted sediment, higher enrichment of Geobater, Pseudomonas, Flavobacterium, Azoarcus, all of which could stimulate TBBPA degradation, was observed for the K. obovata-planted sediment during the 93-day growth period. Our mass balance result has suggested that plant-induced TBBPA degradation in the mangrove sediment is largely due to elevated microbial activities and total bacterial abundance in the rhizosphere, rather than plant uptake. In addition, different TBBPA removal efficiencies were observed in the sediments planted with different mangrove species. This study has demonstrated that K. obovata is a more suitable mangrove species than A. marina when used for remediation of TBBPA-contaminated sediment.
Collapse
Affiliation(s)
- Yongcan Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Qiang Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Jinjin Yang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Chonglin Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
24
|
Li R, Ding H, Guo M, Shen X, Zan Q. Do pyrene and Kandelia obovata improve removal of BDE-209 in mangrove soils? CHEMOSPHERE 2020; 240:124873. [PMID: 31574439 DOI: 10.1016/j.chemosphere.2019.124873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Combined pollution caused by polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) in mangrove wetlands is serious, with their remediation to be been paid more and more attention. However, little is known about the combined impact of PAHs and mangrove species on removal of PBDEs in contaminated soils. In this study, BDE-209 and pyrene were selected and a 9 months experiment was conducted to explore how BDE-209 removal in contaminated soil varied with pyrene addition and Kandelia obovata planting, and to clarify corresponding microbial responses. Results showed that BDE-209 removals in soil induced by pyrene addition or K. obovata planting were significant and stable after 6 months, with the lowest levels of BDE-209 in combined pyrene addition with K. obovata planting. Unexpected, root uptake of BDE-209 in K. obovata was limited for BDE-209 removal in soil, which was verified by lower total amount of BDE-209 bioaccumulated in K. obovata's root. In soil without K. obovata planting, BDE-209 removal caused by pyrene addition coexisted with changed bacterial abundance at phylum Planctomycetes and Chloroflexi, class Planctomycetacia, and genus Blastopirellula. K. obovata-induced removal of BDE-209 in soil may be related to bacterial enrichment in phylum Proteobacteria, class Gammaproteobacteria and genus Ilumatobacter, Gaiella. Thus, in BDE-209 contaminated soil, microbial community responses induced by pyrene addition and K. obovata planting were different at phylum, class and genus levels. This is the first study demonstrating that pyrene addition and K. obovata planting could improve BDE-209 removal, and differently affected the corresponding responses of microbial communities.
Collapse
Affiliation(s)
- Ruili Li
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China.
| | - Huan Ding
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China
| | - Meixian Guo
- Nanshan Second Experimental School, Shenzhen, 518053, China
| | - Xiaoxue Shen
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China
| | - Qijie Zan
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Guangdong Neilingding Futian National Nature Reserve, Shenzhen, 518000, China
| |
Collapse
|
25
|
Farzana S, Cheung SG, Tam NFY. Effects of aquaculture effluents on fate of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) in contaminated mangrove sediment planted with Kandelia obovata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:71-79. [PMID: 31319260 DOI: 10.1016/j.scitotenv.2019.07.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The problems of aquaculture effluent (AE) and polybrominated diphenyl ethers (PBDEs) are common in coastal areas. The fate of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), a dominant PBDE congener, in mangrove sediments and the effects of AE on it have never been reported. A 12-months microcosm study was conducted and more than 55% of the BDE-99 in contaminated sediment was removed at the end. The removal percentages depended on treatments, with the highest removal in the treatment planted with Kandelia obovata (Ko) and irrigated with AE (WPAE), followed by Ko planted but without AE (WP), unplanted with AE (NPAE) and unplanted without AE (NP). Hydroxylation of BDE-99 was observed in all treatments, with a preference in the para position bromine substitution, followed by meta position and the lowest was ortho bromine substitution. BDE-99 was also debrominated to lower brominated congeners like tri- and di-BDEs congeners. Different from parent BDE-99, ortho-substituted BDE-28 and -15 were more dominant than that of para-substituted BDE-17 and -7, suggesting that para-substituted congeners could further be debrominated. The AE addition enhanced root uptake of PBDEs in Ko. These findings suggested that the addition of AE and planting Ko could be an effective way to remedy BDE-99 in contaminated sediments.
Collapse
Affiliation(s)
- Shazia Farzana
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora Fung Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
26
|
Farzana S, Zhou H, Cheung SG, Tam NFY. Could mangrove plants tolerate and remove BDE-209 in contaminated sediments upon long-term exposure? JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120731. [PMID: 31202074 DOI: 10.1016/j.jhazmat.2019.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/17/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) such as BDE-209, the commonest congener, are known to be toxic. A 24-months study using mangrove mesocosms with mixed mangrove species, namely Avicennia marina (Am), Aegiceras corniculatum (Ac) and Kandelia obovata (Ko), or without any plant was conducted to examine toxicity, removal, translocation and uptake of BDE-209. At month 24, BDE-209 stimulated the production of root superoxide radical (O2-*), and leaf and root malondialdehyde (MDA) of Ko, enhanced leaf O2-* of Ac, but did not affect the production of O2-* and MDA in Am. These findings indicated that the tolerance to BDE-209 was species-specific, with Am being the most tolerant and Ko the most sensitive species. In leaf and root, BDE-209 stimulated peroxidase (POD) activity in both Ac and Ko, and superoxide dismutase (SOD) in Am. After 24-months, more than 60% and 40% of BDE-209 in contaminated sediments were removed in planted and unplanted groups, respectively, with more PBDEs in upper than bottom sediment layers. This study demonstrates that planting tolerant species such as Avicennia marina with high uptake could remedy PBDEs in contaminated sediments.
Collapse
Affiliation(s)
- Shazia Farzana
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Haichao Zhou
- Marine Research Centre, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora Fung Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
27
|
Xiang L, Sheng H, Gu C, Marc RG, Wang Y, Bian Y, Jiang X, Wang F. Biochar combined with compost to reduce the mobility, bioavailability and plant uptake of 2,2',4,4'-tetrabrominated diphenyl ether in soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:341-348. [PMID: 31026627 DOI: 10.1016/j.jhazmat.2019.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Biochar application to soil is recognised for its capacity to immobilise pollutants (through sorption) while composted inputs can accelerate the biodegradation of organic pollutants. However, little is known about the influence of combined incorporation on plant uptake of organic pollutants. Therefore, we investigated the effects of maize straw-derived biochar (MSB), compost derived from maize straw and pig manure (SMC), and their combination (MSB-SMC) as soil amendments on bioavailability of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and carrot (Daucus carota L.) uptake in a horticultural soil. We found that biochar alone performed well in reducing BDE-47 bioavailability, but was less effective at degrading the pollutant. Conversely, addition of compost stimulated BDE-47 biodegradation. MSB-SMC enhanced BDE-47 biodegradation in soil, reduced contamination of carrot roots, and caused significant reductions in soil extractable BDE-47. The combination of contrasting approaches to remediation thus resulted in the most favorable outcome for a contaminated soil: immobilisation of contaminant from vegetable crops (via biochar) with simultaneous bioremediation of the growing medium. These findings point towards an effective strategy for reducing plant uptake of PDBEs through the combined use of biochar and compost as soil amendment - reducing mobility and facilitating degradation of the accessible contaminant fractions.
Collapse
Affiliation(s)
- Leilei Xiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjie Sheng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Redmile-Gordon Marc
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley, GU23 6QB, United Kingdom
| | - Yu Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Yu Y, Yin H, Peng H, Lu G, Dang Z. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: Cells viability, pathway, toxicity assessment, and microbial function prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:958-965. [PMID: 31018474 DOI: 10.1016/j.scitotenv.2019.03.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
GY1, a novel microbial consortium with efficient ability to degrade decabromodiphenyl ether (BDE-209) has been isolated and the sequencing analysis has been conducted. The results revealed that Hyphomicrobium, Pseudomonas, Aminobacter, Sphingopyxis, Chryseobacterium, Bacillus, Pseudaminobacter, Stenotrophomonas, Sphingobacterium and Microbacterium were the dominant genera, and the function genes involved in BDE-209 conversion were predicted by PICRUSt. When BDE-209 concentration increased from 0.5 to 10mg/L, its degradation efficiency declined from 57.2% to 22.3%. Various kinds of debrominated metabolites were detected during the biodegradation process, including BDE-208, BDE-207, BDE-206, BDE-205, BDE-190, BDE-181, BDE-155, BDE-154, BDE-99, BDE-47, BDE-17 and BDE-7. Also, the proportion of necrotic cells was observed during GY1 mediated degradation of BDE-209 to reveal the changes of cells viability under BDE-209 stress. Subsequent analysis showed that the reaction of BDE-209 with GY1 was a detoxification process and bioaugmentation with GY1 effectively enhanced BDE-209 degradation in actual water and water-sediment system.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
29
|
Xiang L, Sheng H, Xu M, Redmile-Gordon M, Bian Y, Yang X, Jiang X, Wang F. Reducing plant uptake of a brominated contaminant (2,2',4,4'‑tetrabrominated diphenyl ether) by incorporation of maize straw into horticultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:29-37. [PMID: 30708214 DOI: 10.1016/j.scitotenv.2019.01.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Application of crop residues is a conventional practice that contributes to crop production through nutrient returns and other benefits to soil health: driving soil physicochemical and biological functions. However, little is known about the impacts of straw residue incorporation on the bioavailability of organic pollutants and associated changes in microbial community structure in contaminated soils. In this study, maize straw was added to a soil contaminated with a model polybrominated diphenyl ether (BDE-47). A pot experiment was conducted and planted with carrot (Daucus carota L.). We found that straw addition greatly reduced the bioavailability of BDE-47, changed the bacterial community structure and affected a range of soil physiochemical properties. Moreover, the amount of BDE-47 that had accumulated in carrot roots and aboveground tissues was significantly reduced. This study may therefore describe an effective agronomic strategy to reduce the bioavailability of polybrominated diphenyl ethers (PBDEs) in a soil used to grow high value vegetable crops. This strategy draws on traditional wisdom and shows promise as a practical method to support horticultural production systems, remediate soils, and help to ensure food safety.
Collapse
Affiliation(s)
- Leilei Xiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Sheng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc Redmile-Gordon
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley, UK
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinglun Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Farzana S, Cheung SG, Zhou HC, Tam NFY. Growth and antioxidative response of two mangrove plants to interaction between aquaculture effluent and BDE-99. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:796-804. [PMID: 30708295 DOI: 10.1016/j.scitotenv.2019.01.263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Mangroves are subject to contamination of polybrominated diphenyl ethers (PBDEs) due to waste and wastewater disposal, and aquaculture effluent (AE) from nearby aquaculture activities. However, the response of mangrove plants to these two stresses and their interaction has seldom been reported. A six-month microcosm study, planted with either Kandelia obovata (Ko) or Avicennia marina (Am), the two most dominant species in South China mangrove swamps, was conducted to investigate the effects of BDE-99, and the interactions of BDE-99 (one of the most abundant PBDE congeners) and AE on growth and physiological responses of these plants. In addition to mixed stressors, both stressors were also applied individually. Results showed that Avicennia was more tolerant to BDE-99 contamination than Kandelia, as reflected by the reduced biomass, but increased superoxide radical (O2-⁎) release and malondialdehyde (MDA) content in Kandelia. Addition of AE alleviated toxicity of BDE-99 in Kandelia by promoting biomass but lowering oxidative stress and MDA production. The hormesis model also demonstrated that the interaction between BDE-99 and AE on leaf and root MDA and O2-⁎ content in both Kandelia and Avicennia were mostly antagonistic. Activities of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) in both leaf and root of Kandelia were reduced by BDE-99. On the contrary, BDE-99 significantly enhanced the three enzyme activities in Avicennia root at month 3. Addition of AE also significantly enhanced root CAT, POD and SOD activities, and leaf SOD in both plant species to remove excess ROS produced under BDE-99 exposure. These results indicated that the tolerance of mangrove plants to oxidative stresses depended on antioxidative enzymes that were inducible.
Collapse
Affiliation(s)
- Shazia Farzana
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hai Chao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Nora Fung Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
31
|
Zhang H, Wang L, Li Y, Wang P, Wang C. Background nutrients and bacterial community evolution determine 13C-17β-estradiol mineralization in lake sediment microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2304-2311. [PMID: 30332663 DOI: 10.1016/j.scitotenv.2018.10.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Microbial biodegradation plays a key role in determining the fate of estrogens and can be affected by the background nutrients in natural environments. However, information on how microbial community and nutrient conditions influence estrogen biodegradation is very limited. In this study, 13C-17β-estradiol (13C-E2) was supplied to sediments from the Central Area (CA), Gonghu (GH), Meiliang (ML), and Zhushan (ZS) Bays of Taihu Lake to investigate shifts in bacterial community structure associated with 13C-E2 mineralization over a 30-day incubation period, and the relationships between the background nutrients and cumulative 13C-E2 mineralization rates. The cumulative 13C-E2 mineralization rate for ZS Bay was 87.40% on Day 30, which was significantly greater (P < 0.05) than the rates for ML Bay (67.74%), GH Bay (62.79%), and the CA (52.60%). A correlation analysis suggested that the cumulative 13C-E2 mineralization rate was significantly and positively related to the concentrations of total organic carbon (P < 0.01), nitrate-nitrogen (P < 0.05), ammonia-nitrogen (P < 0.001), and dissolved phosphorus (P < 0.001) in the sediments. Although the highest relative abundances of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes (contain most estrogen-degrading bacteria) were not initially in the ZS Bay sediment, the addition of 13C-E2 stimulated their growth in all sediments, with the greatest increases observed for ZS Bay. At the genus level, the cumulative increases of seven genera (Nitrosomonas, Bacillus, Pseudomonas, Sphingomonas, Novosphingobium, Alcaligenes and Mycobacterium) considered to be associated with E2 degradation were also highest for ZS Bay (80.2 times), followed by ML Bay (39.8 times), GH Bay (28.1 times), and CA (19.0 times). Besides the higher nutrient concentrations, the responses of bacteria to 13C-E2 addition in ZS Bay could also explain it having the highest cumulative 13C-E2 mineralization rate. These results indicate both the background nutrients and bacterial community evolution in the sediments determined the 13C-E2 mineralization rates.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
32
|
Liu S, Wang C, Wang P, Chen J, Wang X, Yuan Q. Variation of bacterioplankton community along an urban river impacted by touristic city: With a focus on pathogen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:573-581. [PMID: 30236919 DOI: 10.1016/j.ecoenv.2018.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Bacterioplankton communities play a critical role in ecological processes in river systems, and shifts of their composition may impact microbial levels and raise public health concerns. The aim of this study was to comprehensively analyze the essential factors influencing bacterioplankton community, along with pathogen, and to estimate the health risk caused by the pathogens downstream of the Liushahe River, which is located in the famous touristic city Xishuangbanna. Results showed that wastewater treatment plants (WWTPs) and a subtropical recreational park impacted the bacterioplankton community and pathogen population, and potential pathogen identification demonstrated that 76 of 145 reference genera were present in the river. Moreover, the bacterioplankton community and pathogen were differently impacted by environmental gradients, and SRP, NO2 and pH were main factors influencing bacterioplankton community while pathogen population was highly correlated with temperature and turbidity. In addition, it is noted that the pathogen population was dominated by bacterioplankton community and this might because the capacity of resistance invasion pathogen was determined by of bacterioplankton community diversity. Therefore, bacterioplankton community diversity can be used to control and predict the amount of pathogens. Quantitative microbial risk assessment (QMRA) also revealed that the infection risks of Escherichia coli (E. coli), Mycobacterium avium (M. avium), and Pseudomonas aeruginosa (P. aeruginosa) during five recreational activities, especially water-based activities in the touristic city, were greater than that in natural areas and mostly exceeded the U.S. EPA risk limit for recreational activities. Our study offered the first insight into the potential relationship between the bacterioplankton community and bacterial pathogens within a touristic river.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
33
|
Chen J, Wang PF, Wang C, Miao HC, Wang X. How wastewater with different nutrient levels influences microbial degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in anaerobic sediments. CHEMOSPHERE 2018; 211:128-138. [PMID: 30071424 DOI: 10.1016/j.chemosphere.2018.07.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
While wastewater and polybrominated diphenyl ethers (PBDEs) are commonly both discharged into aquatic ecosystems, little information is known about how wastewaters with different nutrient levels impact on microbial degradation of PBDEs. In this study, we used an anaerobic microcosm experiment to examine how the removal rates of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) from contaminated sediment varied when exposed to three wastewaters with different nutrient properties, namely livestock wastewater (LS), municipal sewage (MS), and shrimp pond wastewater (SP), and to determine the microbial controls on removal processes. We found that BDE-47 degraded relatively rapidly in MS, which had low carbon and nitrogen concentrations, but degraded much more slowly in LS and SP, which had relatively high nutrient concentrations. The variations in BDE-47 removal in different wastewater were related to iron reduction rates and the abundances of organohalide-respiring bacteria (OHRB). The community compositions of both total bacteria and OHRB from the family Dehalococcoidaceae differed significantly among the wastewater treatments. Compared with other treatments, some bacterial groups with PBDE degradation abilities were more abundant in MS where the PBDE-degradation efficiencies were higher. Our results should help support evaluations of the bioremediation potential of sites that are contaminated with both halogenated organic compounds and nutrient-rich wastewater.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Pei-Fang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Hai-Chao Miao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
34
|
Wang X, Wang C, Wang P, Chen J, Miao L, Feng T, Yuan Q, Liu S. How bacterioplankton community can go with cascade damming in the highly regulated Lancang-Mekong River Basin. Mol Ecol 2018; 27:4444-4458. [PMID: 30225945 DOI: 10.1111/mec.14870] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Rivers make vital contributions to the transport of water, sediment and nutrients from terrestrial to marine ecosystems. However, many large rivers worldwide are suffering from dam regulation. Increasing attention has been paid to bacterioplankton communities since they are highly responsive to river alterations and may influence biogeochemical processes. Here, a comprehensive study was conducted in the highly regulated Lancang-Mekong River Basin to address the question of how bacterioplankton communities respond to cascade damming. The results showed that dam constructions increased nutrient concentrations and threatened water quality in cascade reservoirs. Bacterioplankton cell abundance was reduced by damming, and α-diversity was inhibited in cascade reservoirs. Fortunately, however, river ecosystems were resilient after the remarkable disturbance caused by damming. Moreover, bacterioplankton community composition was significantly altered by cascade dams, including a shift in the dominant phylum from r-strategists to k-strategists. Meanwhile, according to GeoChip analysis, the functional composition of bacterioplankton was less affected than taxonomic composition. In addition, geographic and environmental features both followed a distance-decay relationship with community and functional composition, but the local environment condition was the dominant driver in the Lancang River. Therefore, the impoundments of cascade dams had significant impacts on bacterioplankton communities and more attention should be paid to the potential ecological consequences of river regulation.
Collapse
Affiliation(s)
- Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Tao Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
35
|
Chen J, Wang PF, Wang C, Wang X, Gao H. Effects of decabromodiphenyl ether and planting on the abundance and community composition of nitrogen-fixing bacteria and ammonia oxidizers in mangrove sediments: A laboratory microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1045-1055. [PMID: 29100689 DOI: 10.1016/j.scitotenv.2017.10.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/15/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
While nitrogen (N) fixation and ammonia oxidation by microorganisms are two important N cycling processes, little is known about how the microbes that drive these two processes respond when sediments are contaminated with persistent organic pollutants. In this study, we carried out a laboratory microcosm experiment to examine the effects of decabromodiphenyl ether (BDE-209), either on its own or combined with a common mangrove species, Avicennia marina, on the abundance, diversity, and community composition of N-fixing bacteria (NFB) and ammonia-oxidizing archaea (AOA) and bacteria (AOB) in mangrove sediments. The sediments were very N-limited after one year. The rates of N fixation and NFB abundance were significantly higher in the sediments that contaminated by BDE-209, especially in the planted sediment, indicating that both BDE-209 and planting stimulated N fixation in N-limited mangrove sediments. In contrast, the potential nitrification rate and abundance of AOA and AOB decreased significantly under BDE-209 and planting, and the inhibitory effects were stronger in the sediment with both planting and BDE-209 than in the sediments with either BDE-209 or planting. The results from pyrosequencing showed that the richness and diversity of NFB increased, while those of AOA and AOB decreased, in the sediments treated with BDE-209 only and with BDE-209 combined with planting. The community compositions of NFB, AOA, and AOB in the sediments shifted significantly because of BDE-209, either alone or particularly when combined with planting, as shown by the increases in some NFB from the Proteobacteria phylum and decreases in AOA in the Nitrosopumilus genus and AOB in the Nitrosospira genus, respectively.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Pei-Fang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
36
|
Chen J, Wang C, Pan Y, Farzana SS, Tam NFY. Biochar accelerates microbial reductive debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:177-186. [PMID: 28777963 DOI: 10.1016/j.jhazmat.2017.07.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
A common congener of polybrominated diphenyl ethers, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a prevalent, persistent and toxic pollutant. It could be removed by reduction debromination by microorganisms but the rate is often slow. The study hypothesized that spent mushroom substrate derived biochar amendment could accelerate the microbial reductive debromination of BDE-47 in anaerobic mangrove sediment slurries and evaluated the mechanisms behind. At the end of 20-week experiment, percentages of residual BDE-47 in slurries amended with biochar were significantly lower but debromination products were higher than those without biochar. Such stimulatory effect on debromination was dosage-dependent, and debromination was coupled with iron (Fe) reduction. Biochar amendment significantly enhanced the Fe(II):Fe(III) ratio, Fe(III) reduction rate and the abundance of iron-reducing bacteria in genus Geobacter, thus promoting bacterial iron-reducing process. The abundances of dehalogenating bacteria in genera Dehalobacter, Dehalococcoides, Dehalogenimonas and Desulfitobacterium were also stimulated by biochar. Biochar as an electron shuttle might increase electron transfer from iron-reducing and dehalogenating bacteria to PBDEs for their reductive debromination. More, biochar shifted microbial community composition in sediment, particularly the enrichment of potential PBDE-degrading bacteria including organohalide-respiring and sulfate-reducing bacteria, which in turn facilitated the reductive debromination of BDE-47 in anaerobic mangrove sediment slurries.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China; Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Ying Pan
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shazia Shyla Farzana
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
37
|
Chen J, Wang PF, Wang C, Liu JJ, Gao H, Wang X. Spatial distribution and diversity of organohalide-respiring bacteria and their relationships with polybrominated diphenyl ether concentration in Taihu Lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:200-211. [PMID: 28943350 DOI: 10.1016/j.envpol.2017.08.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
It is acknowledged that organohalide-respiring bacteria (OHRB) can degrade polybrominated diphenyl ethers (PBDEs); however, very little is known about the distribution of OHRB or their response to PBDE contamination in natural sediments. We collected sediments from 28 sampling sites in Taihu Lake, China, and investigated the spatial distribution and diversity of OHRB, and the relationships between the PBDE contamination levels and the PBDE removal potential. The abundances of five typical OHRB genera, namely Dehalobacter, Dehalococcoides, Dehalogenimonas, Desulfitobacterium, and Geobacter, ranged from 0.34 × 104 to 19.4 × 107 gene copies g-1 dry sediment, and varied significantly among different areas of Taihu Lake. OHRB were more abundant in sediments from Meiliang and Zhushan Bay, where the PBDE concentrations were higher, and the phylotype diversity of the OHRB belonging to the family Dehalococcoidaceae was lower, than reported for other areas. While the sulfate concentrations explained much of the spatial distribution of OHRB, PBDE concentrations were also a strong influence on the abundance and diversity of OHRB in the sediments. For Dehalococcoides, Dehalogenimonas and Geobacter, the abundance of each genus was positively related to its own potential to remove PBDEs. The dominant OHRB genus, Dehalogenimonas, may contribute most to in situ bioremediation of PBDEs in Taihu Lake.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; The State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Pei-Fang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jia-Jia Liu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
38
|
Wang P, Wang X, Wang C, Miao L, Hou J, Yuan Q. Shift in bacterioplankton diversity and structure: Influence of anthropogenic disturbances along the Yarlung Tsangpo River on the Tibetan Plateau, China. Sci Rep 2017; 7:12529. [PMID: 28970506 PMCID: PMC5624883 DOI: 10.1038/s41598-017-12893-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022] Open
Abstract
River systems have critical roles in the natural water environment and the transportation of nutrients. Anthropogenic activities, including wastewater discharge and river damming, raise adverse impacts on ecosystem and continuum of rivers. An increasing amount of attention has been paid to riverine bacterioplankton as they make vital contributions to biogeochemical nutrient cycle. A comprehensive study was conducted on the bacterioplankton community along the Yarlung Tsangpo River, which is the longest plateau river in China and is suffering from various anthropogenic impacts. The results indicated that nutrient variations corresponded to anthropogenic activities, and silica, nitrogen and phosphorus were retained by the dam. River damming influenced the biomass and diversity of the bacterioplankton, but significant alterations in the community structure were not observed between upstream and downstream of the dam. Moreover, the spatial distribution of the bacterioplankton community changed gradually along the river, and the dominant bacterioplankton in the upstream, midstream and downstream portions of the river were Firmicutes, Bacteroidetes and Proteobacteria, respectively. Soluble reactive phosphorus, elevation, ammonium nitrogen, velocity and turbidity were the main environmental factors that shape the bacterioplankton community. Our study offers the first insights into the variation of a bacterioplankton community of a large river in plateau region.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|