1
|
Katoto PDMC, Bihehe D, Brand A, Mushi R, Kusinza A, Alwood BW, van Zyl-Smit RN, Tamuzi JL, Sam-Agudu NA, Yotebieng M, Metcalfe J, Theron G, Godri Pollitt KJ, Lesosky M, Vanoirbeek J, Mortimer K, Nawrot T, Nemery B, Nachega JB. Household air pollution and risk of pulmonary tuberculosis in HIV-Infected adults. Environ Health 2024; 23:6. [PMID: 38233832 PMCID: PMC10792790 DOI: 10.1186/s12940-023-01044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND In low- and middle-income countries countries, millions of deaths occur annually from household air pollution (HAP), pulmonary tuberculosis (PTB), and HIV-infection. However, it is unknown whether HAP influences PTB risk among people living with HIV-infection. METHODS We conducted a case-control study among 1,277 HIV-infected adults in Bukavu, eastern Democratic Republic of Congo (February 2018 - March 2019). Cases had current or recent (<5y) PTB (positive sputum smear or Xpert MTB/RIF), controls had no PTB. Daily and lifetime HAP exposure were assessed by questionnaire and, in a random sub-sample (n=270), by 24-hour measurements of personal carbon monoxide (CO) at home. We used multivariable logistic regression to examine the associations between HAP and PTB. RESULTS We recruited 435 cases and 842 controls (median age 41 years, [IQR] 33-50; 76% female). Cases were more likely to be female than male (63% vs 37%). Participants reporting cooking for >3h/day and ≥2 times/day and ≥5 days/week were more likely to have PTB (aOR 1·36; 95%CI 1·06-1·75) than those spending less time in the kitchen. Time-weighted average 24h personal CO exposure was related dose-dependently with the likelihood of having PTB, with aOR 4·64 (95%CI 1·1-20·7) for the highest quintile [12·3-76·2 ppm] compared to the lowest quintile [0·1-1·9 ppm]. CONCLUSION Time spent cooking and personal CO exposure were independently associated with increased risk of PTB among people living with HIV. Considering the high burden of TB-HIV coinfection in the region, effective interventions are required to decrease HAP exposure caused by cooking with biomass among people living with HIV, especially women.
Collapse
Affiliation(s)
- Patrick D M C Katoto
- Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- Office of the President and CEO, South African Medical Research Council, Cape Town, South Africa.
- Centre for Tropical Diseases and Global Health, Catholic University of Bukavu, Bukavu, Democratic Republic of the Congo.
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| | - Dieudonné Bihehe
- Department of Internal Medicine, Université Evangélique en Afrique, Bukavu, DR, Congo
| | - Amanda Brand
- Centre for Evidence-Based Health Care, Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Raymond Mushi
- Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Aline Kusinza
- Department of Medicine, Division of Pulmonology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brian W Alwood
- Department of Medicine, Division of Pulmonology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Richard N van Zyl-Smit
- Division of Pulmonology & UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacques L Tamuzi
- Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nadia A Sam-Agudu
- International Research Center of Excellence, Institute of Human Virology Nigeria, Abuja, Nigeria
- Division of Epidemiology and Prevention, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcel Yotebieng
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - John Metcalfe
- Division of Pulmonary and Critical Care Medicine, Trauma Center, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Grant Theron
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, USA
| | - Maia Lesosky
- Division of epidemiology and Biostatistics, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Jeroen Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Kevin Mortimer
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Tim Nawrot
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Centre of Environmental Health, University of Hasselt, Hasselt, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jean B Nachega
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Medicine, Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- Department of Epidemiology and Center for Global Health, Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St., Room A522 Crabtree Hall, Pittsburgh, 15260, PA, USA.
| |
Collapse
|
2
|
Katoto PDMC, Bihehe D, Brand A, Mushi R, Kusinza A, Alwood BW, van Zyl-Smit RN, Tamuzi JL, Sam-Agudu NA, Yotebieng M, Metcalfe J, Theron G, Godri Pollitt KJ, Lesosky M, Vanoirbeek J, Mortimer K, Nawrot T, Nemery B, Nachega JB. Household Air Pollution and Risk of Pulmonary Tuberculosis in HIV-Infected Adults. RESEARCH SQUARE 2023:rs.3.rs-3410503. [PMID: 37886487 PMCID: PMC10602081 DOI: 10.21203/rs.3.rs-3410503/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background In developing countries, millions of deaths occur annually from household air pollution (HAP), pulmonary tuberculosis (PTB), and HIV-infection. However, it is unknown whether HAP influences PTB risk among people living with HIV-infection. Methods We conducted a case-control study among 1,277 HIV-infected adults in Bukavu, eastern Democratic Republic of Congo (February 2018 - March 2019). Cases had current or recent (<5y) PTB (positive sputum smear or Xpert MTB/RIF), controls had no PTB. Daily and lifetime HAP exposure were assessed by questionnaire and, in a random sub-sample (n=270), by 24-hour measurements of personal carbon monoxide (CO) at home. We used multivariable logistic regression to examine the associations between HAP and PTB. Results We recruited 435 cases and 842 controls (median age 41 years, [IQR] 33-50; 76% female). Cases were more likely to be female than male (63% vs 37%). Participants reporting cooking for >3h/day and ≥2 times/day and ≥5 days/weekwere more likely to have PTB (aOR 1·36; 95%CI 1·06-1·75) than those spending less time in the kitchen. Time-weighted average 24h personal CO exposure was related dose-dependently with the likelihood of having PTB, with aOR 4·64 (95%CI 1·1-20·7) for the highest quintile [12·3-76·2 ppm] compared to the lowest quintile [0·1-1·9 ppm]. Conclusion Time spent cooking and personal CO exposure were independently associated with increased risk of PTB among people living with HIV. Considering the high burden of TB-HIV coinfection in the region, effective interventions are required to decrease HAP exposure caused by cooking with biomass among people living with HIV, especially women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John Metcalfe
- Zuckerberg San Francisco General Hospital, University of California
| | - Grant Theron
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Okello G, Nantanda R, Awokola B, Thondoo M, Okure D, Tatah L, Bainomugisha E, Oni T. Air quality management strategies in Africa: A scoping review of the content, context, co-benefits and unintended consequences. ENVIRONMENT INTERNATIONAL 2023; 171:107709. [PMID: 36580733 DOI: 10.1016/j.envint.2022.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
One of the major consequences of Africa's rapid urbanisation is the worsening air pollution, especially in urban centres. However, existing societal challenges such as recovery from the COVID-19 pandemic, poverty, intensifying effects of climate change are making prioritisation of addressing air pollution harder. We undertook a scoping review of strategies developed and/or implemented in Africa to provide a repository to stakeholders as a reference that could be applied for various local contexts. The review includes strategies assessed for effectiveness in improving air quality and/or health outcomes, co-benefits of the strategies, potential collaborators, and pitfalls. An international multidisciplinary team convened to develop well-considered research themes and scope from a contextual lens relevant to the African continent. From the initial 18,684 search returns, additional 43 returns through reference chaining, contacting topic experts and policy makers, 65 studies and reports were included for final analysis. Three main strategy categories obtained from the review included technology (75%), policy (20%) and education/behavioural change (5%). Most strategies (83%) predominantly focused on household air pollution compared to outdoor air pollution (17%) yet the latter is increasing due to urbanisation. Mobility strategies were only 6% compared to household energy strategies (88%) yet motorised mobility has rapidly increased over recent decades. A cost effective way to tackle air pollution in African cities given the competing priorities could be by leveraging and adopting implemented strategies, collaborating with actors involved whilst considering local contextual factors. Lessons and best practices from early adopters/implementers can go a long way in identifying opportunities and mitigating potential barriers related to the air quality management strategies hence saving time on trying to "reinvent the wheel" and prevent pitfalls. We suggest collaboration of various stakeholders, such as policy makers, academia, businesses and communities in order to formulate strategies that are suitable and practical to various local contexts.
Collapse
Affiliation(s)
- Gabriel Okello
- Institute for Sustainability Leadership, University of Cambridge, Cambridge, United Kingdom; MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom; AirQo, Department of Computer Science, Makerere University, Kampala, Uganda.
| | | | - Babatunde Awokola
- Department of Clinical Services, Medical Research Council Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Meelan Thondoo
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Deo Okure
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Lambed Tatah
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Tolu Oni
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Wagner DN, Odhiambo SR, Ayikukwei RM, Boor BE. High time-resolution measurements of ultrafine and fine woodsmoke aerosol number and surface area concentrations in biomass burning kitchens: A case study in Western Kenya. INDOOR AIR 2022; 32:e13132. [PMID: 36305061 PMCID: PMC9828051 DOI: 10.1111/ina.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Indoor air pollution associated with biomass combustion for cooking remains a significant environmental health challenge in rural regions of sub-Saharan Africa; however, routine monitoring of woodsmoke aerosol concentrations continues to remain sparse. There is a paucity of field data on concentrations of combustion-generated ultrafine particles, which efficiently deposit in the human respiratory system, in such environments. Field measurements of ultrafine and fine woodsmoke aerosol (diameter range: 10-2500 nm) with field-portable diffusion chargers were conducted across nine wood-burning kitchens in Nandi County, Kenya. High time-resolution measurements (1 Hz) revealed that indoor particle number (PN) and particle surface area (PSA) concentrations of ultrafine and fine woodsmoke aerosol are strongly temporally variant, reach exceedingly high levels (PN > 106 /cm3 ; PSA > 104 μm2 /cm3 ) that are seldom observed in non-biomass burning environments, are influenced by kitchen architectural features, and are moderately to poorly correlated with carbon monoxide concentrations. In five kitchens, PN concentrations remained above 105 /cm3 for more than half of the day due to frequent cooking episodes. Indoor/outdoor ratios of PN and PSA concentrations were greater than 10 in most kitchens and exceeded 100 in several kitchens. Notably, the use of metal chimneys significantly reduced indoor PN and PSA concentrations.
Collapse
Affiliation(s)
- Danielle N. Wagner
- Lyles School of Civil Engineering, Purdue UniversityWest LafayetteIndianaUSA
- Ray W. Herrick Laboratories, Center for High Performance BuildingsPurdue UniversityWest LafayetteIndianaUSA
| | | | | | - Brandon E. Boor
- Lyles School of Civil Engineering, Purdue UniversityWest LafayetteIndianaUSA
- Ray W. Herrick Laboratories, Center for High Performance BuildingsPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
5
|
Effects of Household Air Pollution (HAP) on Cardiovascular Diseases in Low- and Middle-Income Countries (LMICs): A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159298. [PMID: 35954653 PMCID: PMC9368384 DOI: 10.3390/ijerph19159298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022]
Abstract
Background: Out of over 3 billion people exposed to household air pollution (HAP), approximately 4 million die prematurely, most from cardiorespiratory diseases. Although many recent studies have reported adverse effects of HAP on cardiovascular outcomes, the findings are inconsistent. Objectives: The primary aim of this systematic review is to critically appraise the published studies and report the pooled summary of the findings on the association between HAP and cardiovascular outcomes, particularly in LMICs. Methods: During this systematic review and meta-analysis, six databases were searched systematically, and the protocol was published in PROSPERO (CRD 42021248800). Only peer-reviewed English-language studies published from 1980 to March 2021 were included. We extracted data for the population ≥ 18 years old. Newcastle–Ottawa Criteria were used to assess the quality of evidence. The heterogeneity and publication bias of the studies was evaluated. A meta-analysis was conducted using a random-effect model to pool the findings from published studies. Results: In sixteen studies totaling 547,463 cases, 319,180 were exposed to HAP. The pooled estimate suggested an overall 13% higher risk of CVDs, and a 21% higher risk of CVD mortality in LMICs among those exposed to HAP. Similarly, the increased risk of stroke and cerebrovascular accidents, heart failure, and hypertension was statistically significant among those exposed to HAP but not with myocardial infarction, IHD, eclampsia/preeclampsia, and carotid intima-media thickness. Conclusions: Our findings suggest exposure to HAP increases the risk of cardiovascular outcomes.
Collapse
|
6
|
Improving Combustion Technology for Cooking Activities for Pollutant Emission Reduction and Carbon Neutrality. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inefficient residential solid fuel combustion contributes significantly to ambient and indoor air pollutants. It consumes large quantities of fuel and produces harmful effects on health. Improvements in residential biomass cooking stoves have great potential for energy savings and emission reduction. This study presents an advanced biomass gasifier cooking stove to overcome the disadvantages of high-pollutant emissions from widely used stoves in China. The most innovative features of the stove are (1) negative pressure produced by a jet fan located at the junction of the chimney, and (2) combustion and carbonization processes taking place in the same chamber. Compared with a traditional chimney stove, the advanced biomass gasifier cooking stove presented higher TE (thermal efficiency) and comprehensively lower pollutant emissions when raw crop straws, crop straw briquettes, and pellets were burned in it. Approximately 40% CO2 and 90% of PM2.5 (the aerodynamic diameter was less than or equal to 2.5 μm) EFs (emission factors) were eliminated, and TE drastically tripled. Furthermore, biomass briquette/pellet was identified as more suitable than raw biomass as a fuel to be burned in the new stove, especially because the raw biomass displayed an increase in the EFs of As, Se, and Pb when burned in the new stove. The advancement in biomass cooking stove technology is a practical approach to reducing the emissions of CO2, PM2.5, and other hazardous pollutants.
Collapse
|
7
|
Woolley K, Bartington SE, Pope FD, Price MJ, Thomas GN, Kabera T. Biomass cooking carbon monoxide levels in commercial canteens in Kigali, Rwanda. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:75-85. [PMID: 32400286 DOI: 10.1080/19338244.2020.1761279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon monoxide (CO) is harmful to human health, yet there is limited evidence concerning emissions associated with biomass fuel cooking in occupational settings. Real-time 48-hour monitoring of CO concentrations at breathing height, was undertaken in staff and student kitchen and serving areas of two commercial canteens. We characterized two diurnal CO peaks coinciding with cooking activities. Peak CO concentrations of 255.5 ppm and 1-hour average of 76.3 ppm (IQR: 57.8-109.0 ppm) were observed in the student kitchen; the staff kitchen levels were 208.5 ppm, and 76.3 ppm (IQR: 52.5-114.0 ppm), respectively. High magnitude CO concentrations (8-hour average: 40.7 ppm SD: 40.0 ppm) which exceed World Health Organisation (WHO) Indoor Air Quality standards were observed. Further investigation of personal exposure and health impacts among kitchen staff is required, to inform interventions in this setting.
Collapse
Affiliation(s)
- Katherine Woolley
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Malcolm J Price
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - G Neil Thomas
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Telesphore Kabera
- College of Science and Technology, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
8
|
Sharma D, Jain S. Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. ENVIRONMENT INTERNATIONAL 2019; 123:240-255. [PMID: 30544089 DOI: 10.1016/j.envint.2018.11.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
This study investigates the impact of increased levels of indoor air pollution (IAP) caused due to biomass burning in the rural households of Northern India. A comparative assessment of the impact of traditional cookstoves (TCS) and improved cookstoves (ICS) coupled with the characteristics of kitchen was conducted to estimate the PM (PM10, PM2.5, PM1), CO/CO2 concentrations in the micro-environments of kitchen and living area of the households. The study incorporated both extensive and intensive real-time indoor air quality (IAQ) monitoring during the two cooking sessions of the day. The pollutant concentrations were reported in terms of 24-h as well as 8-h (cooking hours including morning and evening meal) averages. Influence of the three types of kitchen characteristics, i.e., enclosed, semi-enclosed and open was also comprehensively analyzed to measure its impact on the IAQ. In addition to this, the IAQ was further used to evaluate the particle size distribution (PSD), respiratory tract deposition and exposure index to assess its impact on health status of the exposed group including women involved in cooking practices. The results of the study highlighted that deployment of ICS would help in improving the IAQ of the kitchen area by resulting in reducing the concentrations of PM10, PM2.5, PM1 and CO by 21-62%, 20-80%, 24-87% and 19-93%, respectively. It was also highlighted that the kitchen characteristics significantly influence the accumulation of air pollutants, demonstrated by the results that the IAQ being worst in the case of enclosed kitchen, resulted in the highest exposure index values. Multivariate regression models to predict PM1 concentration were also developed for three kitchen categories for both TCS and ICS. Thus, the current study concludes that usage of ICS coupled with efficient designing of the kitchen can improve the overall IAQ of the household along with immense health benefits. Overall, the study emphasized the need of more comprehensive studies to fully assess the association of household air pollution (HAP) and health of individual in the rural settings by considering the toxicity of PM.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Energy and Environment, TERI School of Advanced Studies (earlier TERI University), Delhi, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Suresh Jain
- Department of Civil Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517 506, India.
| |
Collapse
|
9
|
Thakur M, Nuyts PAW, Boudewijns EA, Flores Kim J, Faber T, Babu GR, van Schayck OCP, Been JV. Impact of improved cookstoves on women's and child health in low and middle income countries: a systematic review and meta-analysis. Thorax 2018; 73:1026-1040. [PMID: 29925674 DOI: 10.1136/thoraxjnl-2017-210952] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Improved biomass cookstoves may help reduce the substantial global burden of morbidity and mortality due to household air pollution (HAP) that disproportionately affects women and children in low and middle income countries (LMICs). DESIGN Systematic review and meta-analysis of (quasi-)experimental studies identified from 13 electronic databases (last update: 6 April 2018), reference and citation searches and via expert consultation. SETTING LMICs PARTICIPANTS: Women and children INTERVENTIONS: Improved biomass cookstoves MAIN OUTCOME MEASURES: Low birth weight (LBW), preterm birth, perinatal mortality, paediatric acute respiratory infections (ARIs) and COPD among women. RESULTS We identified 53 eligible studies, including 24 that met prespecified design criteria. Improved cookstoves had no demonstrable impact on paediatric lower ARIs (three studies; 11 560 children; incidence rate ratio (IRR)=1.02 (95% CI 0.84 to 1.24)), severe pneumonia (two studies; 11 061 children; IRR=0.88 (95% CI 0.39 to 2.01)), LBW (one study; 174 babies; OR=0.74 (95% CI 0.33 to 1.66)) or miscarriages, stillbirths and infant mortality (one study; 1176 babies; risk ratio (RR) change=15% (95% CI -13 to 43)). No (quasi-)experimental studies assessed preterm birth or COPD. In observational studies, improved cookstoves were associated with a significant reduction in COPD among women: two studies, 9757 participants; RR=0.74 (95% CI 0.61 to 0.90). Reductions in cough (four studies, 1779 participants; RR=0.72 (95% CI 0.60 to 0.87)), phlegm (four studies, 1779 participants; RR=0.65 (95% CI 0.52 to 0.80)), wheezing/breathing difficulty (four studies; 1779 participants; RR=0.41 (95% CI 0.29 to 0.59)) and conjunctivitis (three studies, 892 participants; RR=0.58 (95% CI 0.43 to 0.78)) were observed among women. CONCLUSION Improved cookstoves provide respiratory and ocular symptom reduction and may reduce COPD risk among women, but had no demonstrable child health impact. REGISTRATION PROSPERO: CRD42016033075.
Collapse
Affiliation(s)
- Megha Thakur
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.,Public Health Foundation of India, Indian Institute of Public Health-Hyderabad, Bangalore, India
| | - Paulien A W Nuyts
- Department of Public Health, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther A Boudewijns
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Javier Flores Kim
- Centre of Medical Informatics, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Timor Faber
- Division of Neonatology, Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Public Health, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Giridhara R Babu
- Public Health Foundation of India, Indian Institute of Public Health-Hyderabad, Bangalore, India
| | - Onno C P van Schayck
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.,Centre of Medical Informatics, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Jasper V Been
- Centre of Medical Informatics, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK.,Division of Neonatology, Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Obstetrics and Gynaecology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Gibbs-Flournoy EA, Gilmour MI, Higuchi M, Jetter J, George I, Copeland L, Harrison R, Moser VC, Dye JA. Differential exposure and acute health impacts of inhaled solid-fuel emissions from rudimentary and advanced cookstoves in female CD-1 mice. ENVIRONMENTAL RESEARCH 2018; 161:35-48. [PMID: 29100208 PMCID: PMC6143295 DOI: 10.1016/j.envres.2017.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/25/2017] [Accepted: 10/24/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND There is an urgent need to provide access to cleaner end user energy technologies for the nearly 40% of the world's population who currently depend on rudimentary cooking and heating systems. Advanced cookstoves (CS) are designed to cut emissions and solid-fuel consumption, thus reducing adverse human health and environmental impacts. STUDY PREMISE We hypothesized that, compared to a traditional (Tier 0) three-stone (3-S) fire, acute inhalation of solid-fuel emissions from advanced natural-draft (ND; Tier 2) or forced-draft (FD; Tier 3) stoves would reduce exposure biomarkers and lessen pulmonary and innate immune system health effects in exposed mice. RESULTS Across two simulated cooking cycles (duration ~ 3h), emitted particulate mass concentrations were reduced 80% and 62% by FD and ND stoves, respectively, compared to the 3-S fire; with corresponding decreases in particles visible within murine alveolar macrophages. Emitted carbon monoxide was reduced ~ 90% and ~ 60%, respectively. Only 3-S-fire-exposed mice had increased carboxyhemoglobin levels. Emitted volatile organic compounds were FD ≪ 3-S-fire ≤ ND stove; increased expression of genes involved in xenobiotic metabolism (COX-2, NQO1, CYP1a1) was detected only in ND- and 3-S-fire-exposed mice. Diminished macrophage phagocytosis was observed in the ND group. Lung glutathione was significantly depleted across all CS groups, however the FD group had the most severe, ongoing oxidative stress. CONCLUSIONS These results are consistent with reports associating exposure to solid fuel stove emissions with modulation of the innate immune system and increased susceptibility to infection. Lower respiratory infections continue to be a leading cause of death in low-income economies. Notably, 3-S-fire-exposed mice were the only group to develop acute lung injury, possibly because they inhaled the highest concentrations of hazardous air toxicants (e.g., 1,3-butadiene, toluene, benzene, acrolein) in association with the greatest number of particles, and particles with the highest % organic carbon. However, no Tier 0-3 ranked CS group was without some untoward health effect indicating that access to still cleaner, ideally renewable, energy technologies for cooking and heating is warranted.
Collapse
Affiliation(s)
| | - M Ian Gilmour
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mark Higuchi
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - James Jetter
- National Risk Management Research Laboratory (NRMRL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Ingrid George
- National Risk Management Research Laboratory (NRMRL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Lisa Copeland
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Randy Harrison
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Virginia C Moser
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Janice A Dye
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|