1
|
El-Sayed MH, AlHarbi M, Elsehemy IA, Haggag WM, Refaat BM, Ali SM, Elkelish A. Natural Inhibitory Treatment of Fungi-Induced Deterioration of Carbonate and Cellulosic Ancient Monuments: Isolation, Identification and Simulation of Biogenic Deterioration. J Microbiol Biotechnol 2024; 34:2049-2069. [PMID: 39263788 DOI: 10.4014/jmb.2404.04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Fungi play a significant role in the deterioration of various types of monuments. Therefore, the protection of ancient monuments from fungal attacks is an important goal that must attract the attention of researchers worldwide. A total of 69 fungal isolates were recovered from 22 deteriorated objects compromising paper, textiles, wood, and stone in the National Museum of Egyptian Civilization (NMEC) storeroom, Cairo, Egypt. The isolates were identified as 12 different species categorized into three different genera, namely, Aspergillus (9 species), Penicillium (2 species) and Trichoderma (1 species). Among them, Aspergillus fumigatus was the most prevalent species. Three essential oils were assessed for antifungal activity and compared with the antifungal effects of five synthetic microcides to identify a natural inhibitory treatment. Thyme oil and sodium azide were found to be the most active growth inhibitors, with minimum inhibitory concentrations (MICs) of 625 and 100 ppm, with inhibition zone diameters of 19.0 ± 0.70 - 23.76 ± 1.15 and 13.30 ± 0.35 - 19.66 ± 0.54 mm, respectively. An in vitro simulation of the biodeterioration process was conducted using spores of the A. fumigatus strain NMEC-PSTW.1 on model cubes made of paper, textile, wood, and stone materials. The changes in the characteristics of the artificially deteriorated materials were analyzed using environmental scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The results revealed changes in the morphology, physical properties, and chemical composition induced by A. fumigatus NMEC-PSTW.1. Overall, thyme oil is recommended as a natural inhibitor to protect carbonate and cellulosic monuments in NMEC against fungal attack.
Collapse
Affiliation(s)
- Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Islam A Elsehemy
- Department of Natural and Microbial Products Chemistry, Pharmaceutical Industry Division, National Research Centre, Dokki, Egypt
| | - Wafaa M Haggag
- Department of Plant Pathology, National Research Centre, Dokki, Egypt
| | - Bahgat M Refaat
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Sharaf M Ali
- Central Research Laboratory, National Museum of Egyptian Civilization, Ministry of Antiquities, Cairo, Egypt
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh,Kingdom of Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Liu J, Wu F, Xiang T, Ma W, He D, Zhang Q, Wang W, Duan Y, Tian T, Feng H. Differences of airborne and mural microorganisms in a 1,500-year-old Xu Xianxiu's Tomb, Taiyuan, China. Front Microbiol 2023; 14:1253461. [PMID: 37954248 PMCID: PMC10635417 DOI: 10.3389/fmicb.2023.1253461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background Microbial colonization represents one of the main threats to the conservation of subterranean cultural heritage sites. Recently, the microbial colonization on murals in tombs has gradually attracted attention. Methods In this study, a total of 33 samples, including 27 aerosol samples and 6 mural painting samples, were collected from different sites of Xu Xianxiu's Tomb and analyzed using culture-dependent methods. We compared the diversities of culturable bacteria and fungi isolated from the air and murals and explored the potential impacts of microorganisms on the biodeterioration of the murals. Results Phylogenetic analyses revealed that the culturable bacteria belonged to Bacillus, Microbacterium, Lysobacter and Arthrobacter. And the most of fungal belonged to the Penicillium, Cladosporium and Aspergillus genera. The composition and structure of airborne bacteria and fungi outside the tomb were both significantly different from that inside the tomb. The variation trends of airborne bacterial and fungal concentrations at different sampling sites were remarkably similar. Bacillus frigoritolerans, Bacillus halotolerans, Bacillus safensis, Exiguobacterium mexicanum, Microbacterium trichothecenolyticum, and Micrococcus yunnanensis were bacterial species commonly isolated from both the mural and air environments. Fungal species commonly isolated from aerosol samples and mural painting samples were Alternaria alternata, Cladosporium cladosporioides, Penicillium brevicompactum, and Peyronellaea glomerata. The prediction of the ecological functions of the bacteria revealed that chemoheterotrophy or aerobic_chemoheterotrophy accounted for substantial relative proportions in all sample types. Conclusion These results suggest that the aerosol circulation between the inside and outside environments of the tomb was weak and that the outside environment had yet to have an impact on the air microbial community inside the tomb. Selective colonization of microorganisms, which is mediated by interaction between microorganisms and special microenvironmental factors, is an important reason for the biodeterioration of murals.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu, China
- Gansu Provincial Research Center for Conservation of Dunhuang Cultural Heritage, Dunhuang, Gansu, China
| | - Ting Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Centre for Grassland Microbiome, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Wenxia Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Centre for Grassland Microbiome, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dongpeng He
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu, China
- Gansu Provincial Research Center for Conservation of Dunhuang Cultural Heritage, Dunhuang, Gansu, China
| | - Qi Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Centre for Grassland Microbiome, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Wanfu Wang
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu, China
- Gansu Provincial Research Center for Conservation of Dunhuang Cultural Heritage, Dunhuang, Gansu, China
| | - Yulong Duan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Centre for Grassland Microbiome, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Role of Exposure on the Microbial Consortiums on Historical Rural Granite Buildings. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Local granite has been used throughout history in Galicia (NW Spain), forming the basis of much of the region’s architecture. Like any other rock, granite provides an ecological niche for a multitude of organisms that form biofilms that can affect the physical integrity of the stone. In this study, for the first time, characterization of the microbial consortium forming biofilms that developed on historical rural granite buildings is carried out using a combination of culture-dependent and next generation sequencing (NGS) techniques. Results pointed to differences in biofilm composition on the studied rural granite buildings and that of previously analyzed urban granite buildings, especially in terms of abundance of cyanobacteria and lichenized fungi. Exposure was corroborated as an important factor, controlling both the diversity and abundance of microorganisms on walls, with environmental factors associated with a northern orientation favoring a higher diversity of fungi and green algae, and environmental factors associated with the west orientation determining the abundance of lichenized fungi. The orientation also affected the distribution of green algae, with one of the two most abundant species, Trentepohlia cf. umbrina, colonizing north-facing walls, while the other, Desmococcus olivaceus, predominated on west-facing walls.
Collapse
|
4
|
Draft Genome Sequences of Two Streptomyces Strains, MZ03-37 T and MZ03-48, Isolated from Lava Tube Speleothems. Microbiol Resour Announc 2020; 9:9/25/e00576-20. [PMID: 32554795 PMCID: PMC7303415 DOI: 10.1128/mra.00576-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Streptomyces strains were isolated from a lava tube in La Palma, Canary Islands. Genomic analyses suggest that the two strains could belong to the same species. Here, we report the draft genomes for these bacterial strains. Two Streptomyces strains were isolated from a lava tube in La Palma, Canary Islands. Genomic analyses suggest that the two strains could belong to the same species. Here, we report the draft genomes for these bacterial strains.
Collapse
|
5
|
Draft Genome Sequence of a Granaticin-Producing Strain of Streptomyces parvus Isolated from a Roman Tomb in the Necropolis of Carmona, Spain. Microbiol Resour Announc 2019; 8:8/43/e01127-19. [PMID: 31649083 PMCID: PMC6813395 DOI: 10.1128/mra.01127-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces parvus strain C05 was isolated from the walls of a Roman tomb located in Carmona, Seville, Spain. Subsequent studies determined the capability of this strain for producing granaticins. Here, we report the 8.7-Mbp draft genome sequence for this bacterium.
Collapse
|
6
|
Structure of melanins from the fungi Ochroconis lascauxensis and Ochroconis anomala contaminating rock art in the Lascaux Cave. Sci Rep 2017; 7:13441. [PMID: 29044220 PMCID: PMC5647350 DOI: 10.1038/s41598-017-13862-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/02/2017] [Indexed: 01/18/2023] Open
Abstract
Two novel species of the fungal genus Ochroconis, O. lascauxensis and O. anomala have been isolated from the walls of the Lascaux Cave, France. The interest in these fungi and their melanins lies in the formation of black stains on the walls and rock art which threatens the integrity of the paintings. Here we report solid-state cross polarization magic-angle spinning 13C and 15N nuclear magnetic resonance (NMR) spectroscopy and surface-enhanced Raman spectroscopy (SERS) of the melanins extracted from the mycelia of O. lascauxensis and O. anomala in order to known their chemical structure. The melanins from these two species were compared with those from other fungi. The melanins from the Ochroconis species have similar SERS and 13C and 15N NMR spectra. Their chemical structures as suggested by the data are not related to 3,4-dihydroxyphenylalanine, 5,6-dihydroxyindole or 1,8-dihydroxynaphthalene precursors and likely the building blocks from the melanins have to be based on other phenols that react with the N-terminal amino acid of proteins. The analytical pyrolysis of the acid hydrolysed melanin from O. lascauxensis supports this assumption.
Collapse
|