1
|
Bomer LK, Leverett BD. Growth Characteristics of a Desmodesmus Species from the San Antonio Springs and Its Short-Term Impact on Soil Microbial Dynamics. Life (Basel) 2024; 14:1053. [PMID: 39337838 PMCID: PMC11433310 DOI: 10.3390/life14091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
A new Desmodesmus species was isolated from the largest of the San Antonio Springs, the Blue Hole, in San Antonio, Texas, and characterized for its potential applications in sustainable agriculture. The xenic isolate (XB) was established by enrichment and subcultured to produce the axenic isolate (AxB), which was identified based on morphological features and DNA profiling, confirming its close phylogenetic relationship with Desmodesmus spp. Growth characteristics, biomass composition, and pigment profiles were assessed for both the xenic and axenic isolates along with their growth in saline conditions and a range of seasonal Texas temperatures. Both Desmodesmus XB and Desmodesmus AxB exhibited optimal growth at 25 °C as well as robust growth at 37 °C and in weakly saline media (5 g/kg NaCl). Biomass analysis revealed levels of carbohydrates, proteins, lipids, chlorophylls, and carotenoids comparable to other desmids and pigment profiles supported the Desmodesmus classification. Soil studies demonstrated the persistence of Desmodesmus XB and influence on microbial activity, indicating the potential of this isolate for agricultural applications such as soil remediation.
Collapse
Affiliation(s)
- Lauren K. Bomer
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA;
| | - Betsy D. Leverett
- Department of Chemistry and Biochemistry, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, USA
| |
Collapse
|
2
|
Lorentz JF, Calijuri ML, Rad C, Cecon PR, Assemany PP, Martinez JM, Kholssi R. Microalgae biomass as a conditioner and regulator of soil quality and fertility. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:198. [PMID: 38265731 DOI: 10.1007/s10661-024-12355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Characteristics of an acid soil cultivated with Urochloa brizantha cv. Marandu were evaluated in relation to two types of fertilization: a conventional one, chemical based on nitrogen and potassium, and a biofertilizer, based on microalgae biomass. The results were compared among three treatments, control, conventional, and biological fertilization, with seven replications each. The study evaluated microalgae community, total carbon and nitrogen contents, mineral nitrogen, and enzymatic activity. Chlorella vulgaris showed the highest organism density, which can be explained by its rapid growth and high resistance. The highest species diversity was detected in the control 1,380,938 org cm-3 and biological 1,841,250 org cm-3 treatments, with the latter showing a higher density of cyanobacteria, especially Pseudanabaena limnetica with 394,554 org cm-3. The soil treated with chemical fertilization showed higher nitrate (9.14 mg NKg-1 NO3--N) and potassium (52.32 mg dm-3) contents. The highest levels of sulfur (21.73 mg dm-3) and iron (96.46 mgdm-3) were detected in the biological treatment. The chemical treatment showed higher activity of the enzymes acid phosphatase, acetylglucosaminidase, and sulfatase, while α-glucosidase and leucine aminopeptidase stood out in the biological treatment. Soil properties were not significantly affected by the treatments. The use of microalgae biomass derived from wastewater treatment from milking parlors was evaluated and presented as a promising biofertilizer for agriculture, following the line of recovering nutrient-rich wastes. In this sense, although many challenges need to be overcome, the results suggest that microalgal-based fertilizers could lead to low-impact agriculture.
Collapse
Affiliation(s)
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Carlos Rad
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| | | | - Paula Peixoto Assemany
- Department of Environmental Engineering, Federal University of Lavras, Lavras, MG, Brazil
| | - Jorge Miñon Martinez
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Rajaa Kholssi
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
3
|
Mao Q, Xie Z, Pinzon-Nuñez DA, Issaka S, Liu T, Zhang L, Irshad S. Leptolyngbya sp. XZMQ and Bacillus XZM co-inoculation reduced sunflower arsenic toxicity by regulating rhizosphere microbial structure and enzyme activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123001. [PMID: 38000723 DOI: 10.1016/j.envpol.2023.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Microorganisms are of great significance for arsenic (As) toxicity amelioration in plants as soil fertility is directly affected by microbes. In this study, we innovatively explored the effects of indigenous cyanobacteria (Leptolyngbya sp. XZMQ) and plant growth-promoting bacteria (PGPB) (Bacillus XZM) on the growth and As absorption of sunflower plants from As-contaminated soil. Results showed that single inoculation and co-inoculation stimulated the growth of sunflower plants (Helianthus annuus L.), enhanced enzyme activities, and reduced As contents. In comparison to the control group, single innoculation of microalgae and bacteria in the rhizosphere increased extracellular polymeric substances (EPS) by 21.99% and 14.36%, respectively, whereas co-inoculation increased them by 35%. Compared with the non-inoculated group, As concentration in the roots, stems and leaves of sunflower plants decreased by 38%, 70% and 41%, respectively, under co-inoculation conditions. Inoculation of Leptolyngbya sp. XZMQ significantly increased the abundance of nifH in soil, while co-inoculation of cyanobacteria and Bacillus XZM significantly increased the abundance of cbbL, indicating that the coupling of Leptolyngbya sp. XZMQ and Bacillus XZM could stimulate the activity of nitrogen-fixing and carbon-fixing microorganisms and increased soil fertility. Moreover, this co-inoculation increased the enzyme activities (catalase, sucrase, urease) in the rhizosphere soil of sunflower and reduced the toxic effect of As on plant. Among these, the activities of catalase, peroxidase, and superoxide dismutase decreased. Meanwhile, co-inoculation enables cyanobacteria and bacteria to attach and entangle in the root area of the plant and develop as symbiotic association, which reduced As toxicity. Co-inoculation increased the abundance of aioA, arrA, arsC, and arsM genes in soil, especially the abundance of microorganisms with aioA and arsM, which reduced the mobility and bioavailability of As in soil, hence, reduced the absorption of As by plants. This study provides a theoretical basis for soil microbial remediation in mining areas.
Collapse
Affiliation(s)
- Qing Mao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | | | - Sakinatu Issaka
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi, 276000, China
| | - Lei Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 51806, China
| |
Collapse
|
4
|
Zhang C, Yu X, Laipan M, Wei T, Guo J. Soil health improvement by inoculation of indigenous microalgae in saline soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:23. [PMID: 38225518 DOI: 10.1007/s10653-023-01790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/16/2023] [Indexed: 01/17/2024]
Abstract
Using biological methods to improve saline soils is recognized as an eco-friendly and sustainable way. In this study, two indigenous algae YJ-1 and YJ-2 screened from salinized farmland were inoculated into saline soils with different salinization levels to investigate their potential in enhancing soil health by laboratory microcosm experiment. The results showed that individual inoculation of the two algae quickly resulted in the formation of algal crusts, and the chlorophyll content in the saline soils gradually increased with the incubation time. The soil pH decreased significantly from the initial 8.15-9.45 to 6.97-7.56 after 60-day incubation. The exopolysaccharides secretion and the activities of catalase, sucrase, and urease in saline soils also increased. Microalgal inoculation increased soil organic matter storage, while decreasing the available nutrient contents possibly due to the depletion of microalgal growth. PCA and PCC results identified that microalgal biomass as the predominant variable affecting soil quality. Overall, these data revealed the great potential of microalgae in the amelioration of saline soils, especially in pH reduction and enzyme activity enhancement. This study will provide the theoretical foundation for improving saline soils via algalization.
Collapse
Affiliation(s)
- Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xianwei Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
5
|
Mao Q, Xie X, Pinzon-Nuñez DA, Xie Z, Liu T, Irshad S. Native microalgae and Bacillus XZM remediate arsenic-contaminated soil by forming biological soil crusts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118858. [PMID: 37647731 DOI: 10.1016/j.jenvman.2023.118858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Biological soil crusts (BSCs) are a useful tool for immobilization of metal(loid)s in mining areas. Yet, the typical functional microorganisms involved in promoting the fast development of BSCs and their impacts on arsenic(As) contaminated soil remain unverified. In this study, As-contaminated soil was inoculated with indigenous Chlorella thermophila SM01 (C. thermophila SM01), Leptolyngbya sp. XZMQ, isolated from BSCs in high As-contaminated areas and plant growth-promoting (PGP) bacteria (Bacillus XZM) to construct BSCs in different manners. After 45 days of ex-situ culture experiment, Leptolyngbya sp. XZMQ and bacteria could form obvious BSCs. Compared to single-inoculated microalgae, the co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased soil pH and water content by 10% and 26%, respectively, while decreasing soil EC and density by 19% and 14%, respectively. The soil catalase, alkaline phosphatase, sucrase, and urease activities were also increased by 30.53%, 96.24%, 154.19%, and 272.17%, respectively. The co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM drove the formation of BSCs by producing large amounts of extracellular polymeric substances (EPS). The three-dimensional fluorescence spectroscopy (3D-EEM) analysis showed that induced BSCs increased As immobilization by enhancing the contents of tryptophan and tyrosine substances, fulvic acid, and humic acid in EPS. The presence of the -NH2 and -COOH functional groups in tryptophan residues were determined using Fourier Transform Infrared Spectroscopy (FTIR). X-Ray Diffraction (XRD) analysis showed that there were iron (hydrogen) oxides in BSCs, which could form ternary complexes with humic acid and As, thereby increasing the adsorption of As. Therefore, BSCs formed by co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased the immobilization of As, thereby reducing the content of soluble As in the environment. In summary, our findings innovatively provided a new method for the remediation of As-contaminated soil in mining areas.
Collapse
Affiliation(s)
- Qing Mao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xi Xie
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | | | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi, 276000, China
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 51806, China
| |
Collapse
|
6
|
Álvarez-González A, Uggetti E, Serrano L, Gorchs G, Escolà Casas M, Matamoros V, Gonzalez-Flo E, Díez-Montero R. The potential of wastewater grown microalgae for agricultural purposes: Contaminants of emerging concern, heavy metals and pathogens assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121399. [PMID: 36878273 DOI: 10.1016/j.envpol.2023.121399] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In the coming years, the use of microalgal biomass as agricultural biofertilizers has shown promising results. The use of wastewater as culture medium has resulted in the reduction of production costs, making microalgae-based fertilizers highly attractive for farmers. However, the occurrence of specific pollutants in wastewater, like pathogens, heavy metals and contaminants of emerging concern (CECs), such as pharmaceuticals and personal care products may pose a risk on human health. This study presents an holistic assessment of the production and use of microalgal biomass grown in municipal wastewater as biofertilizer in agriculture. Results showed that pathogens and heavy metals concentrations in the microalgal biomass were below the threshold established by the European regulation for fertilizing products, except for cadmium. Regarding CECs, 25 out of 29 compounds were found in wastewater. However, only three of them (hydrocinnamic acid, caffeine, and bisphenol A) were found in the microalgae biomass used as biofertilizer. Agronomic tests were performed for lettuce growth in greenhouse. Four treatments were studied, comparing the use of microalgae biofertilizer with a conventional mineral fertilizer, and also a combination of both of them. Results suggested that microalgae can help reducing the mineral nitrogen dose, since similar fresh shoot weights were obtained in the plants grown with the different assessed fertilizers. Lettuce samples revealed the presence of cadmium and CECs in all the treatments including both negative and positive controls, which suggests that their presence was not linked to the microalgae biomass. On the whole, this study revealed that wastewater grown microalgae can be used for agricultural purposes reducing mineral N need and guaranteeing health safety of the crops.
Collapse
Affiliation(s)
- Ana Álvarez-González
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Enrica Uggetti
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - Lydia Serrano
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya·BarcelonaTech, C/Esteve Terradas 8, Building D4, E-08860, Castelldefels, Spain
| | - Gil Gorchs
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya·BarcelonaTech, C/Esteve Terradas 8, Building D4, E-08860, Castelldefels, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019, Barcelona, Spain
| | - Rubén Díez-Montero
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| |
Collapse
|
7
|
Silva TA, Castro JSD, Ribeiro VJ, Ribeiro Júnior JI, Tavares GP, Calijuri ML. Microalgae biomass as a renewable biostimulant: meat processing industry effluent treatment, soil health improvement, and plant growth. ENVIRONMENTAL TECHNOLOGY 2023; 44:1334-1350. [PMID: 34719354 DOI: 10.1080/09593330.2021.2000646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Microalgae biomass contributes to effluent bioremediation. It is a concentrated source of nutrients and organic carbon, making it a potential alternative as a soil biostimulant. In this context, this study aimed to evaluate the soil application of microalgae biomass produced from the meat processing industry effluent treatment. The biomass was applied dry and as a mixture to demonstrate its potential to increase plant production and soil metabolic functions, analyzed short-term. Doses of 0.25%, 0.5%, 1%, and 2% biomass were applied in soils from (i) Horizon A: taken at a depth between 0 and 10 cm and; (ii) Horizon B: taken at a depth between 20 and 40 cm. Corn growth (Zea Mays L.), basal soil respiration, microbial biomass carbon, total organic carbon, β-glucosidase, acid phosphatase, arylsulfatase, and urease enzymatic activity were evaluated in each sample. It is concluded that applying 2% microalgae biomass led to higher basal soil respiration, microbial biomass carbon, and β-glucosidase, acid phosphatase, arylsulfatase enzymatic activity in both soils. On the other hand, boron may have contributed to urease activity reduction in Soil A. Although 2% biomass led to higher soils characteristics, that dose did not promote higher plant growth. Hence, considering that plant growth must be in line with changes in soil characteristics, the result that provided the higher plant shoot dry matter mass was by applying 0.55% biomass in both soils. Therefore, the application of microalgae biomass produced from a meat processing industry effluent treatment promoted a biologically active soil and boosted plant growth.
Collapse
Affiliation(s)
- Thiago Abrantes Silva
- Department of Civil Engineering, Centre for Exact and Technological Sciences, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Microbial-Mediated Emissions of Greenhouse Gas from Farmland Soils: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10112361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The greenhouse effect is one of the concerning environmental problems. Farmland soil is an important source of greenhouse gases (GHG), which is characterized by the wide range of ways to produce GHG, multiple influencing factors and complex regulatory measures. Therefore, reducing GHG emissions from farmland soil is a hot topic for relevant researchers. This review systematically expounds on the main pathways of soil CO2, CH4 and N2O; analyzes the effects of soil temperature, moisture, organic matter and pH on various GHG emissions from soil; and focuses on the microbial mechanisms of soil GHG emissions under soil remediation modes, such as biochar addition, organic fertilizer addition, straw return and microalgal biofertilizer application. Finally, the problems and environmental benefits of various soil remediation modes are discussed. This paper points out the important role of microalgae biofertilizer in the GHG emissions reduction in farmland soil, which provides theoretical support for realizing the goal of “carbon peaking and carbon neutrality” in agriculture.
Collapse
|
9
|
Rupawalla Z, Robinson N, Schmidt S, Li S, Carruthers S, Buisset E, Roles J, Hankamer B, Wolf J. Algae biofertilisers promote sustainable food production and a circular nutrient economy - An integrated empirical-modelling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148913. [PMID: 34328895 DOI: 10.1016/j.scitotenv.2021.148913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Agriculture has radically changed the global nitrogen (N) cycle and is heavily dependent on synthetic N-fertiliser. However, the N-use efficiency of synthetic fertilisers is often only 50% with N-losses from crop systems polluting the biosphere, hydrosphere and atmosphere. To address the large carbon and energy footprint of N-fertiliser synthesis and curb N-pollution, new technologies are required to deliver enhanced energy efficiency, decarbonisation and a circular nutrient economy. Algae fertilisers (AF) are an alternative to synthetic N-fertiliser (SF). Here microalgae were used as biofertiliser for spinach production. AF production was evaluated using life-cycle analyses. Over 4 weeks, AF released 63.5% of N as bioavailable ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate; SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF's slower and linear N-release; SF exhibited 5-times higher N-leaching than AF. Optimised AF:SF blends yielded greater synchrony between N-release and crop-uptake, boosting crop yields and minimising N-loss. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity of the growth substrate. An integrated techno-economic and life-cycle-analysis of scaled-up microalgae systems (+/- wastewater) normalised to the application dose showed that replacing the most effective SF-dose with AF lowered the annual carbon footprint of fertiliser production from 3.644 kg CO2 m-2 (C-producing) to -6.039 kg CO2 m-2 (C-assimilation). N-loss from growth substrate was lowered by 54%. Embodied energy for AF:SF blends could be reduced by 29% when cultivating microalgae on wastewater. Conclusions: (i) microalgae offer a sustainable alternative to synthetic N-fertiliser for spinach production and potentially other crop systems, (ii) microalgae biofertilisers support the circular-nutrient-economy and several UN-Sustainable-Development-Goals.
Collapse
Affiliation(s)
- Zeenat Rupawalla
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole Robinson
- School of Agriculture and Food Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sijie Li
- School of Agriculture and Food Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Selina Carruthers
- School of Agriculture and Food Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elodie Buisset
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - John Roles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Juliane Wolf
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
10
|
Biologia Futura: potential of different forms of microalgae for soil improvement. Biol Futur 2021; 73:1-8. [PMID: 34735698 DOI: 10.1007/s42977-021-00103-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/17/2021] [Indexed: 12/24/2022]
Abstract
Products derived from microalgae have great potential in diverse field. As a part of the enhancing agriculture application, various forms of microalgae applications have been developed so far. They are known to influence soil properties. The various forms of application may enhance soil in more or less similar manner. They can help improve soil health, nitrogen, and phosphorus content, and even carbon sequestration. Thus, overall, it can enhance fertility of the soil.
Collapse
|
11
|
Kholssi R, Ramos PV, Marks EA, Montero O, Rad C. 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Evaluation of Biocompatibility and Antagonistic Properties of Microorganisms Isolated from Natural Sources for Obtaining Biofertilizers Using Microalgae Hydrolysate. Microorganisms 2021; 9:microorganisms9081667. [PMID: 34442746 PMCID: PMC8401578 DOI: 10.3390/microorganisms9081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/04/2022] Open
Abstract
Determination of the biocompatibility of microorganisms isolated from natural sources (Kemerovo Oblast—Kuzbass) resulted in the creation of three microbial consortia based on the isolated strains: consortium I (Bacillus pumilus, Pediococcus damnosus, and Pediococcus pentosaceus), consortium II (Acetobacter aceti, Pseudomonas chlororaphis, and Streptomyces parvus), and consortium III (Amycolatopsis sacchari, Bacillus stearothermophilus; Streptomyces thermocarboxydus; and Streptomyces thermospinisporus). The nutrient media composition for the cultivation of each of the three studied microbial consortia, providing the maximum increase in biomass, was selected: consortium I, nutrient medium 11; consortium II, nutrient medium 13; for consortium III, nutrient medium 16. Consortia I and II microorganisms were cultured at 5–25 °C, and consortium III at 50–70 °C. Six types of psychrophilic microorganisms (P. pentosaceus, P. chlororaphis, P. damnosus, B. pumilus, A. aceti, and S. parvus) and four types of thermophilic microorganisms (B. stearothermophilus, S. thermocarboxydus, S. thermospinisporus, and A. sacchari) were found to have high antagonistic activity against the tested pathogenic strains (A. faecalis, B. cinerea, E. carotovora, P. aeruginosa, P. fluorescens, R. stolonifera, X. vesicatoria. pv. Vesicatoria, and E. aphidicola). The introduction of microalgae hydrolyzate increased the concentration of microorganisms by 5.23 times in consortium I, by 4.66 times in consortium II, by 6.6 times in consortium III. These data confirmed the efficiency (feasibility) of introducing microalgae hydrolyzate into the biofertilizer composition.
Collapse
|
13
|
Viegas C, Gouveia L, Gonçalves M. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112187. [PMID: 33609932 DOI: 10.1016/j.jenvman.2021.112187] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day-1 (N. salina) to 146.4 mg L-1 day-1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semi-continuous growth, reaching productivities of 879.8 mg L-1 day-1 and 811.7 mg L-1 day-1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae' capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ± 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
Collapse
Affiliation(s)
- Catarina Viegas
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT-NOVA, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - Luísa Gouveia
- LNEG - Laboratório Nacional de Energia e Geologia, I.P./Bioenergy and Bioerefineries Unit, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal; GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Portugal
| | - Margarida Gonçalves
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT-NOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
14
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Production and assessment of microalgal liquid fertilizer for the enhanced growth of four crop plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Castro JDS, Calijuri ML, Ferreira J, Assemany PP, Ribeiro VJ. Microalgae based biofertilizer: A life cycle approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138138. [PMID: 32268288 DOI: 10.1016/j.scitotenv.2020.138138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Waste, especially biomass in general, is a large reservoir of nutrients that can be recovered through different technologies and used to produce biofertilizers. In the present study, environmental impacts of the production of microalgae biomass-based phosphate biofertilizer compared to triple superphosphate through life-cycle assessment conducted in the Simapro® software were investigated. The functional unit of the analysis was 163 g of P for both fertilizers. Phosphorus was recovered from a meat processing industry effluent in a high-rate algal pond. Impacts related to the entire biofertilizer chain impacted mainly on climate changes (3.17 kg CO2eq). Microalgae biofertilizer had higher environmental impact than conventional fertilizer in all impact categories, highlighting climate change and terrestrial ecotoxicity. An ideal scenario was created considering that: all energy used comes from photovoltaic panels; in the separation step a physical method will be used, without energy expenditure (i.e. gravimetric sedimentation) and; biomass will be dried in a drying bed instead of the thermal drying. In this scenario, the impact of biofertilizer approached considerably those of triple superphosphate. When impacts of biomass cultivation and concentration stages were disregarded, drying step was of great relevance, contributing to increase biofertilizer impacts. More research is needed to optimize the algae production chain and determine the possibility of obtaining higher added value products more environmental attractive.
Collapse
Affiliation(s)
- Jackeline de Siqueira Castro
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Jessica Ferreira
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula Peixoto Assemany
- Department of Water Resources and Sanitation, Federal University of Lavras, Campus Universitário, 37200-900 Lavras, Minas Gerais, Brazil
| | - Vinícius José Ribeiro
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
17
|
Arif I, Batool M, Schenk PM. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends Biotechnol 2020; 38:1385-1396. [PMID: 32451122 DOI: 10.1016/j.tibtech.2020.04.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023]
Abstract
Plant-associated microbiomes can boost plant growth or control pathogens. Altering the microbiome by inoculation with a consortium of plant growth-promoting rhizobacteria (PGPR) can enhance plant development and mitigate against pathogens as well as abiotic stresses. Manipulating the plant holobiont by microbiome engineering is an emerging biotechnological strategy to improve crop yields and resilience. Indirect approaches to microbiome engineering include the use of soil amendments or selective substrates, and direct approaches include inoculation with specific probiotic microbes, artificial microbial consortia, and microbiome breeding and transplantation. We highlight why and how microbiome services could be incorporated into traditional agricultural practices and the gaps in knowledge that must be answered before these approaches can be commercialized in field applications.
Collapse
Affiliation(s)
- Inessa Arif
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria Batool
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
18
|
Castro JDS, Calijuri ML, Mattiello EM, Ribeiro VJ, Assemany PP. Algal biomass from wastewater: soil phosphorus bioavailability and plants productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135088. [PMID: 31818600 DOI: 10.1016/j.scitotenv.2019.135088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The cultivation of microalgae in wastewater allows to obtain a biomass concentrated in nutrients and organic material. This biomass added to phosphate fertilizers can promote a slow release of the nutrient and consequently a higher absorption of phosphorus (P). The objective of this study was to investigate P uptake by plants subjected to triple superphosphate (TSP) fertilization, added with microalgae biomass (MB) grown in wastewater. TSP was added with different MB proportions in order to verify if there would be a different behaviour in P release for millet (Pennisetum glaucum L.) plants. With the proportion that maximized P accumulation in plants, a second experiment was carried out to investigate whether MB exerts influence of P diffusion in the soil. Finally, a third trial was conducted in a greenhouse, where TSP and TSP + 12% MB were applied to the soil under different phosphorus doses in corn (Zea mays L.). The proportion of MB in TSP that maximized the increase of P content and concentration in plants was approximately 12% MB. From this proportion, a reduction in the values of the variables analysed in the plant with the increase of the proportion of MB in the biofertilizer was observed. Similar behaviour was observed when evaluating P diffusion in sandy and clay soils. Fertilizers TSP and TSP + 12% MB showed no difference in P diffusion in the soil, while the ratio of 30% MB clearly impaired P diffusion. In a greenhouse, the P content presented significant difference for the tests carried out with TSP and TSP + 12% MB fertilizer, in which the latter provided higher P recovery rate by plants. Therefore, MB added to TSP had a positive influence on plant development and its P recovery capacity when applied in a proportion of 12% MB to the fertilizer mass.
Collapse
Affiliation(s)
- Jackeline de Siqueira Castro
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa3, Minas Gerais 36570-900, Brazil.
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa3, Minas Gerais 36570-900, Brazil
| | - Edson Marcio Mattiello
- Department of Soil Science, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Vinícius José Ribeiro
- Department of Soil Science, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula Peixoto Assemany
- Department of Water Resources and Sanitation, Federal University of Lavras, Campus Universitario, Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
19
|
Marks EAN, Montero O, Rad C. The biostimulating effects of viable microalgal cells applied to a calcareous soil: Increases in bacterial biomass, phosphorus scavenging, and precipitation of carbonates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:784-790. [PMID: 31539985 DOI: 10.1016/j.scitotenv.2019.07.289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Microalgae used in wastewater treatment may be applied to soil as a biofertilizer - this is a novel strategy for recycling of nutrients in the circular economy. There is little information about how the application of large concentrations of unicellular algae to soil will affect soil biochemistry, particularly when they are living algal cells with the potential to form a soil biofilm, whereas soil biofilms are expected to influence plant-microbe interactions. Chlorophyte unicellular algae of the Chlorella genera are widely employed in algae-based water treatment systems, and Chlorella sorokiniana has proven to be highly adaptable for this purpose. We applied three filtrates of a Chlorella sorokiniana culture to soil microcosms, separating the microalgae from other microorganisms, as well as a sterile control filtrate without biological activity. Bacterial biomass in soils receiving the non-filtered (NF) slurry with viable algal cells was increased by 25% in the soil surface (0-8mm), and heterotrophic activity in those treatments increased as measured by CO2-C evolution. Total soil carbon concentrations were increased in the treatment with living algal cells (NF) by 0.4%, but no differences in organic carbon were measured; instead, it was found that inorganic carbon (CaCO3) concentrations increased by 0.6% in the NF treatment only. Soil phosphorus availability was also reduced in the surface of the NF treatment, indicating an increased biological demand. The results show that, when applied to soil, microalgae and associated biofilms will have relevant direct and indirect effects on soil quality and nutrients of agricultural importance.
Collapse
Affiliation(s)
- Evan A N Marks
- CT BETA, Universitat de Vic - Universitat Central de Catalunya, Carrer de la Laura 13, 08500 Vic, Spain; Composting Research Group UBUCOMP, E.P.S. La Milanera, Universidad de Burgos, 09001 Burgos, Spain.
| | - Olimpio Montero
- Spanish Council for Scientific Research (CSIC), Avenida Francisco Vallés 8, E47151 Boecillo, Spain
| | - Carlos Rad
- Composting Research Group UBUCOMP, E.P.S. La Milanera, Universidad de Burgos, 09001 Burgos, Spain
| |
Collapse
|
20
|
Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:366-375. [PMID: 30729858 DOI: 10.1080/03601234.2019.1571366] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The loss of yields from agricultural production due to the presence of pests has been treated over the years with synthetic pesticides, but the use of these substances negatively affects the environment and presents health risks for consumers and animals. The development of agroecological systems using biopesticides represents a safe alternative that contributes to the reduction of agrochemical use and sustainable agriculture. Microalgae are able to biosynthesize a number of metabolites with potential biopesticidal action and can be considered potential biological agents for the control of harmful organisms to soils and plants. The present work aims to provide a critical perspective on the consequences of using synthetic pesticides, offering as an alternative the biopesticides obtained from microalgal biomass, which can be used together with the implementation of environmentally friendly agricultural systems.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Bárbara Catarina Bastos Freitas
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Camila Gonzales Cruz
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Jéssica Silveira
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Michele Greque Morais
- b College of Chemistry and Food Engineering, Laboratory of Microbiology and Biochemistry , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| |
Collapse
|
21
|
Win TT, Barone GD, Secundo F, Fu P. Algal Biofertilizers and Plant Growth Stimulants for Sustainable Agriculture. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2018.0010] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Theint Theint Win
- State Key Laboratory of Marine Resource Utilization in South China, Hainan University, Haikou, China
- Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay, Myanmar
| | | | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China, Hainan University, Haikou, China
| |
Collapse
|
22
|
Kholssi R, Marks EA, Montero O, Maté AP, Debdoubi A, Rad C. The growth of filamentous microalgae is increased on biochar solid supports. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|