1
|
Kobylarz D, Paprotny Ł, Wianowska D, Gnatowski M, Jurowski K. Silent Bird Poisoning in Poland: Reconfirmation of Bromadiolone and Warfarin as the Proximal Causes Using GC-MS/MS-Based Methodology for Forensic Investigations. Pharmaceuticals (Basel) 2024; 17:764. [PMID: 38931431 PMCID: PMC11206662 DOI: 10.3390/ph17060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The extensive use of rodenticides poses a severe threat to non-target species, particularly birds of prey and scavengers. In this study, a GC-MS/MS-based method was used to unlock the cause of bird deaths in Poland. Organs (liver, heart, kidney, and lungs) collected during autopsies of two rooks (Corvus frugilegus) and one carrion crow (Corvus corone corone), as well as fecal samples, were analyzed for the presence of anticoagulant coumarin derivatives, i.e., warfarin and bromadiolone. As for warfarin, the highest concentration was found in crow samples overall, with concentrations in the feces and lungs at 5.812 ± 0.368 µg/g and 4.840 ± 0.256 µg/g, respectively. The heart showed the lowest concentration of this compound (0.128 ± 0.01 µg/g). In the case of bromadiolone, the highest concentration was recorded in the liver of a rook (16.659 ± 1.499 µg/g) and this concentration significantly exceeded the levels in the other samples. By revealing the reality of the threat, these discoveries emphasize the need to regulate and monitor the trade in rodenticides.
Collapse
Affiliation(s)
- Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Łukasz Paprotny
- Center Shim-pol Company, ul. Lubomirskiego 5, 05-080 Izabelin, Poland
| | - Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland
| | - Maciej Gnatowski
- Research and Development Centre, ALAB Laboratories, ul. Ceramiczna 1, 20-150 Lublin, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
2
|
Spadetto L, Gómez-Ramírez P, Zamora-Marín JM, León-Ortega M, Díaz-García S, Tecles F, Fenoll J, Cava J, Calvo JF, García-Fernández AJ. Active monitoring of long-eared owl (Asio otus) nestlings reveals widespread exposure to anticoagulant rodenticides across different agricultural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170492. [PMID: 38307270 DOI: 10.1016/j.scitotenv.2024.170492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The widespread use of anticoagulant rodenticides (ARs) poses a worldwide threat to farmland wildlife. These compounds accumulate in tissues of both target and non-target species, potentially endangering both direct consumers and their predators. However, investigations on ARs in blood of free-ranging predatory birds are rare. Here, the long-eared owl (Asio otus) has been used as a model predator to assess AR exposure in different agricultural landscapes from a Mediterranean semiarid region. A total of 69 owlets from 38 nests were blood-sampled over 2021 and 2022, aiming to detect AR residues and explore factors that determine their exposure, such as land uses. In addition, prothrombin time (PT) test was conducted to assess potential effects of AR contamination. Overall, nearly all the samples (98.6 %) tested positive for at least one compound and multiple ARs were found in most of the individuals (82.6 %). Among the ARs detected, flocoumafen was the most common compound (88.4 % of the samples). AR total concentration (ΣARs) in blood ranged from 0.06 to 34.18 ng mL-1, detecting the highest levels in the most intensively cultivated area. The analysis of owl pellets from 19 breeding territories showed relevant among-site differences in the contribution of rodents and birds into the diet of long-eared owls, supporting its high dietary plasticity and indicating AR presence at multiple trophic levels. Moreover, a positive and significant correlation was found between ΣARs and PT (Rho = 0.547, p < 0.001), which demonstrates the direct effect of ARs on free-living nestlings. Our results provide a preliminary overview of AR exposure in a little-studied owl species inhabiting agricultural and rural landscapes. Despite the low detected levels, these findings indicate widespread exposure -often to multiple compounds- from early life stages, which raises concern and draws attention to an ongoing and unresolved contamination issue.
Collapse
Affiliation(s)
- Livia Spadetto
- Toxicology Research Group, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Pilar Gómez-Ramírez
- Toxicology Research Group, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain.
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain
| | - Sarah Díaz-García
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150 Murcia, Spain
| | - Juana Cava
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150 Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
3
|
Chen Y, Lopez S, Reddy RM, Wan J, Tkachenko A, Nemser SM, Smith L, Reimschuessel R. Validation and interlaboratory comparison of anticoagulant rodenticide analysis in animal livers using ultra-performance liquid chromatography-mass spectrometry. J Vet Diagn Invest 2023; 35:470-483. [PMID: 37313802 PMCID: PMC10467459 DOI: 10.1177/10406387231178558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Anticoagulant rodenticides (ARs) are used to control rodent populations. Poisoning of non-target species can occur by accidental consumption of commercial formulations used for rodent control. A robust method for determining ARs in animal tissues is important for animal postmortem diagnostic and forensic purposes. We evaluated an ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) method to quantify 8 ARs (brodifacoum, bromadiolone, chlorophacinone, coumachlor, dicoumarol, difethialone, diphacinone, warfarin) in a wide range of animal (bovine, canine, chicken, equine, porcine) liver samples, including incurred samples. We further evaluated UPLC-MS in 2 interlaboratory comparison (ILC) studies; one an ILC exercise (ICE), the other a proficiency test (PT). The limits of detection of UPLC-MS were 0.3-3.1 ng/g, and the limits of quantification were 0.8-9.4 ng/g. The recoveries obtained using UPLC-MS were 90-115%, and relative SDs were 1.2-13% for each of the 8 ARs for the 50, 500, and 2,000 ng/g spiked liver samples. The overall accuracy from the laboratories participating in the 2 ILC studies (4 and 11 laboratories for ICE and PT studies, respectively) were 86-118%, with relative repeatability SDs of 3.7-11%, relative reproducibility SDs of 7.8-31.2%, and Horwitz ratio values of 0.5-1.5. Via the ILC studies, we verified the accuracy of UPLC-MS for AR analysis in liver matrices and demonstrated that ILC can be utilized to evaluate performance characteristics of analytical methods.
Collapse
Affiliation(s)
- Yang Chen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Salvador Lopez
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Ravinder M. Reddy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Jason Wan
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Andriy Tkachenko
- Center for Veterinary Medicine, U.S. Food & Drug Administration, Laurel, MD, USA
| | - Sarah M. Nemser
- Center for Veterinary Medicine, U.S. Food & Drug Administration, Laurel, MD, USA
| | | | | |
Collapse
|
4
|
Badenes‐Pérez FR. The impacts of free‐roaming cats cannot be generalized and their role in rodent management should not be overlooked. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Broughton RK, Searle KR, Walker LA, Potter ED, Pereira MG, Carter H, Sleep D, Noble DG, Butler A, Johnson AC. Long-term trends of second generation anticoagulant rodenticides (SGARs) show widespread contamination of a bird-eating predator, the Eurasian Sparrowhawk (Accipiter nisus) in Britain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120269. [PMID: 36162558 DOI: 10.1016/j.envpol.2022.120269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Second generation anticoagulant rodenticides (SGARs) are widely used to control rodents around the world. However, contamination by SGARs is detectable in many non-target species, particularly carnivorous mammals or birds-of-prey that hunt or scavenge on poisoned rodents. The SGAR trophic transfer pathway via rodents and their predators/scavengers appears widespread, but little is known of other pathways of SGAR contamination in non-target wildlife. This is despite the detection of SGARs in predators that do not eat rodents, such as specialist bird-eating hawks. We used a Bayesian modelling framework to examine the extent and spatio-temporal trends of SGAR contamination in the livers of 259 Eurasian Sparrowhawks, a specialist bird-eating raptor, in regions of Britain during 1995-2015. SGARs, predominantly difenacoum, were detected in 81% of birds, with highest concentrations in males and adults. SGAR concentrations in birds were lowest in Scotland and higher or increasing in other regions of Britain, which had a greater arable or urban land cover where SGARs may be widely deployed for rodent control. However, there was no overall trend for Britain, and 97% of SGAR residues in Eurasian Sparrowhawks were below 100 ng/g (wet weight), which is a potential threshold for lethal effects. The results have potential implications for the population decline of Eurasian Sparrowhawks in Britain. Fundamentally, the results indicate an extensive and persistent contamination of the avian trophic transfer pathway on a national scale, where bird-eating raptors and, by extension, their prey appear to be widely exposed to SGARs. Consequently, these findings have implications for wildlife contamination worldwide, wherever these common rodenticides are deployed, as widespread exposure of non-target species can apparently occur via multiple trophic transfer pathways involving birds as well as rodents.
Collapse
Affiliation(s)
- Richard K Broughton
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
| | - Kate R Searle
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Lee A Walker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Elaine D Potter
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Heather Carter
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Darren Sleep
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - David G Noble
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
| | - Adam Butler
- BioSS, James Clerk Maxwell Building, King's Buildings, Mayfield Rd, Edinburgh, EH9 3JZ, UK
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
6
|
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crépin M, Gaffard A, Bretagnolle V, Monceau K. Pesticide impacts on avian species with special reference to farmland birds: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:790. [PMID: 36107257 DOI: 10.1007/s10661-022-10394-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For decades, we have observed a major biodiversity crisis impacting all taxa. Avian species have been particularly well monitored over the long term, documenting their declines. In particular, farmland birds are decreasing worldwide, but the contribution of pesticides to their decline remains controversial. Most studies addressing the effects of agrochemicals are limited to their assessment under controlled laboratory conditions, the determination of lethal dose 50 (LD50) values and testing in a few species, most belonging to Galliformes. They often ignore the high interspecies variability in sensitivity, delayed sublethal effects on the physiology, behaviour and life-history traits of individuals and their consequences at the population and community levels. Most importantly, they have entirely neglected to test for the multiple exposure pathways to which individuals are subjected in the field (cocktail effects). The present review aims to provide a comprehensive overview for ecologists, evolutionary ecologists and conservationists. We aimed to compile the literature on the effects of pesticides on bird physiology, behaviour and life-history traits, collecting evidence from model and wild species and from field and lab experiments to highlight the gaps that remain to be filled. We show how subtle nonlethal exposure might be pernicious, with major consequences for bird populations and communities. We finally propose several prospective guidelines for future studies that may be considered to meet urgent needs.
Collapse
Affiliation(s)
- Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Juliette Rabdeau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Isabelle Badenhausser
- Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, INRAE, 86600, Lusignan, France
| | - Mathieu Giraudeau
- UMR IRD, CREEC, Université de Montpellier, 224-CNRS 5290, Montpellier, France
- Centre de Recherche en Écologie Et Évolution de La Sante (CREES), Montpellier, France
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS- La Rochelle Université, La Rochelle, France
| | - Tuul Sepp
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Malaury Crépin
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Agathe Gaffard
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Vincent Bretagnolle
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France.
| |
Collapse
|
7
|
Walther B, Geduhn A, Schenke D, Jacob J. Exposure of passerine birds to brodifacoum during management of Norway rats on farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144160. [PMID: 33373750 DOI: 10.1016/j.scitotenv.2020.144160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The exposure of non-target wildlife to anticoagulant compounds used for rodent control is a well-known phenomenon. Exposure can be primary when non-target species consume bait or secondary via uptake of poisoned animals by mammalian and avian predators. However, nothing is known about the exposure patterns in passerine birds that are commonly present on farms where rodent control is conducted. We used liquid chromatography coupled with tandem mass spectrometry to screen for residues of anticoagulant rodenticides (ARs) in liver tissue of passerine birds that were present during rodent control with a product containing brodifacoum (BR). The 222 birds of 13 species were bycatch of rodent snap trapping in 2011-2013 on 11 livestock farms run synchronously with baiting. During baiting, ARs were detected in about 30% of birds; 28% carried BR. In liver tissue of 54 birds that carried BR, concentrations ranged from 4 to 7809 ng/g (mean 490 ± 169 ng/g). Among common bird species with AR residues, BR was most prevalent in robins (Erithacus rubecula) (44%) and dunnocks (Prunella modularis) (41%). Mean BR concentration was highest in great tits (Parus major) (902 ± 405 ng/g). The occurrence and concentrations of BR residues were about 30% higher in birds collected close to bait stations compared to birds collected further away. The results demonstrate that several ground feeding songbird species are exposed to ARs used on farms. If BR was present in liver tissue, concentrations were variable, which may imply a combination of primary and secondary exposure of songbirds. Exposure was mostly restricted to the immediate surroundings of farms where bait was used, which might limit the transfer to the wider environment. Efforts should be made to reduce the access for birds to AR bait to prevent high exposure.
Collapse
Affiliation(s)
- Bernd Walther
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany.
| | - Anke Geduhn
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany
| | - Detlef Schenke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, 14195, Berlin, Germany
| | - Jens Jacob
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany
| |
Collapse
|
8
|
Organophosphate poisoning of Hyacinth Macaws in the Southern Pantanal, Brazil. Sci Rep 2021; 11:5602. [PMID: 33692405 PMCID: PMC7946944 DOI: 10.1038/s41598-021-84228-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
The populations of hyacinth macaws (Anodorhynchus hyacinthinus), an emblematic species, have suffered declines due to many environmental factors. The Hyacinth Macaw Institute’s actions are showing positive outcomes for the conservation of A. hyacinthinus. However, environmental issues, such as fires and deforestation due to inefficient and unsustainable cattle ranching practices, are a threat to the biodiversity. Another major threat is the reckless use of pesticides. The objective of this manuscript is to describe the findings, in the Pantanal, of three dead hyacinth macaws and to investigate their cause of death and conservation implications. A necropsy was conducted on two individuals and biological samples were collected and sent to conduct toxicological exams to test for organophosphates, organochlorines, and carbomates. Compatible with other findings, results showed a highly dangerous level of organophosphate, 158.44 ppb. We describe for the first time, a rare, isolated but unusual mortality event associated with organophosphate pesticide poisoning of hyacinth macaws. Mortality reports for bees and other bird species on how the improper use of pesticides can potentially cause the contamination of food and water resources are discussed. These factors are antagonistic to long-term efforts to preserve wildlife and carry out other conservation efforts in Brazil’s southern Pantanal.
Collapse
|
9
|
Walther B, Geduhn A, Schenke D, Schlötelburg A, Jacob J. Baiting location affects anticoagulant rodenticide exposure of non-target small mammals on farms. PEST MANAGEMENT SCIENCE 2021; 77:611-619. [PMID: 32633096 DOI: 10.1002/ps.5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Commensal rodents such as Norway rats (Rattus norvegicus Berk.), black rats (R. rattus L.) and house mice (Mus musculus L.) damage stored produce and infrastructure, cause hygienic problems and transmit zoonotic pathogens to humans. The management of commensal rodents relies mainly on the use of anticoagulant rodenticides (ARs). ARs are persistent and bio-accumulative, which can cause exposure of non-target species. We compared the baiting strategies to use brodifacoum (BR) in bait boxes indoors only versus in and around buildings in replicated field trials at livestock farms to assess resulting BR residues in non-target small mammals. RESULTS When bait was used indoors only, the percentage of trapped non-target small mammals with BR residues as well as BR concentration in liver tissue was about 50% lower in comparison to bait application in and around buildings. These effects occurred in murid rodents and shrews but not in voles that were generally only mildly exposed. During the baiting period, BR concentration in murids was stable but decreased by about 50% in shrews. CONCLUSION Restricting the application of BR bait to indoors only can reduce exposure of non-target species. The positive effect of this baiting strategy on non-target species needs to be balanced with the need for an effective pest rodent management within a reasonable time. More research is needed to clarify which management approaches strike this balance best.
Collapse
Affiliation(s)
- Bernd Walther
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Anke Geduhn
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Detlef Schenke
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Annika Schlötelburg
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|
10
|
Badry A, Schenke D, Treu G, Krone O. Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. ENVIRONMENTAL RESEARCH 2021; 193:110602. [PMID: 33307088 DOI: 10.1016/j.envres.2020.110602] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/15/2023]
Abstract
Intensification of agricultural practices has resulted in a substantial decline of Europe's farmland bird populations. Together with increasing urbanisation, chemical pollution arising from these land uses is a recognised threat to wildlife. Raptors are known to be particularly sensitive to pollutants that biomagnify and are thus frequently used sentinels for pollution in food webs. The current study focussed on anticoagulant rodenticides (ARs) but also considered selected medicinal products (MPs) and frequently used plant protection products (PPPs). We analysed livers of raptor species from agricultural and urban habitats in Germany, namely red kites (MIML; Milvus milvus), northern goshawks (ACGE; Accipiter gentilis) and Eurasian sparrowhawks (ACNI; Accipiter nisus) as well as white-tailed sea eagles (HAAL; Haliaeetus albicilla) and ospreys (PAHA; Pandion haliaetus) to account for potential aquatic exposures. Landscape composition was quantified using geographic information systems. The highest detection of ARs occurred in ACGE (81.3%; n = 48), closely followed by MIML (80.5%; n = 41), HAAL (38.3%; n = 60) and ACNI (13%; n = 23), whereas no ARs were found in PAHA (n = 13). Generalized linear models demonstrated (1) an increased probability for adults to be exposed to ARs with increasing urbanisation, and (2) that species-specific traits were responsible for the extent of exposure. For MPs, we found ibuprofen in 14.9% and fluoroquinolones in 2.3% in individuals that were found dead. Among 30 investigated PPPs, dimethoate (and its metabolite omethoate) and thiacloprid were detected in two MIML each. We assumed that the levels of dimethoate were a consequence of deliberate poisoning. AR and insecticide poisoning were considered to represent a threat to red kites and may ultimately contribute to reported decreased survival rates. Overall, our study suggests that urban raptors are at greatest risk for AR exposure and that exposures may not be limited to terrestrial food webs.
Collapse
Affiliation(s)
- Alexander Badry
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Detlef Schenke
- Julius Kühn-Institut, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße19, 14195, Berlin, Germany
| | - Gabriele Treu
- Umweltbundesamt, Department Chemicals, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
11
|
Brotin T, Berthault P, Pitrat D, Mulatier JC. Selective Capture of Thallium and Cesium by a Cryptophane Soluble at Neutral pH. J Org Chem 2020; 85:9622-9630. [PMID: 32589033 DOI: 10.1021/acs.joc.0c00950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report in this article the synthesis of an asymmetrical cryptophane derivative (possessing only C3-symmetry) bearing three phenol groups and three other carboxylic acid functions, each of these groups on the aromatic rings. Thanks to isothermal titration calorimetry experiments, we show that this compound binds large monovalent cations, such as Cs+ and Tl+, with a binding constant significantly lower than its congeners bearing a larger number of phenol groups grafted on the benzene rings. However, higher selectivity for Cs+ and Tl+ was observed with this compound since it does not show any affinity for other alkali cations. More importantly, due to the greater solubility of this derivative in pure water, we show for the first time that effective thallium(I) complexation takes place at neutral pH. This result demonstrates that cryptophane derivatives decorated with a higher number of phenol groups are promising host molecules for removing traces of thallium(I) from aqueous phases at neutral pH or above.
Collapse
Affiliation(s)
- Thierry Brotin
- University Claude Bernard Lyon 1, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342 Lyon, France
| | - Patrick Berthault
- University Paris Saclay, CEA, CNRS, Nanoscience and Innovation for Materials, Biomedicine and Energy, 91191 Gif-sur-Yvette, France
| | - Delphine Pitrat
- University Claude Bernard Lyon 1, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342 Lyon, France
| | - Jean-Christophe Mulatier
- University Claude Bernard Lyon 1, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342 Lyon, France
| |
Collapse
|
12
|
Hong SY, Morrissey C, Lin HS, Lin KS, Lin WL, Yao CT, Lin TE, Chan FT, Sun YH. Frequent detection of anticoagulant rodenticides in raptors sampled in Taiwan reflects government rodent control policy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1051-1058. [PMID: 31326797 DOI: 10.1016/j.scitotenv.2019.07.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Anticoagulant rodenticides (ARs) are known to cause extensive secondary exposure in top predators in Europe and North America, but there remains a paucity of data in Asia. In this study, we collected 221 liver samples from 21 raptor species in Taiwan between 2010 and 2018. Most birds were recovered from rescue organizations, but some free-ranging individuals were obtained from bird-strike prevention measures at airports. ARs were detected in 10 species and more than half of the total samples. Common rodent-eating Black-winged Kites (Elanus caeruleus) had the highest prevalence (89.2%) and highest average sum concentration (0.211 ± 0.219 mg/kg), which was similar between free-ranging birds at airports and injured birds from rescue organizations. Scavenging Black Kites (Milvus migrans) and snake-eating Crested Serpent-eagles (Spilornis cheela) had the second highest prevalence or sum concentration, respectively. Seven different AR compounds were detected, of which brodifacoum was the most common and had the highest average concentration, followed by flocoumafen and bromadiolone. The frequency of occurrence in the three most numerous species (Black-winged Kite, Crested Goshawk [Accipiter trivirgatus], and Collared Scops-owl [Otus lettia]) was significantly higher in autumn than summer, which is consistent with the timing of the Taiwanese government's supply of free ARs to farmers. Regional differences in the detection of individual compounds also tended to reflect differences in human population density and use patterns (in agriculture or urban-dominated environments). Clinical poisoning was confirmed in Black Kites with sum concentrations as low as 0.026 mg/kg; however, further study of interspecific differences in AR sensitivity and potential population effects are needed. In addition, continued monitoring remains important given the Taiwanese government has modified their farmland rodent control policy to gradually reduce free AR supplies since 2015.
Collapse
Affiliation(s)
- Shiao-Yu Hong
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Christy Morrissey
- Department of Biology and School of Environment and Sustainability, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Hui-Shan Lin
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | | | - Wen-Loung Lin
- Taichung Wildlife Rescue Group, Taichung 411, Taiwan
| | - Cheng-Te Yao
- Endemic Species Research Institute, Nantou 552, Taiwan
| | - Te-En Lin
- Endemic Species Research Institute, Nantou 552, Taiwan
| | - Fang-Tse Chan
- Endemic Species Research Institute, Nantou 552, Taiwan
| | - Yuan-Hsun Sun
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| |
Collapse
|
13
|
Ward S, Fournier AMV, Bond AL. Assessing gaps in reporting non-target mortality in island rodent eradication operations. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02032-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Shore RF, Coeurdassier M. Primary Exposure and Effects in Non-target Animals. EMERGING TOPICS IN ECOTOXICOLOGY 2018. [DOI: 10.1007/978-3-319-64377-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|