1
|
Yang S, Sun J, Wang C, Li S, Li Z, Luo W, Wei G, Chen W. Residue quality drives SOC sequestration by altering microbial taxonomic composition and ecophysiological function in desert ecosystem. ENVIRONMENTAL RESEARCH 2024; 250:118518. [PMID: 38382662 DOI: 10.1016/j.envres.2024.118518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Plant residues are important sources of soil organic carbon in terrestrial ecosystems. The degradation of plant residue by microbes can influence the soil carbon cycle and sequestration. However, little is known about the microbial composition and function, as well as the accumulation of soil organic carbon (SOC) in response to the inputs of different quality plant residues in the desert environment. The present study evaluated the effects of plant residue addition from Pinus sylvestris var. mongolica (Pi), Artemisia desertorum (Ar) and Amorpha fruticosa (Am) on desert soil microbial community composition and function in a field experiment in the Mu Us Desert. The results showed that the addition of the three plant residues with different C/N ratios induced significant variation in soil microbial communities. The Am treatment (low C/N ratio) improved microbial diversity compared with the Ar and Pi treatments (medium and high C/N ratios). The variations in the taxonomic and functional compositions of the dominant phyla Actinobacteria and Proteobacteria were higher than those of the other phyla among the different treatments. Moreover, the network links between Proteobacteria and other phyla and the CAZyme genes abundances from Proteobacteria increased with increasing residue C/N, whereas those decreased for Actinobacteria. The SOC content of the Am, Ar and Pi treatments increased by 45.73%, 66.54% and 107.99%, respectively, as compared to the original soil. The net SOC accumulation was positively correlated with Proteobacteria abundance and negatively correlated with Actinobacteria abundance. These findings showed that changing the initial quality of plant residue from low C/N to high C/N can result in shifts in taxonomic and functional composition from Actinobacteria to Proteobacteria, which favors SOC accumulation. This study elucidates the ecophysiological roles of Actinobacteria and Proteobacteria in the desert carbon cycle, expands our understanding of the potential microbial-mediated mechanisms by which plant residue inputs affect SOC sequestration in desert soils, and provides valuable guidance for species selection in desert vegetation reconstruction.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Jieyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Chang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Shuyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Zubing Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Wen Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
2
|
Fu Q, Qiu Y, Zhao J, Li J, Xie S, Liao Q, Fu X, Huang Y, Yao Z, Dai Z, Qiu Y, Yang Y, Li F, Chen H. Monotonic trends of soil microbiomes, metagenomic and metabolomic functioning across ecosystems along water gradients in the Altai region, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169351. [PMID: 38123079 DOI: 10.1016/j.scitotenv.2023.169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
To investigate microbial communities and their contributions to carbon and nutrient cycling along water gradients can enhance our comprehension of climate change impacts on ecosystem services. Thus, we conducted an assessment of microbial communities, metagenomic functions, and metabolomic profiles within four ecosystems, i.e., desert grassland (DG), shrub-steppe (SS), forest (FO), and marsh (MA) in the Altai region of Xinjiang, China. Our results showed that soil total carbon (TC), total nitrogen, NH4+, and NO3- increased, but pH decreased with soil water gradients. Microbial abundances and richness also increased with soil moisture except the abundances of fungi and protists being lowest in MA. A shift in microbial community composition is evident along the soil moisture gradient, with Proteobacteria, Basidiomycota, and Evosea proliferating but a decline in Actinobacteria and Cercozoa. The β-diversity of microbiomes, metagenomic, and metabolomic functioning were correlated with soil moisture gradients and have significant associations with specific soil factors of TC, NH4+, and pH. Metagenomic functions associated with carbohydrate and DNA metabolisms, as well as phages, prophages, TE, plasmids functions diminished with moisture, whereas the genes involved in nitrogen and potassium metabolism, along with certain biological interactions and environmental information processing functions, demonstrated an augmentation. Additionally, MA harbored the most abundant metabolomics dominated by lipids and lipid-like molecules and organic oxygen compounds, except certain metabolites showing decline trends along water gradients, such as N'-Hydroxymethylnorcotinine and 5-Hydroxyenterolactone. Thus, our study suggests that future ecosystem succession facilitated by changes in rainfall patterns will significantly alter soil microbial taxa, functional potential, and metabolite fractions.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiuchang Liao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Furong Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
3
|
Panda A, Tuller T. Determinants of associations between codon and amino acid usage patterns of microbial communities and the environment inferred based on a cross-biome metagenomic analysis. NPJ Biofilms Microbiomes 2023; 9:5. [PMID: 36693851 PMCID: PMC9873608 DOI: 10.1038/s41522-023-00372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Codon and amino acid usage were associated with almost every aspect of microbial life. However, how the environment may impact the codon and amino acid choice of microbial communities at the habitat level is not clearly understood. Therefore, in this study, we analyzed codon and amino acid usage patterns of a large number of environmental samples collected from diverse ecological niches. Our results suggested that samples derived from similar environmental niches, in general, show overall similar codon and amino acid distribution as compared to samples from other habitats. To substantiate the relative impact of the environment, we considered several factors, such as their similarity in GC content, or in functional or taxonomic abundance. Our analysis demonstrated that none of these factors can fully explain the trends that we observed at the codon or amino acid level implying a direct environmental influence on them. Further, our analysis demonstrated different levels of selection on codon bias in different microbial communities with the highest bias in host-associated environments such as the digestive system or oral samples and the lowest level of selection in soil and water samples. Considering a large number of metagenomic samples here we showed that microorganisms collected from similar environmental backgrounds exhibit similar patterns of codon and amino acid usage irrespective of the location or time from where the samples were collected. Thus our study suggested a direct impact of the environment on codon and amino usage of microorganisms that cannot be explained considering the influence of other factors.
Collapse
Affiliation(s)
- Arup Panda
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
4
|
Naidoo Y, Valverde A, Pierneef RE, Cowan DA. Differences in Precipitation Regime Shape Microbial Community Composition and Functional Potential in Namib Desert Soils. MICROBIAL ECOLOGY 2022; 83:689-701. [PMID: 34105010 DOI: 10.1007/s00248-021-01785-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Precipitation is one of the major constraints influencing the diversity, structure, and activity of soil microbial communities in desert ecosystems. However, the effect of changes in precipitation on soil microbial communities in arid soil microbiomes remains unresolved. In this study, using 16S rRNA gene high-throughput sequencing and shotgun metagenome sequencing, we explored changes in taxonomic composition and functional potential across two zones in the Namib Desert with contrasting precipitation regime. We found that precipitation regime had no effect on taxonomic and functional alpha-diversity, but that microbial community composition and functional potential (beta-diversity) changed with increased precipitation. For instance, Acidobacteriota and 'resistance to antibiotics and toxic compounds' related genes were relatively more abundant in the high-rainfall zone. These changes were largely due to a small set of microbial taxa, some of which were present in low abundance (i.e. members of the rare biosphere). Overall, these results indicate that key climatic factors (i.e. precipitation) shape the taxonomic and functional attributes of the arid soil microbiome. This research provides insight into how changes in precipitation patterns associated with global climate change may impact microbial community structure and function in desert soils.
Collapse
Affiliation(s)
- Yashini Naidoo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | - Angel Valverde
- IRNASA-CSIC, C/Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Rian E Pierneef
- Biotechnology Platform, Agricultural Research Council, Soutpan Road, Onderstepoort Campus, Pretoria, 0110, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| |
Collapse
|
5
|
Li J, Phulpoto IA, Guo L, Zeng J, Yu Z. Grassland ecology system: A critical reservoir and dissemination medium of antibiotic resistance in Xilingol Pasture, Inner Mongolia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150985. [PMID: 34662621 DOI: 10.1016/j.scitotenv.2021.150985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is a major threat to human health. It is necessary to explore all the potential sources and comprehend the pathways that antibiotic resistance genes (ARGs) are transmitted. In this study, by applying high-throughput quantitative PCR and high-throughput sequencing, ARGs and microbial community structure were determined, to understand the reservoirs and spread of ARGs in the Xilingol grassland system. A total of 151,140 and 138 different ARGs were observed in manure, soil, and water samples, respectively. Only 12 ARGs were shared in all environmental and animal manure samples. Multidrug defense system, such as efflux pump, was the most dominant factor in manure and soil samples, followed by antibiotic deactivation processes. These genes coffering resistance to major classes of antibiotics including β_Lactamase (blaSFO, fox5, blaCTX-M-04, blaOXY), vancomycin (vanC-03, vanXD), MLSB (vatE-01, mphA-01), aminoglycoside (aadA2-01), Multidrug (oprJ) and others (oprD, qacEdelta1-02), except sulfonamide and tetracycline. The 12 ARGs were significantly enriched in water samples compared to manure and soil samples (p < 0.01) and demonstrated that the water environment was an important transmission source of ARGs in the grassland. The highest enrichment was up to 324.5-fold. Moreover, the 12 shared ARGs were positively correlated with the mobile genetic elements (p < 0.01). The nonrandom co-occurrence network patterns between ARGs and microbial community suggested that a total of three bacterial phyla were viewed as the potential ARGs hosts. These findings indicate that ARGs were highly enriched in water samples, demonstrating that the water environment was a critical source and sink of ARGs in the grassland system. It may illuminate the mechanism stressing the effects of human activity on the occurrence and transmission of ARGs in the grassland system.
Collapse
Affiliation(s)
- Jinmei Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100049, China
| | - Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100049, China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100049, China.
| |
Collapse
|
6
|
Donhauser J, Qi W, Bergk-Pinto B, Frey B. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. GLOBAL CHANGE BIOLOGY 2021; 27:1365-1386. [PMID: 33336444 DOI: 10.1111/gcb.15492] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Climate change is strongly affecting high-mountain soils and warming in particular is associated with pronounced changes in microbe-mediated C and N cycling, affecting plant-soil interactions and greenhouse gas balances and therefore feedbacks to global warming. We used shotgun metagenomics to assess changes in microbial community structures, as well as changes in microbial C- and N-cycling potential and stress response genes and we linked these data with changes in soil C and N pools and temperature-dependent measurements of bacterial growth rates. We did so by incubating high-elevation soil from the Swiss Alps at 4°C, 15°C, 25°C, or 35°C for 1 month. We found no shift with increasing temperature in the C-substrate-degrader community towards taxa more capable of degrading recalcitrant organic matter. Conversely, at 35°C, we found an increase in genes associated with the degradation and modification of microbial cell walls, together with high bacterial growth rates. Together, these findings suggest that the rapidly growing high-temperature community is fueled by necromass from heat-sensitive taxa. This interpretation was further supported by a shift in the microbial N-cycling potential towards N mineralization and assimilation under higher temperatures, along with reduced potential for conversions among inorganic N forms. Microbial stress-response genes reacted inconsistently to increasing temperature, suggesting that the high-temperature community was not severely stressed by these conditions. Rather, soil microbes were able to acclimate by changing the thermal properties of membranes and cell walls as indicated by an increase in genes involved in membrane and cell wall modifications as well as a shift in the optimum temperature for bacterial growth towards the treatment temperature. Overall, our results suggest that high temperatures, as they may occur with heat waves under global warming, promote a highly active microbial community capable of rapid mineralization of microbial necromass, which may transiently amplify warming effects.
Collapse
Affiliation(s)
- Jonathan Donhauser
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Benoît Bergk-Pinto
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
7
|
Zheng Z, Li L, Makhalanyane TP, Xu C, Li K, Xue K, Xu C, Qian R, Zhang B, Du J, Yu H, Cui X, Wang Y, Hao Y. The composition of antibiotic resistance genes is not affected by grazing but is determined by microorganisms in grassland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143205. [PMID: 33187698 DOI: 10.1016/j.scitotenv.2020.143205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/27/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Grazing is expected to exert a substantial influence on antibiotic resistance genes (ARGs) in grassland ecosystems. However, the precise effects of grazing on the composition of ARGs in grassland soils remain unclear. This is especially the case for grassland soils subject to long-term grazing. Here, we investigated ARGs and bacterial community composition in soils subject to long-term historic grazing (13-39 years) and corresponding ungrazed samples. Using a combination of shotgun metagenomics, amplicon analyses and associated soil physicochemical data, we provide novel insights regarding the structure of ARGs in grassland soils. Interestingly, our analysis revealed that long-term historic grazing had no impacts on the composition of ARGs in grassland soils. An average of 378 ARGs, conferring resistance to 14 major categories of antibiotics (80%), were identified in both grazing and ungrazed sites. Actinobacteria, Proteobacteria and Acidobacteria were the most prevalent predicted hosts in these soils and were also shown to harbour genetic capacity for multiple-resistant ARGs. Our results suggested that positive effects of bacterial community composition on ARGs could potentially be controlled by affecting MGEs. Soil properties had direct effects on the composition of ARGs through affecting the frequency of horizontal gene transfer among bacteria. Twelve novel ARGs were found in S. grandis steppe grasslands, indicating that different vegetation types might induce shifts in soil ARGs. Collectively, these findings suggest that soil properties, plants and microorganisms play critical roles in shaping ARG patterns in grasslands. Together, these data establish a solid baseline for understanding environmental antibiotic resistance in grasslands.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Chunming Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Kaihui Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yu
- Department of Foreign Languages, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Canter for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Canter for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Canter for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|
8
|
The ABC-Type Efflux Pump MacAB Is Involved in Protection of Serratia marcescens against Aminoglycoside Antibiotics, Polymyxins, and Oxidative Stress. mSphere 2021; 6:6/2/e00033-21. [PMID: 33692192 PMCID: PMC8546677 DOI: 10.1128/msphere.00033-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Serratia marcescens is an emerging pathogen with increasing clinical importance due to its intrinsic resistance to several classes of antibiotics. The chromosomally encoded drug efflux pumps contribute to antibiotic resistance and represent a major challenge for the treatment of bacterial infections. The ABC-type efflux pump MacAB was previously linked to macrolide resistance in Escherichia coli and Salmonella enterica serovar Typhimurium. The role of the MacAB homolog in antibiotic resistance of S. marcescens is currently unknown. We found that an S. marcescens mutant lacking the MacAB pump did not show increased sensitivity to the macrolide antibiotic erythromycin but was significantly more sensitive to aminoglycoside antibiotics and polymyxins. We also showed that, in addition to its role in drug efflux, the MacAB efflux pump is required for swimming motility and biofilm formation. We propose that the motility defect of the ΔmacAB mutant is due, at least in part, to the loss of functional flagella on the bacterial surface. Furthermore, we found that the promoter of the MacAB efflux pump was active during the initial hours of growth in laboratory medium and that its activity was further elevated in the presence of hydrogen peroxide. Finally, we demonstrate a complete loss of ΔmacAB mutant viability in the presence of peroxide, which is fully restored by complementation. Thus, the S. marcescens MacAB efflux pump is essential for survival during oxidative stress and is involved in protection from polymyxins and aminoglycoside antibiotics. IMPORTANCE The opportunistic pathogen Serratia marcescens can cause urinary tract infections, respiratory infections, meningitis, and sepsis in immunocompromised individuals. These infections are challenging to treat due to the intrinsic resistance of S. marcescens to an extensive array of antibiotics. Efflux pumps play a crucial role in protection of bacteria from antimicrobials. The MacAB efflux pump, previously linked to efflux of macrolides in Escherichia coli and protection from oxidative stress in Salmonella enterica serovar Typhimurium, is not characterized in S. marcescens. We show the role of the MacAB efflux pump in S. marcescens protection from aminoglycoside antibiotics and polymyxins, modulation of bacterial motility, and biofilm formation, and we illustrate the essential role for this pump in bacterial survival during oxidative stress. Our findings make the MacAB efflux pump an attractive target for inhibition to gain control over S. marcescens infections.
Collapse
|
9
|
Centurion VB, Lacerda-Júnior GV, Duarte AWF, Silva TR, Silva LJ, Rosa LH, Oliveira VM. Dynamics of microbial stress responses driven by abiotic changes along a temporal gradient in Deception Island, Maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143671. [PMID: 33248775 DOI: 10.1016/j.scitotenv.2020.143671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Whalers Bay (WB), Deception Island, is an environment that can drastically change its temperature within a few meters. The main forms of life inhabiting this environment are microorganisms, which, due to the high diversity and their adaptive potential, can survive and thrive under harsh stress conditions. However, the genetic potential and mechanisms to cope with fluctuating adverse conditions as well as what extent environmental variations shape the microbial community over the years it is still unknown in Antarctic environments. In this work, sediments collected in a transect in Whalers Bay, Deception Island, during the Austral Summers of 2014, 2015 and 2017 were analyzed using shotgun metagenomics. Sequence data were further processed with the SqueezeMeta tool for assembly, gene prediction, mapping, taxonomic and functional annotations. Results showed that stress-related functions had the influence of temperatures and solar radiation observed in the years of 2015 and 2017. The most differentiated functions were the ones related to oxidative stress, comparing 2014 vs 2015 and 2014 vs 2017. The genes coding for HSP20 and oxidoreductases (nrdH, grxA, korC and korD), as well as the genes clpE, cspL, and operons mtrAB and vicKR, were differentially enriched between the years, most of them found in gram-positive bacteria. The selective pressures of temperature and radiation may have favored the growth of gram-positive bacteria in 2017, with emphasis on Arthrobacter genus. Data gathered in this work showed that temperature and solar radiation could potentially be the primary driving forces shaping the repertoire of stress-response genes for the maintenance of microbial diversity in WB Antarctic sediments.
Collapse
Affiliation(s)
- V B Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Biology Institute, State University of Campinas - UNICAMP, Campinas, SP CEP: 13083-862, Brazil.
| | - G V Lacerda-Júnior
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Brazilian Agricultural Research Corporation - EMBRAPA, Jaguariúna, SP CEP 13820-000, Brazil
| | - A W F Duarte
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Federal University of Alagoas, Campus Arapiraca - UFAL, Arapiraca, AL CEP 57309-005, Brazil
| | - T R Silva
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil
| | - L J Silva
- Brazilian Agricultural Research Corporation - EMBRAPA, Jaguariúna, SP CEP 13820-000, Brazil
| | - L H Rosa
- Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil.
| |
Collapse
|
10
|
Osborne P, Hall LJ, Kronfeld-Schor N, Thybert D, Haerty W. A rather dry subject; investigating the study of arid-associated microbial communities. ENVIRONMENTAL MICROBIOME 2020; 15:20. [PMID: 33902728 PMCID: PMC8067391 DOI: 10.1186/s40793-020-00367-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
Almost one third of Earth's land surface is arid, with deserts alone covering more than 46 million square kilometres. Nearly 2.1 billion people inhabit deserts or drylands and these regions are also home to a great diversity of plant and animal species including many that are unique to them. Aridity is a multifaceted environmental stress combining a lack of water with limited food availability and typically extremes of temperature, impacting animal species across the planet from polar cold valleys, to Andean deserts and the Sahara. These harsh environments are also home to diverse microbial communities, demonstrating the ability of bacteria, fungi and archaea to settle and live in some of the toughest locations known. We now understand that these microbial ecosystems i.e. microbiotas, the sum total of microbial life across and within an environment, interact across both the environment, and the macroscopic organisms residing in these arid environments. Although multiple studies have explored these microbial communities in different arid environments, few studies have examined the microbiota of animals which are themselves arid-adapted. Here we aim to review the interactions between arid environments and the microbial communities which inhabit them, covering hot and cold deserts, the challenges these environments pose and some issues arising from limitations in the field. We also consider the work carried out on arid-adapted animal microbiotas, to investigate if any shared patterns or trends exist, whether between organisms or between the animals and the wider arid environment microbial communities. We determine if there are any patterns across studies potentially demonstrating a general impact of aridity on animal-associated microbiomes or benefits from aridity-adapted microbiomes for animals. In the context of increasing desertification and climate change it is important to understand the connections between the three pillars of microbiome, host genome and environment.
Collapse
Affiliation(s)
- Peter Osborne
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK.
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany
| | | | - David Thybert
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| |
Collapse
|
11
|
Wang Y, Huang Q, Liu C, Ding Y, Liu L, Tian Y, Wu X, Li H, Awasthi MK, Zhao Z. Mulching practices alter soil microbial functional diversity and benefit to soil quality in orchards on the Loess Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110985. [PMID: 32579532 DOI: 10.1016/j.jenvman.2020.110985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
To improve our understanding about the responses of microbial functional diversity to different mulching practices, this study used a metagenomic approach to reveal soil microbial functional specificity under four tillage regimes: conventional tillage (CT), organic mulch practices with ryegrass (Lolium perenne L.) intercropping cover (RE) and cornstalk mulch (CS), and inorganic mulching with black ground fabric (BF) in a 7-year field experiment in an apple orchard of the Loess Plateau in China. Enzyme activity and soil physicochemical properties were measured. A redundancy analysis showed that the RE and CS treatments had positive effects on soil nutrient and enzyme activity compared to that of the BF and CT treatments. The CS and RE treatments increased β-glucosidase, cellobiohydrolase, and β-xylosidase activities. In addition, the CS treatment significantly enhanced the β-N-acetylglucosaminidase and urease activities compared to that under CT treatment. However, the activity of these enzyme was reduced in the BF treatment compared with that of the CT treatment. The results also indicated that the enzymes activities were not completely consistent with the changing trends of the genes encoding these enzymes. In addition, the RE and CS treatments also increased the abundance of genes encoding carbohydrate enzymes. It is interesting that the RE and CS treatments had more pathway genes associated with the carbon cycle, nitrogen cycle, and amino acid metabolism compared with the BF treatment. Remarkably, RE and CS treatments effectively increased the abundance of carbon fixation gene cbbL compared to CT treatment. In summary, organic mulching practices increased the soil microbiological functional diversity related to the carbon and nitrogen cycle, while inorganic mulching practice reduced them. This study enhanced our understanding of how mulching practices may alter soil microbial functional diversity and benefit soil quality.
Collapse
Affiliation(s)
- Yuanji Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianqian Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyuan Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Liu
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuli Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoping Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhengyang Zhao
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Linearized Siderophore Products Secreted via MacAB Efflux Pump Protect Salmonella enterica Serovar Typhimurium from Oxidative Stress. mBio 2020; 11:mBio.00528-20. [PMID: 32371597 PMCID: PMC7403778 DOI: 10.1128/mbio.00528-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nontyphoidal Salmonella bacteria induce a classic inflammatory diarrhea by eliciting a large influx of neutrophils, producing a robust oxidative burst. Despite substantial progress understanding the benefits to the host of the inflammatory response to Salmonella, little is known regarding how Salmonella can simultaneously resist the damaging effects of the oxidative burst. The multidrug efflux pump MacAB is important for survival of oxidative stress both in vitro and during infection. We describe a new pathway used by Salmonella Typhimurium to detoxify extracellular reactive oxygen species using a multidrug efflux pump (MacAB) to secrete a linear siderophore, a metabolite of enterobactin. The natural substrates of many multidrug efflux pumps are unknown, and functional roles of the linear metabolites of enterobactin are unknown. We bring two novel discoveries together to highlight an important mechanism used by Salmonella to survive under the oxidative stress conditions that this organism encounters during the classic inflammatory diarrhea that it also induces. Nontyphoidal salmonellae (NTS) are exposed to reactive oxygen species (ROS) during their residency in the gut. To survive oxidative stress encountered during infection, salmonellae employ several mechanisms. One of these mechanisms involves the multidrug efflux pump MacAB, although the natural substrate of this pump has not been identified. MacAB homologs in pseudomonads secrete products of nonribosomal peptide synthesis (NRPS). In Salmonella enterica serovar Typhimurium, the siderophore enterobactin is produced by NRPS in response to iron starvation and this molecule can be processed into salmochelin and several linear metabolites. We found that Salmonella mutants lacking the key NRPS enzyme EntF are sensitive to peroxide mediated killing and cannot detoxify extracellular H2O2. Moreover, EntF and MacAB function in a common pathway to promote survival of Salmonella during oxidative stress. We further demonstrated that S. Typhimurium secretes siderophores in iron-rich media when peroxide is present and that these MacAB-secreted metabolites participate in protection of bacteria against H2O2. We showed that secretion of anti-H2O2 molecules is independent of the presence of the known siderophore efflux pumps EntS and IroC, well-described efflux systems involved in secretion of enterobactin and salmochelin. Both salmochelin and enterobactin are dispensable for S. Typhimurium protection against ROS; however, linear metabolites of enterobactin produced by esterases IroE and Fes are needed for bacterial survival in peroxide-containing media. We determined that linearized enterobactin trimer protects S. Typhimurium against peroxide-mediated killing in a MacAB-dependent fashion. Thus, we suggest that linearized enterobactin trimer is a natural substrate of MacAB and that its purpose is to detoxify extracellular reactive oxygen species.
Collapse
|
13
|
Functional Traits Co-Occurring with Mobile Genetic Elements in the Microbiome of the Atacama Desert. DIVERSITY 2019. [DOI: 10.3390/d11110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mobile genetic elements (MGEs) play an essential role in bacterial adaptation and evolution. These elements are enriched within bacterial communities from extreme environments. However, very little is known if specific genes co-occur with MGEs in extreme environments and, if so, what their function is. We used shotgun-sequencing to analyse the metagenomes of 12 soil samples and characterized the composition of MGEs and the genes co-occurring with them. The samples ranged from less arid coastal sites to the inland hyperarid core of the Atacama Desert, as well as from sediments below boulders, protected from UV-irradiation. MGEs were enriched at the hyperarid sites compared with sediments from below boulders and less arid sites. MGEs were mostly co-occurring with genes belonging to the Cluster Orthologous Group (COG) categories “replication, recombination and repair,” “transcription” and “signal transduction mechanisms.” In general, genes coding for transcriptional regulators and histidine kinases were the most abundant genes proximal to MGEs. Genes involved in energy production were significantly enriched close to MGEs at the hyperarid sites. For example, dehydrogenases, reductases, hydrolases and chlorite dismutase and other enzymes linked to nitrogen metabolism such as nitrite- and nitro-reductase. Stress response genes, including genes involved in antimicrobial and heavy metal resistance genes, were rarely found near MGEs. The present study suggests that MGEs could play an essential role in the adaptation of the soil microbiome in hyperarid desert soils by the modulation of housekeeping genes such as those involved in energy production.
Collapse
|
14
|
Soil bacterial communities in the Brazilian Cerrado: Response to vegetation type and management. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2019. [DOI: 10.1016/j.actao.2019.103463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS. The global soil community and its influence on biogeochemistry. Science 2019; 365:365/6455/eaav0550. [DOI: 10.1126/science.aav0550] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
Soil organisms represent the most biologically diverse community on land and govern the turnover of the largest organic matter pool in the terrestrial biosphere. The highly complex nature of these communities at local scales has traditionally obscured efforts to identify unifying patterns in global soil biodiversity and biogeochemistry. As a result, environmental covariates have generally been used as a proxy to represent the variation in soil community activity in global biogeochemical models. Yet over the past decade, broad-scale studies have begun to see past this local heterogeneity to identify unifying patterns in the biomass, diversity, and composition of certain soil groups across the globe. These unifying patterns provide new insights into the fundamental distribution and dynamics of organic matter on land.
Collapse
|
16
|
Fernández-Martínez MÁ, dos Santos Severino R, Moreno-Paz M, Gallardo-Carreño I, Blanco Y, Warren-Rhodes K, García-Villadangos M, Ruiz-Bermejo M, Barberán A, Wettergreen D, Cabrol N, Parro V. Prokaryotic Community Structure and Metabolisms in Shallow Subsurface of Atacama Desert Playas and Alluvial Fans After Heavy Rains: Repairing and Preparing for Next Dry Period. Front Microbiol 2019; 10:1641. [PMID: 31396176 PMCID: PMC6668633 DOI: 10.3389/fmicb.2019.01641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
The Atacama Desert, the oldest and driest desert on Earth, displays significant rains only once per decade. To investigate how microbial communities take advantage of these sporadic wet events, we carried out a geomicrobiological study a few days after a heavy rain event in 2015. Different physicochemical and microbial community analyses were conducted on samples collected from playas and an alluvial fan from surface, 10, 20, 50, and 80 cm depth. Gravimetric moisture content peaks were measured in 10 and 20 cm depth samples (from 1.65 to 4.1% w/w maximum values) while, in general, main anions such as chloride, nitrate, and sulfate concentrations increased with depth, with maximum values of 13-1,125; 168-10,109; and 9,904-30,952 ppm, respectively. Small organic anions such as formate and acetate had maximum concentrations from 2.61 to 3.44 ppm and 6.73 to 28.75 ppm, respectively. Microbial diversity inferred from DNA analysis showed Actinobacteria and Alphaproteobacteria as the most abundant and widespread bacterial taxa among the samples, followed by Chloroflexi and Firmicutes at specific sites. Archaea were mainly dominated by Nitrososphaerales, Methanobacteria, with the detection of other groups such as Halobacteria. Metaproteomics showed a high and even distribution of proteins involved in primary metabolic processes such as energy production and biosynthetic pathways, and a limited but remarkable presence of proteins related to resistance to environmental stressors such as radiation, oxidation, or desiccation. The results indicated that extra humidity in the system allows the microbial community to repair, and prepare for the upcoming hyperarid period. Additionally, it supplies biomarkers to the medium whose preservation potential could be high under strong desiccation conditions and relevant for planetary exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Kimberley Warren-Rhodes
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
- NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
| | | | | | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, United States
| | - David Wettergreen
- Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, United States
| | - Nathalie Cabrol
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
- NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
| | - Víctor Parro
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
| |
Collapse
|
17
|
Wei Z, Wu Y, Feng K, Yang M, Zhang Y, Tu Q, Wang J, Deng Y. ARGA, a pipeline for primer evaluation on antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2019; 128:137-145. [PMID: 31054477 DOI: 10.1016/j.envint.2019.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Molecular biology techniques have assisted in the investigation of antibiotic resistance genes (ARGs) from various environments. However, their accuracy relies on primer quality and data interpretation, both of which require a full-coverage sequence database for ARGs. Here, based upon the abandoned Antibiotic Resistance Genes Database (ARDB), we created an updated sequence database of antibiotic resistance genes (SDARG). A total of 1,260,069 protein sequences and 1,164,479 nucleotide sequences, 56 times more sequences than ARDB, from 448 types of ARGs (enabling resistance to 18 categories of antibiotics) were collected and integrated with different hierarchical credibility and full-scale taxonomic information. Based on this comprehensive sequence database, an online pipeline - ARG analyzer (ARGA, http://mem.rcees.ac.cn:8083/) was developed to assess current ARGs primers, as well as annotate ARGs from environmental metagenomes. Thereafter, a list of 658 published primer pairs, targeting 173 ARGs, was evaluated using ARGA and integrated in ARGA as ARGs primer database. The results showed that 65.05% primers are of high specificity (≥90%), while only 29.79% primers cover >50% of targeted sequences, indicating a divergence in the quality of current ARG primers. Hence, primer assessment or redesign is highly recommended to improve the accuracy of ARGs studies. ARGs primer database was attached in ARGA to provide researchers alternatives to better survey ARGs in the environment.
Collapse
Affiliation(s)
- Ziyan Wei
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueni Wu
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Ye Deng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Ballard ZS, Brown C, Ozcan A. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS NANO 2018; 12:3065-3082. [PMID: 29553706 DOI: 10.1021/acsnano.7b08660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.
Collapse
|
19
|
Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of 'historical' antibiotic resistance genes in remote pristine Antarctic soils. MICROBIOME 2018; 6:40. [PMID: 29471872 PMCID: PMC5824556 DOI: 10.1186/s40168-018-0424-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/11/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Soil bacteria naturally produce antibiotics as a competitive mechanism, with a concomitant evolution, and exchange by horizontal gene transfer, of a range of antibiotic resistance mechanisms. Surveys of bacterial resistance elements in edaphic systems have originated primarily from human-impacted environments, with relatively little information from remote and pristine environments, where the resistome may comprise the ancestral gene diversity. METHODS We used shotgun metagenomics to assess antibiotic resistance gene (ARG) distribution in 17 pristine and remote Antarctic surface soils within the undisturbed Mackay Glacier region. We also interrogated the phylogenetic placement of ARGs compared to environmental ARG sequences and tested for the presence of horizontal gene transfer elements flanking ARGs. RESULTS In total, 177 naturally occurring ARGs were identified, most of which encoded single or multi-drug efflux pumps. Resistance mechanisms for the inactivation of aminoglycosides, chloramphenicol and β-lactam antibiotics were also common. Gram-negative bacteria harboured most ARGs (71%), with fewer genes from Gram-positive Actinobacteria and Bacilli (Firmicutes) (9%), reflecting the taxonomic composition of the soils. Strikingly, the abundance of ARGs per sample had a strong, negative correlation with species richness (r = - 0.49, P < 0.05). This result, coupled with a lack of mobile genetic elements flanking ARGs, suggests that these genes are ancient acquisitions of horizontal transfer events. CONCLUSIONS ARGs in these remote and uncontaminated soils most likely represent functional efficient historical genes that have since been vertically inherited over generations. The historical ARGs in these pristine environments carry a strong phylogenetic signal and form a monophyletic group relative to ARGs from other similar environments.
Collapse
Affiliation(s)
- Marc W Van Goethem
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Natural Sciences Building 2, Lynnwood Road, Pretoria, 0028, South Africa
| | - Rian Pierneef
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Oliver K I Bezuidt
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Natural Sciences Building 2, Lynnwood Road, Pretoria, 0028, South Africa
| | - Yves Van De Peer
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Natural Sciences Building 2, Lynnwood Road, Pretoria, 0028, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Natural Sciences Building 2, Lynnwood Road, Pretoria, 0028, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Natural Sciences Building 2, Lynnwood Road, Pretoria, 0028, South Africa.
| |
Collapse
|
20
|
Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models. Genes (Basel) 2018; 9:genes9020104. [PMID: 29462950 PMCID: PMC5852600 DOI: 10.3390/genes9020104] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Death investigations often include an effort to establish the postmortem interval (PMI) in cases in which the time of death is uncertain. The postmortem interval can lead to the identification of the deceased and the validation of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an accurate clock that starts at death and relies on ecological change in the microbial communities that normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust Random Forest regression models for prediction of PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head), gene markers (16S ribosomal RNA (rRNA), 18S rRNA, internal transcribed spacer regions (ITS)), and taxonomic levels (sequence variants, species, genus, etc.). We also tested whether particular suites of indicator microbes were informative across different datasets. Generally, results indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using the 16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy and may be candidate indicators of PMI.
Collapse
|