1
|
Perez-Bou L, Muñoz-Palazon B, Gonzalez-Lopez J, Gonzalez-Martinez A, Correa-Galeote D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. MICROBIAL ECOLOGY 2023; 87:14. [PMID: 38091083 DOI: 10.1007/s00248-023-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Havana, Cuba
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
| | - Barbara Muñoz-Palazon
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alejandro Gonzalez-Martinez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David Correa-Galeote
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain.
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
2
|
Manav-Demir N. Model-based fractionation of biomass in a biological nutrient removal system and its effect on the removal efficiencies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:123-132. [PMID: 37159727 PMCID: PMC10163197 DOI: 10.1007/s40201-022-00845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/17/2022] [Accepted: 11/27/2022] [Indexed: 05/11/2023]
Abstract
Fractionation of active biomass in a five-stage Bardenpho process was accomplished using an MS Excel wastewater treatment plant modeling tool based on Activated Sludge Model No. 3 extended with a bio-P module. The biomass fractions within the treatment system were predicted as autotrophs, ordinary heterotrophs, and phosphorus accumulating organisms (PAOs). Several simulations were performed in a Bardenpho process using various C/N/P ratios in primary effluent. Biomass fractionation was obtained from steady-state simulation results. The results suggest that the mass percentage of autotrophs, heterotrophs, and PAOs in active biomass range from 1.7 to 7.8%, 5.7-69.0%, and 23.2-92.6%, respectively, depending on characteristics of primary effluent. Results of principal component analysis showed that TKN/COD ratio in primary effluent determines the population of autotrophs and ordinary heterotrophs whereas PAO population is mainly a function of TP/COD ratio.
Collapse
Affiliation(s)
- Neslihan Manav-Demir
- Yildiz Technical University, Davutpasa Campus, Environmental Engineering Department, 34220 Esenler, Istanbul Turkey
| |
Collapse
|
3
|
Rosa-Masegosa A, Perez-Bou L, Muñoz-Palazon B, Monteoliva-García A, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Effects of sulphur amino acids on the size and structure of microbial communities of aerobic granular sludge bioreactors. Amino Acids 2022; 54:1403-1419. [PMID: 35612670 PMCID: PMC9637606 DOI: 10.1007/s00726-022-03168-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022]
Abstract
Granular activated sludge has been described as a promising tool in treating wastewater. However, the effect of high concentrations of sulphur amino acids, cysteine and methionine, in the evolution, development and stability of AGS-SBRs (aerobic granular sludge in sequential batch reactors) and their microbial communities is not well-established. Therefore, this study aimed to evaluate microbial communities' size, structure and dynamics in two AGS-SBRs fed with two different concentrations of amino acids (50 and 100 mg L−1 of both amino acids). In addition, the impact of the higher level of amino acids was also determined under an acclimatization or shock strategy. While N removal efficiency decreased with amino acids, the removal of the organic matter was generally satisfactory. Moreover, the abrupt presence of both amino acids reduced even further the removal performance of N, whereas under progressive adaptation, the removal yield was higher. Besides, excellent removal rates of cysteine and methionine elimination were found, in all stages below 80% of the influent values. Generally considered, the addition of amino acids weakly impacts the microbial communities' total abundances. On the contrary, the presence of amino acids sharply modulated the dominant bacterial structures. Furthermore, the highest amino acid concentration under the shock strategy resulted in a severe change in the structure of the microbial community. Acidovorax, Flavobacterium, Methylophilus, Stenotrophomonas and Thauera stood out as the prominent bacteria to cope with the high presence of cysteine and methionine. Hence, the AGS-SBR technology is valuable for treating influents enriched in sulphur Aa inclusively when a shock strategy was used.
Collapse
Affiliation(s)
- Aurora Rosa-Masegosa
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain.,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain
| | - Lizandra Perez-Bou
- Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain.,Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Habana, Habana, Cuba
| | - Barbara Muñoz-Palazon
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain. .,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain.
| | | | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain.,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain.,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain. .,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain.
| |
Collapse
|
4
|
Tian M, Wang H, Li X, Li D, Zhou Z, Li B. Efficiency of hybrid systems enhanced with different sludge ratios in improving resistance to short-term low temperatures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113398. [PMID: 34346393 DOI: 10.1016/j.jenvman.2021.113398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Complete autotrophic nitrogen removal over nitrite (CANON) is used in wastewater treatment. However, the performance of the CANON system significantly decreases at low temperatures; thus, a new strategy to improve the resistance of the CANON system is required. To investigate the impact of sludge ratio control (high-granule, equivalent, and high-floc systems) on the resistance of CANON to low temperatures, and their recovery after restoring to normal temperature, the nitrogen removal performance of hybrid systems with different ratios was evaluated. The equivalent system had the lowest nitrite accumulation rate and highest nitrogen removal rate. Anaerobic ammonia oxidation was the rate-limiting step of each system, and hzs was the rate-limiting gene. The higher anaerobic ammonium oxidizing bacteria (AAOB) abundance and hzs expression levels resulted in an equivalent system with better resistance and recovery to short-term low temperatures at the gene level.
Collapse
Affiliation(s)
- Mengyuan Tian
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Heng Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Dongqing Li
- Department of Microbiology, Wuhan University School of Basic Medical of Science, Wuhan, Hubei, 430000, China
| | - Zhi Zhou
- Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, United States
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
| |
Collapse
|
5
|
Cao J, Zhu Q, Zhang T, Wu Y, Zhang Q, Fu B, Fang F, Feng Q, Luo J. Distribution patterns of microbial community and functional characteristics in full-scale wastewater treatment plants: Focusing on the influent types. CHEMOSPHERE 2021; 281:130899. [PMID: 34289605 DOI: 10.1016/j.chemosphere.2021.130899] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
The impacts of the influent type in wastewater treatment plants (WWTPs) on the distribution patterns of the microbial community and functional characteristics were investigated. The obtained results indicated that the influent types exhibited evident influences on the microbial distribution patterns. The diversity and richness of functional microbes in HI-WWTP (with a ratio of >30% industrial wastewater in influents) were evidently decreased compared with those in HM- (with 70-90% municipal wastewater in influents) and M-WWTPs (with >90% municipal wastewater in influents). The core functional bacteria included denitrifiers, anaerobic fermentation bacteria (AFB), organic degrading bacteria (ODB), phosphorus accumulating organisms (PAO) and nitrite oxidizing bacteria (NOB), but they exhibited distinct abundances in WWTPs receiving different categories of wastewater. The denitrifiers in HI-WWTPs was 15.6-32.5% higher than that in other WWTPs, while PAOs had higher abundances in M - and HI-WWTPs (28.9% and 39.3%, respectively) compared with HM-WWTPs. Clear co-occurrence relationships were found among the main functional microbes with similar metabolic characteristics. Moreover, information on functional genes related to carbon, nitrogen and phosphorus metabolism, which is closely associated with pollutant removal efficiency, was obtained. M-WWTPs had higher abundances of genetic expressions for organic matters degradation (i.e. amino acid (10.42%) and carbohydrate (9.86%) metabolisms). Nar, Nir and Nor showed lowest abundances in HM-WWTPs, causing the low nitrogen removal (63.04-65.79%). However, influent type had little effect on genetic expression related with phosphorus removal. This work provided new insights into the interrelationship among bacterial co-occurrence, microbial activity and pollutant removal in WWTPs with different influent types.
Collapse
Affiliation(s)
- Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Qirong Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Boming Fu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
6
|
de Celis M, Belda I, Ortiz-Álvarez R, Arregui L, Marquina D, Serrano S, Santos A. Tuning up microbiome analysis to monitor WWTPs' biological reactors functioning. Sci Rep 2020; 10:4079. [PMID: 32139809 PMCID: PMC7057949 DOI: 10.1038/s41598-020-61092-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are necessary to protect ecosystems quality and human health. Their function relies on the degradation of organic matter and nutrients from a water influent, prior to the effluent release into the environment. In this work we studied the bacterial community dynamics of a municipal WWTP with a membrane bioreactor through 16S rRNA gene sequencing. The main phyla identified in the wastewater were Proteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Actinobacteria. The WWTP is located in Spain and, like other studied WWTP in temperate climate zones, the temperature played a major role in community assembly. Seasonal community succession is observed along the two years sampling period, in addition to a continual annual drift in the microbial populations. The core community of the WWTP bioreactor was also studied, where a small fraction of sequence variants constituted a large fraction of the total abundance. This core microbiome stability along the sampling period and the likewise dissimilarity patterns along the temperature gradient makes this feature a good candidate for a new process control in WWTPs.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ignacio Belda
- Department of Biology, Geology, Physics and Inorganic Chemistry - Area of Biodiversity and Conservation, Rey Juan Carlos University, 28933, Móstoles, Spain
| | - Rüdiger Ortiz-Álvarez
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB - CSIC), 17300, Blanes, Catalonia, Spain
| | - Lucía Arregui
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Susana Serrano
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|