1
|
Wu J, Chen Y, Xu X, Ren W, Zhang X, Cai X, Huang A, Zeng Y, Long H, Xie Z. Screening of bioflocculant and cellulase-producing bacteria strains for biofloc culture systems with fiber-rich carbon source. Front Microbiol 2022; 13:969664. [PMID: 36504821 PMCID: PMC9729547 DOI: 10.3389/fmicb.2022.969664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The biofloc technology (BFT) system has been widely applied in the shrimp and fish culture industry for its advantages in water-saving, growth improvement, and water quality purification. However, The BFT system usually takes a long time to establish, and the extra carbon source input increases the maintenance cost of the system. In this study, we aimed to develop a low-cost and high-efficient BFT system for Litopenaeus vannamei by applying bacteria that could promote the formation of BFT and utilize cheap carbon sources. Three bioflocculant-producing bacteria strains (M13, M15, and M17) have been screened from a cellulolytic strain collection. All three strains have been identified as Bacillus spp. and can use sugarcane bagasse (SB) as a carbon source, which is a cheap byproduct of the sucrose industry in the tropic area of China. Compared to sucrose, the addition of SB and the three strains could improve the biofloc formation rate, biofloc size distribution, ammonia removal rate, and the growth performance of the shrimps. These results suggest that the bioflocculant and cellulase-producing bacteria strains could promote the biofloc formation and the growth of shrimps by using SB as an economic substitute carbon source in the BFT shrimp culture system.
Collapse
Affiliation(s)
- Jinping Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Yifeng Chen
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Xueni Xu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Wei Ren
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Xiang Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Xiaoni Cai
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Aiyou Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Yanhua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China,*Correspondence: Hao Long, ; Zhenyu Xie,
| | - Zhenyu Xie
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China,*Correspondence: Hao Long, ; Zhenyu Xie,
| |
Collapse
|
2
|
Xu W, Wen G, Su H, Xu Y, Hu X, Cao Y. Effect of Input C/N Ratio on Bacterial Community of Water Biofloc and Shrimp Gut in a Commercial Zero-Exchange System with Intensive Production of Penaeus vannamei. Microorganisms 2022; 10:microorganisms10051060. [PMID: 35630503 PMCID: PMC9146922 DOI: 10.3390/microorganisms10051060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Although increasing attention has been attracted to the study and application of biofloc technology (BFT) in aquaculture, few details have been reported about the bacterial community of biofloc and its manipulation strategy for commercial shrimp production. An 8-week trial was conducted to investigate the effects of three input C/N ratios (8:1, 12:1 and 16:1) on the bacterial community of water biofloc and shrimp gut in a commercial BFT tank system with intensive aquaculture of P. vannamei. Each C/N ratio group had three randomly assigned replicate tanks (culture water volume of 30 m3), and each tank was stocked with juvenile shrimp at a density of 300 shrimp m−3. The tank systems were operated with zero-water exchange, pH maintenance and biofloc control. During the trial, the microbial biomass and bacterial density of water biofloc showed similar variation trends, with no significant difference under respective biofloc control measures for the three C/N ratio groups. Significant changes were found in the alpha diversity, composition and relative abundance of bacterial communities across the stages of the trial, and they showed differences in water biofloc and shrimp gut among the three C/N ratio groups. Meanwhile, high similarity could be found in the composition of the bacterial community between water biofloc and shrimp gut. Additionally, nitrogen dynamics in culture water showed some differences while shrimp performance showed no significant difference among the three C/N ratio groups. Together, these results confirm that the manipulation of input C/N ratio could affect the bacterial community of both water biofloc and shrimp gut in the environment of a commercial BFT system with intensive production of P. vannamei. Moreover, there should be different operations for the nitrogen dynamics and biofloc management during shrimp production process under different C/N ratios.
Collapse
Affiliation(s)
- Wujie Xu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Guoliang Wen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Haochang Su
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Yu Xu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Xiaojuan Hu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Yucheng Cao
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Correspondence: ; Tel.: +86-20-34063050
| |
Collapse
|
3
|
Huang L, Guo H, Liu Z, Chen C, Wang K, Huang X, Chen W, Zhu Y, Yan M, Zhang D. Contrasting patterns of bacterial communities in the rearing water and gut of Penaeus vannamei in response to exogenous glucose addition. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:222-236. [PMID: 37073217 PMCID: PMC10077327 DOI: 10.1007/s42995-021-00124-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/18/2021] [Indexed: 05/03/2023]
Abstract
Supplementing exogenous carbon sources is a practical approach to improving shrimp health by manipulating the microbial communities of aquaculture systems. However, little is known about the microbiological processes and mechanisms of these systems. Here, the effects of glucose addition on shrimp growth performance and bacterial communities of the rearing water and the shrimp gut were investigated to address this knowledge gap. The results showed that glucose addition significantly improved the growth and survival of shrimp. Although the α-diversity indices of both bacterioplankton communities and gut microbiota were significantly decreased by adding glucose, both bacterial communities exhibited divergent response patterns to glucose addition. Glucose addition induced a dispersive bacterioplankton community but a more stable gut bacterial community. Bacterial taxa belonging to Ruegeria were significantly enriched by glucose in the guts, especially the operational taxonomic unit 2575 (OTU2575), which showed the highest relative importance to the survival rate and individual weight of shrimp, with the values of 43.8 and 40.6%, respectively. In addition, glucose addition increased the complexity of interspecies interactions within gut bacterial communities and the network nodes from Rhodobacteraceae accounted for higher proportions and linked more with the nodes from other taxa in the glucose addition group than that in control. These findings suggest that glucose addition may provide a more stable gut microbiota for shrimp by increasing the abundance of certain bacterial taxa, such as Ruegeria. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00124-9.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001 China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Zidan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Chen Chen
- Zhejiang Mariculture Research Institute, Wenzhou, 325005 China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Xiaolin Huang
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Zhejiang Mariculture Research Institute, Wenzhou, 325005 China
| | - Wei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Yueyue Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Mengchen Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| |
Collapse
|
4
|
Guo H, Dong P, Gao F, Huang L, Wang S, Wang R, Yan M, Zhang D. Sucrose addition directionally enhances bacterial community convergence and network stability of the shrimp culture system. NPJ Biofilms Microbiomes 2022; 8:22. [PMID: 35410335 PMCID: PMC9001642 DOI: 10.1038/s41522-022-00288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Sucrose is an effective carbon source for creating more reliable and environmentally friendly conditions for shrimp growth by regulating bacteria in biofloc-based culture systems. However, the influence of sucrose addition on the interaction, co-occurrence networks, and assembly mechanisms of bacterial communities in biofloc-based culture systems remains largely unknown. Here, we comprehensively investigated the effects of sucrose addition on bacterial communities in three habitats (water, bioflocs, and gut). The bacterial community structures and compositions of these three habitats became more similar in groups with sucrose addition, compared with those in controls. More than 50% gut bacterial communities were mainly derived from water and biofloc communities in the sucrose addition groups, but only about 33% bacterial communities migrated from water and biofloc to the gut in the control culture system. Sucrose addition accordantly enriched core taxa belonging to the phylum Actinobacteria and the families Rhodobacteraceae and Flavobacteriaceae in water, biofloc, and gut habitats. These core taxa were important for maintaining bacterial network stability in the sucrose addition culture systems and some were identified as keystone taxa for improving shrimp growth. Furthermore, after sucrose addition, gut bacterial community assembly from water and biofloc was dominated by the heterogeneous select with the ratios of 55-91% and 67-83%, respectively, indicating that sucrose addition can directionally shape the bacterial assembly of the shrimp culture system. These results provide a basis for selectively regulating certain beneficial taxa to improve shrimp growth in culture systems.
Collapse
Affiliation(s)
- Haipeng Guo
- State key laboratory for managing biotic and chemical threats to the quality and safety of agro-products, Ningbo University, Ningbo, 315211, China.
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Pengsheng Dong
- State key laboratory for managing biotic and chemical threats to the quality and safety of agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Fan Gao
- State key laboratory for managing biotic and chemical threats to the quality and safety of agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lei Huang
- State key laboratory for managing biotic and chemical threats to the quality and safety of agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Sipeng Wang
- State key laboratory for managing biotic and chemical threats to the quality and safety of agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ruoyu Wang
- State key laboratory for managing biotic and chemical threats to the quality and safety of agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Mengchen Yan
- State key laboratory for managing biotic and chemical threats to the quality and safety of agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- State key laboratory for managing biotic and chemical threats to the quality and safety of agro-products, Ningbo University, Ningbo, 315211, China.
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Guo H, Huang L, Hu S, Chen C, Huang X, Liu W, Wang S, Zhu Y, Zhao Y, Zhang D. Effects of Carbon/Nitrogen Ratio on Growth, Intestinal Microbiota and Metabolome of Shrimp ( Litopenaeus vannamei). Front Microbiol 2020; 11:652. [PMID: 32351483 PMCID: PMC7176362 DOI: 10.3389/fmicb.2020.00652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/22/2020] [Indexed: 11/20/2022] Open
Abstract
Increasing the C/N ratio of input feed has been reported as a practical approach for improving water quality and enhancing shrimp growth through changing the bacterial community of rearing water. However, little is known about the effects of different C/N ratios of feed input on the intestinal microbiota and metabolome of shrimp. In the present study, the effects of three different C/N ratio levels (CN6, CN10, and CN15) maintained by adding sucrose on the growth, intestinal microbiota and metabolome of Litopenaeus vannamei, and bioflocs formation were investigated after 17 days of feeding. The results indicated that higher C/N ratio (10 and 15), especially CN15, of feed input significantly enhance the length and weight of shrimp individuals accompanied by a significant accumulation of bioflocs, compared to that of CN6. The increase of C/N ratio input decreased the α-diversity of the intestinal microbiota and changed the microbial community structure through increasing the relative abundance of Actinobacteria, Rhodobacteraceae (mainly consist of Roseobacter and Paracoccus groups), Alteromonadaceae, and inhibiting the growth of Cyanobacteria, certain Rhodobacteraceae, Mycoplasmataceae and Vibrio. The change of microbial community caused by increasing C/N ratio input was closely associated with various bioactive metabolites of flavonoids, benzenoids, prenol lipids, and indole derivatives, which are benefit for shrimp growth either as an antimicrobial agent or as a nutrient component. Overall, this study demonstrated that manipulating high C/N ratio of feed input helps to the growth of shrimp through increasing the relative abundance of potential beneficial bacteria and the accumulation of various bioactive metabolites to suppress the growth of detrimental bacteria.
Collapse
Affiliation(s)
- Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lei Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Songtao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chen Chen
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Xiaolin Huang
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Wei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Sipeng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yueyue Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yueji Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Liu G, Deng Y, Verdegem M, Ye Z, Zhu S. Using poly(β-hydroxybutyrate-β-hydroxyvalerate) as carbon source in biofloc-systems: Nitrogen dynamics and shift of Oreochromis niloticus gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133664. [PMID: 31398646 DOI: 10.1016/j.scitotenv.2019.133664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/26/2019] [Accepted: 07/28/2019] [Indexed: 05/20/2023]
Abstract
Inorganic‑nitrogen removal is essential for the sustainable operation of aquaculture industry and also influences the health of aquatic animals, which may be accomplished by utilizing biofloc technology. In this paper, we studied the use of three different carbon sources 1) longan seed powder (LP), 2) Poly(β-hydroxybutyrate-β-hydroxyvalerate) (PHBV) and 3) synthesized PHBV and LP (PHBVL) in biofloc systems for 90days to investigate the nitrogen dynamics and gut microbiota of Nile tilapia (Oreochromis niloticus). The PHBVL and PHBV groups had higher total inorganic‑nitrogen removal efficiencies (70.99±19.45% and 63.54±19.44%) than the LP group (35.02±11.21%), which had an accumulation of nitrate. Meanwhile, the biofloc in PHBVL and PHBV group generally had a higher amino acid composition, particularly for methionine and lysine, but was not reflected in the tilapia muscle. High-throughput sequencing indicated that the different carbohydrates shaped different bacterial community compositions in the fish gut after exposure in the three environments for 90-day. These differences, which resulted in different gut digestive enzyme activities (amylase, lipase and trypsin), and growth performance, which the food conversion ratio in the PHBVL group was lower than LP and PHBV group, the final body weight in PHBVL group was average 4.33% and 3.65% bigger than in LP and PHBV group. Network analysis revealed that the keystone taxa (90.33%) were Proteobacteria, Chloroflexi, Actinobacteria, Planctomycetes, Verrucomicrobia and Bacteroidetes, which relative abundance varied in the fish gut in the three groups. The experiment verified the feasibility and advantage to use biodegradable polymers (BDPs) as carbohydrates for biofloc systems.
Collapse
Affiliation(s)
- Gang Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Yale Deng
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Marc Verdegem
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Zhangying Ye
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Songming Zhu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
7
|
Sobhi M, Guo J, Cui X, Sun H, Li B, Aboagye D, Shah GM, Dong R. A promising strategy for nutrient recovery using heterotrophic indigenous microflora from liquid biogas digestate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:492-501. [PMID: 31301490 DOI: 10.1016/j.scitotenv.2019.06.487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Nutrient overloading resulting from digestate (effluent of anaerobic digestion process) application has become a major bottleneck for the development of the biogas industry and raised environmental concerns in regions with intensive animal husbandry. Due to this, it is imperative to find low cost and effective alternative to export nutrient from digestate. Among the numerous applications, indigenous microflora has recently been utilized successfully as a biofloc technology in aquatic systems for controlling ammonia and subsequent reduction of feeding cost. Accordingly, performance of the indigenous microflora in undiluted liquid digestate of chicken manure was evaluated in this study to recover nutrients and produce high-value biomass under aerobic heterotrophic mode in batch shaking experiments. The results showed that 68% of phosphate was recovered and 97% of total nitrogen was removed from the liquid digestate. Additionally, >6 g L-1 of dry biomass was simultaneously produced and featured with up to 65% crude protein without pathogens, 10.9% lipids, 10.7% ash and 19.6 MJ kg-1 gross energy. Therefore, the produced biomass could be used either as an alternative sustainable source for animal or fish feeding or as a substrate for energy applications.
Collapse
Affiliation(s)
- Mostafa Sobhi
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| | - Xian Cui
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Hui Sun
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Bowen Li
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Dominic Aboagye
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; Yantai Institute, China Agricultural University, Yantai 264032, Shandong, PR China
| |
Collapse
|
8
|
Wang F, Wang H, Li S, Diao X. Effects of earthworms and effective microorganisms on the composting of sewage sludge with cassava dregs in the tropics. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:710-716. [PMID: 30513268 DOI: 10.1080/10962247.2018.1552215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
The present study revealed the role of earthworm-effective microorganisms (EM) in converting sewage sludge and cassava dregs into a valuable product. Sewage sludge was toxic to earthworm, therefore it was mixed with cassava dregs in 80:20 proportions (dry weight). Treatments included mixed substrate inoculated versus not inoculated with EM and treated with or without earthworms. The pH, total organic carbon, total nitrogen, and C:N ratio decreased from the initial measurements in the range of 17.43-18.46%, 25.48-33.82%, 19.60-25.37%, and 6.68-14.05% respectively; but electrical conductivity and available phosphorus increased in the range of 113.47-158.16% and 42.42-57.58%, respectively. In addition, they interactively increased total phosphorus from 19.84-63.01% and potassium from 16.41-50.78%, and decreased the polycyclic aromatic hydrocarbons content of substrate from 21.17% to 32.14% with an increase in earthworms from 51.71 to 57.69, respectively. Earthworms and EM could be used together as an efficient method for co-composting sewage sludge plus cassava dregs in the tropics. This could be expected to result in stabilization of waste, increase in nutrients, and reduction of pollutant content. Implications: The first reports of interaction of earthworms and effective microorganisms in the treatment of sewage sludge and cassava dregs in the tropics. Co-composting was an efficient technology for treating sewage sludge and cassava dregs at the same time, in the tropics. The survival rate of the earthworms both> 95%, the highest number of cocoons (640.33) and hatchlings (4694.33) both in EW+EM (Earthworms added and EM inoculated) treatment. Earthworms and EM (Only EM inoculated) interactively increased total phosphorus and potassium content, and decreased the PAH content of substrate with increase in earthworms.
Collapse
Affiliation(s)
- Fuqiang Wang
- a Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , People's Republic of China
- b Haikou Key Laboratory of Environment Toxicology , Haikou , People's Republic of China
| | - Haihua Wang
- a Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , People's Republic of China
- b Haikou Key Laboratory of Environment Toxicology , Haikou , People's Republic of China
| | - Sennan Li
- a Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , People's Republic of China
- b Haikou Key Laboratory of Environment Toxicology , Haikou , People's Republic of China
| | - Xiaoping Diao
- a Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , People's Republic of China
- b Haikou Key Laboratory of Environment Toxicology , Haikou , People's Republic of China
| |
Collapse
|