1
|
Ji X, Li J, Wang W, Li P, Wu H, Shen L, Su L, Jiang P, Li Y, Wu X, Tian Y, Liu Y, Yue H. Altered mammary gland development and pro-tumorigenic changes in young female mice following prenatal BPAF exposure. ENVIRONMENTAL RESEARCH 2025; 264:120371. [PMID: 39549911 DOI: 10.1016/j.envres.2024.120371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Bisphenol A (BPA) is being phased out owing to its endocrine-disrupting effects and is increasingly being replaced by its substitute compounds such as bisphenol AF (BPAF). This study aims to explore the potential adverse outcomes of prenatal BPAF exposure combined with postnatal cross-fostering on the development and long-term health effects of the mammary gland in offspring. The results suggested that prenatal BPAF exposure accelerates the puberty, and induces duct dilatations, angiogenesis, lobular hyperplasia, and enhanced inflammatory cell infiltration in the mammary gland of female offspring. Differentially expressed genes exhibiting time series patterns induced by BPAF exposure were enriched in biological processes related to mammary gland development, epithelial cell proliferation and so on. Notably, 13 breast cancer-related biomarkers including Pgr, Gata3, Egfr and Areg were screened, showing a time-dependent increase in expression. After human homologous gene transformation, TCGA analysis suggested that the human homologues of genes differentially expressed in BPAF-treated mice were associated with increased tumor stages in female patients with breast cancer. Furthermore, postnatal cross-fostering did not completely restore the adverse effects of prenatal BPAF exposure and even showed a reverse tendency. These results imply that prenatal BPAF exposure in utero and postnatally nursing by BPAF exposed dams, have long-term effects on the mammary glands health of female offspring.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China.
| | - Jiande Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Weiwei Wang
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Peilin Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Haoyang Wu
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Linzhuo Shen
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Lihong Su
- Department of Pathology, Shanxi Provincial People's Hospital, PR China
| | - Peiyun Jiang
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Yating Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yu Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
2
|
Wang C, Jiang Y, Shao Y, Chen Z, Liang J, Gao J, Fang F, Guo J. The disparities in health risks of multiple pollutants through soil and dietary exposure in a rural-urban area based on accessibility method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123194. [PMID: 39492138 DOI: 10.1016/j.jenvman.2024.123194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Rapid urbanization has resulted in disparities in environmental conditions for different communities in suburban area. This study presents a comprehensive investigation into the occurrence of pollutants in the soil and dietary food, and associated health risks in an urban-rural transitional area. The levels of potential toxic pollutants, notably metals, organophosphate esters (OPEs), and agrochemicals in surface soil and dietary food were evaluated. Higher levels of metals and OPEs were found in soils of industrial area, and agricultural soils had an elevated level of agrochemicals. The highest health risk was found for Chromium (Cr) which exceeded 1, indicating a high probability of adverse non-cancer effect to local residents. The levels of contaminants in food showed higher variability in community market and farmers' market than in supermarket, while higher levels of OPEs were found in food from supermarkets. The accessibility to fresh food mainly determined the differences in health risks of different communities. For dietary exposure, residents of industrial areas have higher levels of risk than other neighborhoods, mainly due to the possibility of exposure of foodstuffs with higher metal contents. In terms of market type, community markets mainly contributed to the comprehensive health risk through dietary exposure, especially for industrial and agricultural communities. The findings of this study provided further understanding of the spatial distribution of various contaminants as well as their health risks for different communities, which could guide the monitoring and management of potential toxic pollutants to safeguard public health in rural-urban transitional regions.
Collapse
Affiliation(s)
- Chenchen Wang
- Chongqing Key Laboratory of Agricultural Waste Resource Utilization, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China; College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yanxue Jiang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Ying Shao
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Zhongli Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Jialiang Liang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Junmin Gao
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Ucheana IA, Omeka ME, Ezugwu AL, Agbasi JC, Egbueri JC, Abugu HO, Aralu CC. A targeted review on occurrence, remediation, and risk assessments of bisphenol A in Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1193. [PMID: 39532752 DOI: 10.1007/s10661-024-13337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is a vital raw material used to manufacture various household and commercial goods. However, BPA is a contaminant of emerging concern (CEC) and an endocrine-disrupting chemical (EDC) capable of migrating and bio-accumulating in environmental and biological compartments. At threshold levels, they become toxic causing adverse health and environmental issues. BPA's occurrence in food, food contact materials (FCMs), beverages, water, cosmetics, consumer goods, soil, sediments, and human/biological fluids across Africa was outlined. Unlike most reviews, it further collated data on BPA remediation techniques, including the human and ecological risk assessment studies conducted across Africa. A systematic scrutiny of the major indexing databases was employed extracting relevant data for this study. Results reveal that only 10 out of 54 countries have researched BPA in Africa. BPA levels in water were the most investigated, whereas levels in cosmetics and consumer goods were the least studied. Maximum BPA concentrations found in Africa were 3,590,000 ng/g (cosmetic and consumer goods), 154,820,000 ng/g (soils), 189 ng/mL (water), 1139 ng/g (food), and 208.55 ng/mL (biological fluids). The optimum percentage removal/degradation of BPA was within 70-100%. The potential health and ecological risk levels were assessed by comparing them with recommended limits and were found to fall within safe/low risks to unsafe/high risks. In conclusion, this study revealed that there is still little research on BPA in Africa. Levels detected in some matrices call for increased research, stricter health and environmental regulations, and surveillance.
Collapse
Affiliation(s)
- Ifeanyi Adolphus Ucheana
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Central Science Laboratory, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Michael Ekuru Omeka
- Department of Geology, University of Calabar, Etagbor, 540271, Cross River State, Nigeria
| | - Arinze Longinus Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Johnson C Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Hillary Onyeka Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Chiedozie Chukwuemeka Aralu
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, 420007, Anambra State, Nigeria
| |
Collapse
|
4
|
Ahmad S, Akmal H, Shahzad K, Ahmad Khan MK, Jabeen F. Evaluating the Toxicity Induced by Bisphenol F in Labeo rohita Fish Using Multiple Biomarker Approach. SCIENTIFICA 2024; 2024:8646751. [PMID: 39555222 PMCID: PMC11567727 DOI: 10.1155/2024/8646751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 11/19/2024]
Abstract
Bisphenol F (BPF) is an emerging contaminant extensively used in the pharmaceutical, chemical, and food industries, exerting deleterious effects on human and wildlife health. Therefore, the current study was conducted to assess the toxicity induced by BPF in rohu Labeo rohita using multiple biomarkers such as oxidative stress, activity of antioxidant enzymes, biochemical parameters, histology, and genotoxicity. Fish were separated into four groups (T1-T4). Group T1 served as a control (0 μg/L), while Groups T2, T3, and T4 were exposed to BPF concentrations of 600 μg/L, 1200 μg/L, and 1800 μg/L, respectively, for 21 days. Results showed a significant (p < 0.05) increase in oxidative biomarkers (thiobarbituric acid reactive substance [TBARS] and reactive oxygen species [ROS]), while the concentration of antioxidant biomarkers (peroxidase [POD], superoxide dismutase [SOD], reduced glutathione [GSH], and catalase) was significantly (p < 0.05) decreased with the rising concentration of BPF in the liver, gills, and kidney of fish. Significant reduction (p < 0.05) in biochemical parameters was measured from collected whole blood, including red blood cells (RBCs), hemoglobin (HGB), mean corpuscular HGB (MCH), MC volume (MCV), hematocrit (HCT), MC HGB concentration (MCHC), platelets, low-density lipoprotein (LDL), cholesterol, high-density lipoprotein (HDL), total proteins, very LDL (VLDL), albumin and globulin, while white blood cells (WBCs), neutrophils, triglycerides, aspartate aminotransferase (AST), blood glucose, and alanine transaminase (ALT) levels were increased significantly (p < 0.05). Comet assay showed the DNA damage potential of BPF in erythrocytes. Histological examination showed that exposure to BPF causes several degenerative effects in the soft tissues (gills, liver, and kidney) of treated fish. It is concluded that BPF induces deleterious effects via disruptions in histological, genotoxic, and biochemical alterations in several organs of exposed fish.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Zoology, University of Okara, Okara 56130, Pakistan
| | - Hasnain Akmal
- Department of Zoology, University of Okara, Okara 56130, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara 56130, Pakistan
| | | | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad 37251, Pakistan
| |
Collapse
|
5
|
Ji Y, Tian Y, Pan Y, Sheng N, Dai H, Fan X, Liu X, Bai X, Dai J. Exposure and potential risks of thirteen endocrine- disrupting chemicals in pharmaceuticals and personal care products for breastfed infants in China. ENVIRONMENT INTERNATIONAL 2024; 192:109032. [PMID: 39317008 DOI: 10.1016/j.envint.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Ingestion of breast milk represents the primary exposure pathway for endocrine-disrupting chemicals (EDCs) in newborns. To elucidate the associated risks, it is essential to quantify EDC levels in both breast milk and infant urine. This study measured the concentrations of 13 EDCs, including parabens (methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), iso-propyl paraben, butyl paraben, and iso-butyl paraben), bisphenols (bisphenol A (BPA), bisphenol F, bisphenol S, bisphenol AF, and bisphenol Z), triclosan (TCS), and triclocarban, in breast milk and infant urine to assess their potential health effects and endocrine disruption risks. In total, 1 014 breast milk samples were collected from 20 cities across China, along with 144 breast milk samples and 134 urine samples from a mother-infant cohort in Hangzhou. The EDCs were detected using ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry. Endocrine-disrupting potency was evaluated using a predictive method based on EDC affinity for 15 hormone receptor proteins. The toxicological priority index (ToxPi), incorporating population exposure data, was employed to assess health risks associated with exposure to multiple EDCs. Among the 13 EDCs, MP, EP, PP, BPA, and TCS were detected in over 50 % of breast milk samples, with the highest median concentrations observed for MP (0.37 ng/mL), EP (0.29 ng/mL), and BPA (0.17 ng/mL). Across the 20 cities, 0 %-40 % of infants had a hazard index (HI) exceeding 1. Based on affinity prediction analysis and estimated exposure, cumulative endocrine disruption risk intensity was ranked as MP > TCS > BPA > EP > PP. This research highlights the extensive exposure of Chinese infants to EDCs, offering a detailed analysis of their varying endocrine disruption potencies and underscoring the significant health risks associated with EDCs in breast milk.
Collapse
Affiliation(s)
- Yuyan Ji
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yawen Tian
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haizhen Dai
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xufei Fan
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoxia Bai
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
6
|
Zhu Y, Liu X, Shi Y, Liu X, Li H, Ru S, Tian H. Prenatal exposure to bisphenol AF causes toxicities in liver, spleen, and kidney tissues of SD rats. Food Chem Toxicol 2024; 192:114939. [PMID: 39151878 DOI: 10.1016/j.fct.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
As a replacement for bisphenol A (BPA), bisphenol AF (BPAF) showed stronger maternal transfer and higher fetal accumulation than BPA. Therefore, concerns should be raised about the health risks of maternal exposure to BPAF during gestation on the offspring. In this study, SD rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to investigate the bioaccumulation and adverse effects in liver, spleen, and kidney tissues of the offspring at weaning period. Bioaccumulation of BPAF in these tissues with concentrations ranging from 1.56 ng/mg (in spleen of males) to 55.44 ng/mg (in liver of females) led to adverse effects at different biological levels, including increased relative weights of spleen and kidneys, histopathological damage in liver, spleen, and kidney, organ functional damage in liver, spleen, and kidney, upregulated expression of genes related to lipid metabolism (in liver), oxidative stress response (in kidney), immunity and inflammatory (in spleen). Furthermore, dysregulated metabolomics was identified in spleen, with 217 differential metabolites screened and 9 KEGG pathways significantly enriched. This study provides a comprehensive insight into the systemic toxicities of prenatal exposure to BPAF in SD rats. Given the broad applications and widespread occurrence of BPAF, its safety should be re-considered.
Collapse
Affiliation(s)
- Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuxiang Liu
- Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuying Liu
- Wudi County Hospital of Traditional Chinese Medicine, Binzhou, 251900, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Dogra K, Lalwani D, Dogra S, Panday DP, Raval NP, Trivedi M, Mora A, Hernandez MSG, Snyder SA, Mahlknecht J, Kumar M. Indian and global scenarios of Bisphenol A distribution and its new analogues: Prevalence & probability exceedance. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135128. [PMID: 39094315 DOI: 10.1016/j.jhazmat.2024.135128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
We compare, the prevalence, fate, and sources of Bisphenol A both globally and in India. India has the highest concentration of BPA and Bisphenol S(BPS) in general, with vegetables, particularly corn, beans, strings, and raw or canned vegetables, being the largest contributors. Among all the matrices, bisphenols (BPs) are found in the highest concentration in food, followed by surface water, wastewater, and indoor dust. BPA, BPS, and BPF are the most commonly reported analogues in India, with BPA being the most dominant category used worldwide. The highest concentration of BPs is observed in Uttar Pradesh, Punjab and Haryana that are three major agricultural states of India however, there is still a research gap regarding the dietary exposure to BPs on an individual level. Environmentally detected BPA occurs in a range of below detection to 10636 ng. L-1, with significant geographic variations. Interestingly, the order of abundance in India was maximum for BPS, which is contrary to the global average, where BPA is observed as most abundant. BPS is found to be the most common BPs analogue in surface water worldwide, with limited removal efficiency by both naturally remediation and conventional treatment methods. Similar patterns were observed in the US-India and Japan-Korea regions in terms of their source-sink-prevalence-fate dynamics. The probability of exceeding safe concentrations of BPs is higher in India and Korea, suggesting that these countries are more vulnerable to high prevalence concentrations and the subsequent public health hazards.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Dipa Lalwani
- Department of Environmental Science & Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Anand, Gujarat, India
| | - Shiwangi Dogra
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering, SRM University-AP, Andhra Pradesh, 522240, India
| | - Murgesh Trivedi
- Department of Environmental and Life Science, KSKV Kachchh University, Bhuj, 370001, Gujarat, India
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | | | - Shane A Snyder
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India; School of Civil & Environmental Engineering, Georgia Institute of Technology, 30332 USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico.
| |
Collapse
|
8
|
Jurikova M, Dvorakova D, Bechynska K, Pulkrabova J. Bisphenols in daily clothes from conventional and recycled material: evaluation of dermal exposure to potentially toxic substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55663-55675. [PMID: 39240436 DOI: 10.1007/s11356-024-34904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Given the increasing concern about chemical exposure from textiles, our study examines the risks of dermal exposure to bisphenol A (BPA), bisphenol S (BPS), bisphenol B (BPB) and bisphenol F (BPF) from conventional and recycled textiles for adults, aiming to obtain new data, assess exposure, and evaluate the impact of washing on bisphenol levels. A total of 57 textile samples (33 from recycled and 24 from conventional material) were subjected to ultrasound-assisted extraction (UAE) followed by ultra-high performance liquid chromatography with tandem mass spectrometry analysis (UHPLC-MS/MS). The BPA and BPS concentrations varied widely (BPA: < 0.050 to 625 ng/g, BPS: 0.277-2,474 ng/g). The median BPA content in recycled textiles (13.5 ng/g) was almost twice as high as that of 7.66 ng/g in conventional textiles. BPS showed a median of 1.85 ng/g in recycled textiles and 3.42 ng/g in conventional textiles, indicating a shift from BPA to BPS in manufacturing practices. Simulated laundry experiments showed an overall reduction in bisphenols concentrations after washing. The study also assessed potential health implications via dermal exposure to dry and sweat-wet textiles compared to a tolerable daily intake (TDI) of 0.2 ng/kg bw/day for BPA set by the European Food Safety Authority (EFSA). Exposure from dry textiles remained below this threshold, while exposure from wet textiles often exceeded it, indicating an increased risk under conditions that simulate sweating or humidity. By finding the widespread presence of bisphenols in textiles, our study emphasises the importance of being aware of the potential risks associated with recycling materials as well as the benefits.
Collapse
Affiliation(s)
- Martina Jurikova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Darina Dvorakova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Kamila Bechynska
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Jana Pulkrabova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia.
| |
Collapse
|
9
|
Zhang X, Zhang X, Zhang Z, Shi Y, Wang J, Ru S, Tian H. Bisphenol S causes excessive estrogen synthesis by activating FSHR and the downstream cAMP/PKA signaling pathway. Commun Biol 2024; 7:844. [PMID: 38987655 PMCID: PMC11237073 DOI: 10.1038/s42003-024-06449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Estrogen excess in females has been linked to a diverse array of chronic and acute diseases. Emerging research shows that exposure to estrogen-like compounds such as bisphenol S leads to increases in 17β-estradiol levels, but the mechanism of action is unclear. The aim of this study was to reveal the underlying signaling pathway-mediated mechanisms, target site and target molecule of action of bisphenol S causing excessive estrogen synthesis. Human ovarian granulosa cells SVOG were exposed to bisphenol S at environmentally relevant concentrations (1 μg/L, 10 μg/L, and 100 μg/L) for 48 h. The results confirms that bisphenol S accumulates mainly on the cell membrane, binds to follicle stimulating hormone receptor (FSHR) located on the cell membrane, and subsequently activates the downstream cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signaling pathway, leading to enhanced conversion of testosterone to 17β-estradiol. This study deepens our knowledge of the mechanisms of environmental factors in pathogenesis of hyperestrogenism.
Collapse
Affiliation(s)
- Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
- Tai'an Agriculture and Rural Affairs Bureau, 271000, Tai'an, Shandong Province, China
| | - Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China.
| |
Collapse
|
10
|
Liao M, Gan Z, Sun W, Su S, Li Z, Zhang Y. Spatial distribution, source identification, and potential risks of 14 bisphenol analogues in soil under different land uses in the megacity of Chengdu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124064. [PMID: 38701965 DOI: 10.1016/j.envpol.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
This study explored the levels, distribution, potential sources, ecological risks and estrogenic activities of 14 bisphenol analogues (BPs) in soil under eight land-use types in the megacity of Chengdu, China. Eleven BPs were detected in the soil samples and the total concentrations ranged from 32.3 to 570 ng/g d.w. Levels of bisphenol BP (BPBP) in the soil (up to 208 ng/g d.w.) only second to the most dominant compound bisphenol A (BPA) were found. Relatively higher Σ14BP accumulation in the soil was observed in the commercial and residential areas (median: 136 ng/g d.w. and 131 ng/g d.w.) compared with agricultural area (median: 67.5 ng/g d.w.). Source identification indicated the role of atmospheric particulate deposition and consecutive anthropogenic activities in BP emission. The ecotoxicity assessment implied that BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol PH (BPPH) might pose low to medium risk to the ecosystem due to their extensive use and biological effects. The calculated 17β-estradiol equivalents of BPs were in the range of 0.501-7.74 pg E2/g d.w, and the estrogenic activities were inferior to those contributed by natural estrogens in the soil.
Collapse
Affiliation(s)
- Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yunqian Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, Beijing, China
| |
Collapse
|
11
|
Mane MK, Raffy G, Glorennec P, Bonvallot N, Bonnet P, Dumas O, Nchama AE, Saramito G, Duguépéroux C, Mandin C, Le Moual N, Le Bot B. Biocide and other semi-volatile organic compound concentrations in settled indoor dust of CRESPI daycare centers and implication for public health. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134277. [PMID: 38657505 DOI: 10.1016/j.jhazmat.2024.134277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
This study investigates the presence of biocides and other semi-volatile organic compounds (SVOCs) in cleaning products used in daycare centers and health impact through ingestion of settled dust by young children. In Paris metropolitan area, 106 daycares area were investigated between 2019-2022. Fifteen substances were analyzed in settled indoor dust by gas chromatography-tandem mass spectrometry. Detection rates and concentrations ranged from 5 to 100%, and
Collapse
Affiliation(s)
- Mayoro Kebe Mane
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Gaëlle Raffy
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Philippe Glorennec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Nathalie Bonvallot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Pierre Bonnet
- Scientific and Technical Center for Building (CSTB), Indoor Environment Quality Unit, 77420 Champs-sur-Marne, France.
| | - Orianne Dumas
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France.
| | - Anastasie Eworo Nchama
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France.
| | - Gaëlle Saramito
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Camille Duguépéroux
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Corinne Mandin
- Scientific and Technical Center for Building (CSTB), Indoor Environment Quality Unit, 77420 Champs-sur-Marne, France.
| | - Nicole Le Moual
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France.
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
12
|
Lin YJ, Chen HC, Chang JW, Huang HB, Chang WT, Huang PC. Exposure characteristics and cumulative risk assessment of bisphenol A and its substitutes: the Taiwan environmental survey for toxicants 2013. Front Public Health 2024; 12:1396147. [PMID: 38846618 PMCID: PMC11153798 DOI: 10.3389/fpubh.2024.1396147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results Our study found that the median level of BPA was significantly higher in adults (9.63 μg/g creatinine) than in minors (6.63 μg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.
Collapse
Affiliation(s)
- Yu-Jung Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
13
|
Shen K, Kang D, Choi Y, Jeon J. Target and Suspect Screening for Organic Additives in Six Classifications of Personal Care Products Using Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:839-854. [PMID: 38587268 DOI: 10.1021/jasms.3c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Personal care products (PCPs) are integral components of daily human existence, including a large number of chemicals intentionally added for functional attributes (e.g., preservatives and fragrances) or unintentionally present, such as plasticizers. This investigation aimed to optimize the methodology for target and suspect screening via liquid chromatography-high-resolution mass spectrometry, focusing on nine prevalent organic additives (comprising bisphenols A, F, and S, methyl, ethyl, propyl, and butylparaben, 5-chloro-2-methyl-4-isothiazolin-3-one, and 4-hydroxybenzoic acid). A total of 50 high-selling PCPs were purchased from the local online market as samples. In detail, PCP samples were classified into body washes, shampoos, hair conditioners, facial cleansers, body lotions, and moisture creams. For calibration, the quality assurance and quality control results demonstrated a coefficient of determination (R2) surpassing 0.999, with detection and quantification limits ranging from 2.5 to 100.0 ng/g. For recovery experiments, replicate recoveries (n = 5) ranged from 61 to 134%. In purchased PCP samples, five of the nine target compounds were detected via a target screening. Methylparaben exhibited the highest concentration (7860 mg/kg) in a facial cleanser, which is known as an endocrine-disrupting chemical. A total of 248 suspects of organic additives were screened in PCPs, leading to a tentative identification of 9. Confirmation (confidence level 1) via reference standards was achieved for three suspects, while six were tentatively identified with a confidence level of 2. This two-step extraction methodology utilizing methyl tert-butyl ether and isopropyl alcohol enabled simultaneous analysis of diverse chemical groups with distinct properties.
Collapse
Affiliation(s)
- Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
- School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| |
Collapse
|
14
|
Zhang X, Fu M, Li K, Cheng X, Zhang X, Shen X, Lei B, Yu Y. Bisphenol chemicals in colostrum from Shanghai, China during 2006-2019: Concentration, temporal variation, and potential influence on birth parameters. Food Chem Toxicol 2024; 185:114485. [PMID: 38301991 DOI: 10.1016/j.fct.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Bisphenol A (BPA) and its alternatives bisphenol S (BPS) and bisphenol F (BPF) are identified as endocrine disruptors that have negative impacts on infant growth. Their temporal variations in human milk and potential effects on fetal growth are not well known. In this study, colostrum collecting at four time points between 2006 and 2019 and paired urine in 2019 from Shanghai, China, were analyzed for eight bisphenols. The total concentrations in colostrum in 2019 were up to 3.43 ng/mL, with BPA being dominant, followed by BPS and BPF. BPA levels in colostrum noticeably decreased from 2010 to 2013. Additionally, obvious percentage changes in bisphenols were observed in 2019. The BPA concentrations in paired colostrum and urine were not significantly correlated. High levels of BPA in colostrum were linked to a significant reduction in birth head circumference in 2019 (p = 0.031). BPA and BPS in colostrum might have similar negative effect on fetal growth in 2019, but these effects were generally non-significant. Further studies are needed to testify the potential impact. The hazard indexes for infants in the first week of life were below 1, suggesting no obvious health risks. However, the high contribution from BPA still warrants further attention.
Collapse
Affiliation(s)
- Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Minghui Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kexin Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaomeng Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
15
|
Lin RR, Lin DA, Maderal AD. Toxic Ingredients in Personal Care Products: A Dermatological Perspective. Dermatitis 2024; 35:121-131. [PMID: 38109205 DOI: 10.1089/derm.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Environmental dermatology is the study of how environmental factors affect the integumentary system. The environment includes natural and built habitats, encompassing ambient exposure, occupational exposures, and lifestyle exposures secondary to dietary and personal care choices. This review explores common toxins found in personal care products and packaging, such as bisphenols, parabens, phthalates, per- and poly-fluoroalkyl substances, p-phenylenediamine, and formaldehyde. Exposure to these toxins has been associated with carcinogenic, obesogenic, or proinflammatory effects that can potentiate disease. In addition, these compounds have been implicated as endocrine-disrupting chemicals that can worsen dermatological conditions such as acne vulgaris, or dermatitis. Certain pollutants found in personal care products are not biodegradable and have the potential to bioaccumulate in humans. Therefore, even short-term exposure can cause long-lasting issues for communities. The skin is often the first point of contact for environmental exposures and serves as the conduit between environmental toxins and the human body. Therefore, it is important for dermatologists to understand common pollutants and their acute, subacute, and chronic impact on dermatological conditions to better diagnose and manage disease.
Collapse
Affiliation(s)
- Rachel R Lin
- From the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Deborah A Lin
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
16
|
Robin J, Albouy M, Jourdain B, Binson G, Sauvaget A, Pierre-Eugène P, Wu L, Migeot V, Dupuis A, Venisse N. Assessment of Endocrine Disruptor Exposure in Hospital Professionals Using Hair and Urine Analyses: An Awareness Campaign. Ther Drug Monit 2024; 46:102-110. [PMID: 37559216 DOI: 10.1097/ftd.0000000000001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND In 2021, French public authorities initiated the fourth National Environmental Health Plan to prevent environment-related health risks. This plan primarily focuses on the sensitization of health professionals and health care institutions. Endocrine disruptors (EDs) are environmental factors associated with several adverse health effects, such as reproductive disorders, obesity, and cancer. This study aimed to conduct an awareness campaign among professionals at a general hospital center on the risks related to EDs. METHODS Hospital professionals were directly involved in this study, and urine and hair samples were collected to determine bisphenol and paraben exposure levels. Analyses were performed using validated liquid chromatography-tandem mass spectrometry methods, enabling the simultaneous determination of bisphenols and parabens. A questionnaire on lifestyle habits was distributed to assess its relationship with the exposure profiles. Nineteen professionals were recruited for the study. RESULTS Bisphenol A was detected in 95% of the urine samples, and the chlorinated derivatives of bisphenol A were between 16% and 63%. parabens showed detection frequencies between 37% and 100%, and methylparaben was quantified at an average concentration of 0.45 ± 0.46 ng/mL. In hair samples, bisphenols A, F, and S were detected at 95%-100%, chlorinated derivatives of bisphenol A were detected at 37%-68%, and parabens were detected at 100%. CONCLUSIONS This awareness campaign may encourage health care institutions to adopt a policy of reducing endocrine disruptor exposure among their patients and professionals, who could be educated regarding the risks associated with EDs. Conducting a multicenter study to refine the results herein and establish a dynamic to prevent endocrine disruptor and environmental risks in health care systems would be valuable.
Collapse
Affiliation(s)
- Julien Robin
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
| | - Marion Albouy
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | | | - Guillaume Binson
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | - Alexis Sauvaget
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
| | - Pascale Pierre-Eugène
- INSERM, Clinical Investigation Center 1402
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | - Luyao Wu
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
| | - Virginie Migeot
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | - Antoine Dupuis
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | - Nicolas Venisse
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
| |
Collapse
|
17
|
Zhang X, Zhang X, Shi Y, Zhang Z, Wang J, Ru S, Tian H. Interacting with luteinizing hormone receptor provides a new elucidation of the mechanism of anti-androgenicity of bisphenol S. CHEMOSPHERE 2024; 350:141056. [PMID: 38158086 DOI: 10.1016/j.chemosphere.2023.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) exhibited inhibitory effects on androgen synthesis, but its target of action remains unclear. We investigated the effects of BPS exposure at environmentally relevant concentrations (1 μg/L, 10 μg/L and 100 μg/L) for 48 h on androgen synthesis in rat ovarian theca cells and explored the underlying mechanisms, target site and target molecule. The results showed that BPS exposure inhibited the transcript levels of steroidogenic genes and reduced the contents of androgen precursors, testosterone and dihydrotestosterone. BPS exposure decreased the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2), and the inhibitory effects of BPS on testosterone content and steroidogenic gene expression were blocked by ERK1/2 agonist LY2828360, suggesting that ERK1/2 signaling pathway mediates the inhibitory effects of BPS on androgen synthesis. BPS mainly accumulated on the cell membrane, impermeable BPS-bovine serum albumin exposure still inhibited androgen synthesis, BPS interacted with rat luteinizing hormone receptor (LHR) via formation of hydrogen bonds in the transmembrane region, and the inhibitory effects of BPS on ERK1/2 phosphorylation were blocked by luteinizing hormone (the natural agonist of LHR), indicating that LHR located on the cell membrane is the target of action of BPS. This paper provides a new elucidation of the mechanism of anti-androgenicity of BPS, especially for the non-genomic pathways.
Collapse
Affiliation(s)
- Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
18
|
Zhang L, Xie X, Tao J, Wang S, Hu M, Wang X, Yu Z, Xu L, Lin Y, Wu W, Cheng J, Wu L, Liu W, Gao R, Wang J. Mystery of bisphenol F-induced nonalcoholic fatty liver disease-like changes: Roles of Drp1-mediated abnormal mitochondrial fission in lipid droplet deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166831. [PMID: 37683851 DOI: 10.1016/j.scitotenv.2023.166831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
As one of the major substitutes for bisphenol A (BPA), bisphenol F (BPF) has been widely used. Our previous study demonstrated that BPF exposure facilitates lipid droplet deposition in hepatic cells, contributing to nonalcoholic fatty liver disease (NAFLD)-like changes. However, the underlying mechanisms remain poorly understood. Here, with a metabolic cage system, we observed the perturbation of energy metabolism in mice treated with BPF. BPF obviously suppressed metabolic capacity, which manifested as decreased energy expenditure, low O2 consumption and CO2 levels in mice. Consistent with the in vivo results, a Seahorse XF Cell Mito Stress Test showed significant reductions in mitochondrial ATP production capacity, maximum respiratory capacity, and residual respiratory capacity after BPF treatment in an in vitro study. Electron microscopy revealed a striking increase in mitochondrial fission that was synchronous with excessive expression and activation of dynamin-related protein 1 (Drp1). Intriguingly, chemical inhibition of Drp1 by Mdivi-1 and/or silencing of Drp1 dramatically hampered mitochondrial fission and ameliorated BPF-induced lipid droplet deposition both in mouse liver and human hepatic cells. Mechanistically, mitochondrial dynamics imbalance played prominent roles in these processes, since suppression of Drp1 by chemical inhibition or knockdown substantially reversed BPF-induced mitochondrial fission and ameliorated the suppression of mitochondrial metabolism as well as excessive mitochondrial ROS, which was verified to be key to lipid droplet deposition. Collectively, the findings of the current study reveal previously unrecognized effects involving Drp1-mediated mitochondrial injury in BPF-induced lipid droplet deposition. Therefore, targeted intervention against mitochondrial dysfunction may be a promising therapeutic strategy for BPF-induced NAFLD-like changes.
Collapse
Affiliation(s)
- Linwei Zhang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xuexue Xie
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jingxian Tao
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sizhe Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Miaoyang Hu
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xi Wang
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Yu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liuting Xu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuxin Lin
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weilan Wu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Cheng
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Linlin Wu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214000, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214000, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
19
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
20
|
Głód P, Borski N, Gogola-Mruk J, Opydo M, Ptak A. Bisphenol S and F affect cell cycle distribution and steroidogenic activity of human ovarian granulosa cells, but not primary granulosa tumour cells. Toxicol In Vitro 2023; 93:105697. [PMID: 37717640 DOI: 10.1016/j.tiv.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Bisphenol S (BPS) and F (BPF), a new generation of bisphenols (BPs), are the main substitutes for bisphenol A (BPA). Both have been detected in human body fluids. Importantly, bisphenols are structurally similar to oestrogen, the main sex hormone in females. Because bisphenols bind to nuclear oestrogen receptors (ESR1 and ESR2) and to membrane G-coupled receptor 30 (GPR30), they can disrupt ovarian function. Here, we reveal the molecular mechanism underlying the effects of BPS and BPF on the cell cycle and steroidogenesis in the human ovarian granulosa cell (GC) line HGrC1. We show that BPS and BPF arrest GCs at the G0/G1 phase by inducing expression of cyclin D2, an important event that triggers maximal steroid synthesis in response to the BPS and BPF. We used pharmacological inhibitors to show that BPS and BPF, despite acting via already described pathways, also stimulate steroid secretion via IGF1R pathways in HGrC1 cells. Moreover, we identified differences critical to bisphenols response between normal (HGrC1) and primary tumour granulosa (COV434) cells, that enable COV434 cells to be more resistant to bisphenols. Overall, the data suggest that BPS and BPF drive steroidogenesis in human ovarian GCs by affecting the cell cycle. Furthermore, the results indicate that BPS and BPF act not only via the classical and non-classical ESR pathways, but also via the IGF1R pathway.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
21
|
Taylor KW, Howdeshell KL, Bommarito PA, Sibrizzi CA, Blain RB, Magnuson K, Lemeris C, Tracy W, Baird DD, Jackson CL, Gaston SA, Rider CV, Walker VR, Rooney AA. Systematic evidence mapping informs a class-based approach to assessing personal care products and pubertal timing. ENVIRONMENT INTERNATIONAL 2023; 181:108307. [PMID: 37948866 DOI: 10.1016/j.envint.2023.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Personal care products (PCPs) contain many different compounds and are a source of exposure to endocrine disrupting chemicals (EDCs), including phthalates and phenols. Early-life exposure to EDCs commonly found in PCPs has been linked to earlier onset of puberty. OBJECTIVE To characterize the human and animal evidence on the association between puberty-related outcomes and exposure to PCPs and their chemical constituents and, if there is sufficient evidence, identify groups of chemicals and outcomes to support a systematic review for a class-based hazard or risk assessment. METHODS We followed the OHAT systematic review framework to characterize the human and animal evidence on the association between puberty-related health outcomes and exposure to PCPs and their chemical constituents. RESULTS Ninety-eight human and 299 animal studies that evaluated a total of 96 different chemicals were identified and mapped by key concepts including chemical class, data stream, and puberty-related health outcome. Among these studies, phthalates and phenols were the most well-studied chemical classes. Most of the phthalate and phenol studies examined secondary sex characteristics and changes in estradiol and testosterone levels. Studies evaluating PCP use and other chemical classes (e.g., parabens) had less data. CONCLUSIONS This systematic evidence map identified and mapped the published research evaluating the association between exposure to PCPs and their chemical constituents and puberty-related health outcomes. The resulting interactive visualization allows researchers to make evidence-based decisions on the available research by enabling them to search, sort, and filter the literature base of puberty-related studies by key concepts. This map can be used by researchers and regulators to prioritize and target future research and funding to reduce uncertainties and address data gaps. It also provides information to inform a class-based hazard or risk assessment on the association between phthalate and phenol exposures and puberty-related health outcomes.
Collapse
Affiliation(s)
- Kyla W Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | - Kembra L Howdeshell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Paige A Bommarito
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | - Donna D Baird
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Chandra L Jackson
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; National Institute on Minority Health and Health Disparities, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Symielle A Gaston
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V Rider
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Vickie R Walker
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Andrew A Rooney
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
22
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Herrera-Vázquez SE, Rosales-Pérez KE, SanJuan-Reyes N, García-Medina S, Galar-Martínez M. Acute exposure to realistic concentrations of Bisphenol-A trigger health damage in fish: Blood parameters, gene expression, oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106610. [PMID: 37327538 DOI: 10.1016/j.aquatox.2023.106610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Despite much information regarding BPA toxicity in fish and other aquatic organisms, data is still misleading as most studies have utilized concentrations several orders of magnitude higher than those typically found in the environment. As an illustration, eight of the ten studies investigating the impact of BPA on the biochemical and hematological parameters of fish have employed concentrations on the order of mg/L. Therefore, the results may not accurately represent the effects observed in the natural environment. Considering the information above, our study aimed to 1) determine whether or not realistic concentrations of BPA might alter the biochemical and blood parameters of Danio rerio and trigger an inflammatory response in the fish liver, brain, gills, and gut and 2) determine which organ could be more affected after exposure to this chemical. Findings pinpoint that realistic concentrations of BPA prompted a substantial increase in antioxidant and oxidant biomarkers in fish, triggering an oxidative stress response in all organs. Likewise, the expression of different genes related to inflammation and apoptosis response was significantly augmented in all organs. Our Pearson correlation shows gene expression was closely associated with the oxidative stress response. Regarding blood parameters, acute exposure to BPA generated biochemical and hematological parameters increased concentration-dependent. Thus, it can be concluded that BPA, at environmentally relevant concentrations, threatens aquatic species, as it prompts polychromasia and liver dysfunction in fish after acute exposure.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México.
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, México
| |
Collapse
|
23
|
Razak MR, Aris AZ, Yusoff FM, Yusof ZNB, Abidin AAZ, Kim SD, Kim KW. Risk assessment of bisphenol analogues towards mortality, heart rate and stress-mediated gene expression in cladocerans Moina micrura. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3567-3583. [PMID: 36450975 DOI: 10.1007/s10653-022-01442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kyoung Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
24
|
Chan M, Preston EV, Fruh V, Quinn MR, Hacker MR, Wylie BJ, O'Brien K, Williams PL, Hauser R, James-Todd T, Mahalingaiah S. Use of personal care products during pregnancy and birth outcomes - A pilot study. ENVIRONMENTAL RESEARCH 2023; 225:115583. [PMID: 36868449 PMCID: PMC10153796 DOI: 10.1016/j.envres.2023.115583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
Prenatal exposure to endocrine disrupting chemicals (EDCs) from personal care products may be associated with birth outcomes including preterm birth and low birth weight. There is limited research examining the role of personal care product use during pregnancy on birth outcomes. Our pilot study consisted of 164 participants in the Environmental Reproductive and Glucose Outcomes (ERGO) study (Boston, MA), with data on self-reported personal care product use at four study visits throughout pregnancy (product use in the 48 h before a study visit and hair product use in the month before a study visit). We used covariate-adjusted linear regression models to estimate differences in mean gestational age at delivery, birth length, and sex-specific birth weight-for-gestational age (BW-for-GA) Z-score based on personal care product use. Hair product use in the past month prior to certain study visits was associated with decreased mean sex-specific BW-for-GA Z-scores. Notably, hair oil use in the month prior to study visit 1 was associated with a lower mean BW-for-GA Z-score (V1: -0.71, 95% confidence interval: -1.12, -0.29) compared to non-use. Across all study visits (V1-V4), increased mean birth length was observed among nail polish users vs. non-users. In comparison, decreased mean birth length was observed among shave cream users vs. non-users. Liquid soap, shampoo, and conditioner use at certain study visits were significantly associated with higher mean birth length. Suggestive associations were observed across study visits for other products including hair gel/spray with BW-for-GA Z-score and liquid/bar soap with gestational age. Overall, use of a variety of personal care products throughout pregnancy was observed to be associated with our birth outcomes of interest, notably hair oil use during early pregnancy. These findings may help inform future interventions/clinical recommendations to reduce exposures linked to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Marissa Chan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Emma V Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Marlee R Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Michele R Hacker
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Karen O'Brien
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shruthi Mahalingaiah
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Obstetrics & Gynecology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
25
|
Zhang D, Lu S. A holistic review on triclosan and triclocarban exposure: Epidemiological outcomes, antibiotic resistance, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162114. [PMID: 36764530 DOI: 10.1016/j.scitotenv.2023.162114] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Triclosan (TCS) and triclocarban (TCC) are antimicrobials that are widely applied in personal care products, textiles, and plastics. TCS and TCC exposure at low doses may disturb hormone levels and even facilitate bacterial resistance to antibiotics. In the post-coronavirus disease pandemic era, chronic health effects and the spread of antibiotic resistance genes associated with TCS and TCC exposure represent an increasing concern. This study sought to screen and review the exposure levels and sources and changes after the onset of the coronavirus disease (COVID-19) pandemic, potential health outcomes, bacterial resistance and cross-resistance, and health risk assessment tools associated with TCS and TCC exposure. Daily use of antimicrobial products accounts for most observed associations between internal exposure and diseases, while secondary exposure at trace levels mainly lead to the spread of antibiotic resistance genes. The roles of altered gut microbiota in multi-system toxicities warrant further attention. Sublethal dose of TCC selects ARGs without obviously increasing tolerance to TCC. But TCS induce persistent TCS resistance and reversibly select antibiotic resistance, which highlights the benefits of minimizing its use. To derive reference doses (RfDs) for humans, more sensitive endpoints observed in populational studies need to be confirmed using toxicological tests. Additionally, the human equivalent dose is recommended to be incorporated into the health risk assessment to reduce uncertainty of extrapolation.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
26
|
Deng M, Gao T, Tao L, Tang W, Wang X, Jiang Y, Xu DX, Fang M, Huang Y. Are human exposure assessment the same for non-persistent organic chemicals? -from the lens of urinary variability and predictability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161542. [PMID: 36649764 DOI: 10.1016/j.scitotenv.2023.161542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Assessment of human exposure to mixtures of non-persistent chemicals from food matrices and consumer products requires accurate characterization and estimation of their preceding exposure levels, and assessment sampling approaches for these varying chemicals remain disputable. Here, we used high-throughput targeted method to quantify urinary concentrations of 59 most common non-persistent chemicals (6 parabens, 14 bisphenols, 1 triclosan, 7 benzophenones, 2 dichlorophenols, 13 phthalate metabolites and 16 antioxidants) in 158 consecutive spot samples from 11 participants over three consecutive days, 33 samples of which were first morning voids (FMVs). We found 49 chemicals with detection frequencies over 70 % in all urine samples. Principal component analyses showed greater inter-person variations than each person's inter-day variations. Intraclass correlation coefficient (ICC) to assess the reproducibility of targeted chemicals demonstrated that regardless of sampling approaches, dichlorophenols, most parabens, benzophenones and triclosan showed moderate to high reproducibility (0.445 < ICC < 0.969), with relatively high predictive power of FMVs for 24-h collections. Notably, most phthalates, bisphenols and antioxidants showed low ICC values. Together, our work demonstrates that FMV samples may be adequate for assessing human exposure to parabens, benzophenones, triclosan and dichlorophenols, whereas multiple consecutive urine collections may be advantageous for evaluating exposure to most phthalates, bisphenols and antioxidants.
Collapse
Affiliation(s)
- Man Deng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Tianrui Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Xinying Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Ye Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China.
| |
Collapse
|
27
|
Hu M, Zhang Z, Zhang Y, Zhan M, Qu W, He G, Zhou Y. Development of human dermal PBPK models for the bisphenols BPA, BPS, BPF, and BPAF with parallel-layered skin compartment: Basing on dermal administration studies in humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161639. [PMID: 36649768 DOI: 10.1016/j.scitotenv.2023.161639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Risk assessment of human exposure to bisphenols (BPs) including bisphenol A, S, F and AF (BPA, BPS, BPF and BPAF) have suggested that except for ingestion, health risk resulting from dermal contact is not negligible. However, the absorption kinetics of BPA substitutes in humans following dermal exposure have been poorly studied. This study aimed to address the knowledge gap in physiologically based pharmacokinetic (PBPK) modeling of BPA and its high-concerned substitutes (BPS, BPF and BPAF) following dermal administration. Parallel-layered skin compartmental model for dermal absorption of BPs was for the first time proposed and human dermal administration studies were conducted to determine dermal bio-accessibility of BPS from thermal paper (TP) (n = 4), BPF (n = 4) and BPAF (n = 5) from personal care products (PCPs). Further, pharmacokinetics of BPS and its metabolites following human handling TP were investigated and the dermal PBPK models for BPA and BPS were validated using the available human biomonitoring data. Overall, 28.03 % ± 13.76 % of BPS in TP was transferred to fingers followed by absorption of 96.17 % ± 2.78 % of that. The dermal bio-accessibilities of BPs in PCPs were 31.65 % ± 2.90 % for BPF and 12.49 % ± 1.66 % for BPAF. Monte Carlo analysis indicated that 90 % of the predicted variability fell within one order of magnitude, which suggested that the developed PBPK models had medium uncertainty. Global sensitivity analysis revealed that the model uncertainty is mainly attributed to the variabilities of dermal absorption parameters. Compared with the previous models for BPs, the developed dermal PBPK models were capable of more accurate predictions of the internal dose metric in target organs following human dermal exposure to BPs via TP and PCPs routes. These results suggested that the developed human dermal PBPK models would provide an alternative tool for assessing the risk of human exposure to BPs through dermal absorption.
Collapse
Affiliation(s)
- Man Hu
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Zhichun Zhang
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Yining Zhang
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Ming Zhan
- Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Weidong Qu
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Gengsheng He
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Ying Zhou
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China.
| |
Collapse
|
28
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
29
|
Zhang W, Ma X, Zhang Y, Tong W, Zhang X, Liang Y, Song M. Obesogenic effect of Bisphenol P on mice via altering the metabolic pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114703. [PMID: 36857923 DOI: 10.1016/j.ecoenv.2023.114703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol P (BPP), structurally similar to bisphenol A, is commonly identified in the samples of environment, food, and humans. Unfortunately, very little information is currently available on adverse effects of BPP. The obesogenic effects and underlying mechanisms of BPP on mice were investigated in this study. Compared with the control, high-resolution microcomputed tomography (micro-CT) scans displayed that the visceral fat volume of mice was significantly increased at a dose of 5 mg/kg/day after BPP exposure for 14 days, whereas the subcutaneous fat volume remained unchanged. Nontargeted metabolomic analysis revealed that BPP significantly perturbed the metabolic pathways of mouse livers, and acetyl-CoA was identified as the potential key metabolite responsible for the visceral fat induced by BPP. These findings recommend that a great deal of attention should be paid to the obesogenic properties of BPP as a result of its widely utilized and persistence in the environment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuerui Ma
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Yijia Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Wanjing Tong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Xing Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Kim S, Min HS, Lee WJ, Choe SA. Occupational differences in personal care product use and urinary concentration of endocrine disrupting chemicals by gender. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:312-318. [PMID: 35414680 DOI: 10.1038/s41370-022-00436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In most societies, women and men systematically differ in consumption of cosmetics and household products, which are interlinked with gendered norms and occupational segregation. We investigated the differences in personal care product (PCP) use and exposure to endocrine disrupting chemicals (EDCs) based on occupation and gender. METHODS We utilized data from the first to third Korean National Environmental Health Survey analyzing 9218 participants aged 20-59 years engaged in their current occupation for ≥3 months. Frequent PCP use (≥once/week) and exposure to EDCs were analyzed by gender and occupation. We used least-square geometric means (LSGMs) of urinary concentrations of the five EDCs adjusted for covariates. RESULTS Manual occupation was most common in men and no paid occupation was most frequent in women. In general, clerical, service, and sales workers showed the highest prevalence of frequent use of hair and body products. Women used body and makeup products more frequently than men. For all five EDCs, similarly, women showed higher urinary levels in all occupation groups. When stratified by gender, the differences in urinary concentration of EDCs across occupation groups were not observed in men. Among women, clerical, service, and sales workers showed higher bisphenol A (BPA) and mono-n-butyl phthalate (MnBP) levels than manual workers. CONCLUSIONS Differentials in exposure to EDCs by occupation groups were not evident for men. Given the higher urinary concentration of EDCs in women compared to men, interventions to reduce the exposure to EDCs would need to focus on women, especially in clerical, service, and sales occupations.
Collapse
Affiliation(s)
- Saerom Kim
- People's Health Institute, Seoul, Korea
- Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Hye Sook Min
- Research Institute of Public Healthcare, National Medical Center, Seoul, Korea
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seung-Ah Choe
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea.
- Division of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
31
|
Milanović M, Đurić L, Milošević N, Milić N. Comprehensive insight into triclosan-from widespread occurrence to health outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25119-25140. [PMID: 34741734 PMCID: PMC8571676 DOI: 10.1007/s11356-021-17273-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Humans are exposed to the variety of emerging environmental pollutant in everyday life. The special concern is paid to endocrine disrupting chemicals especially to triclosan which could interfere with normal hormonal functions. Triclosan could be found in numerous commercial products such as mouthwashes, toothpastes and disinfectants due to its antibacterial and antifungal effects. Considering the excessive use and disposal, wastewaters are recognized as the main source of triclosan in the aquatic environment. As a result of the incomplete removal, triclosan residues reach surface water and even groundwater. Triclosan has potential to accumulate in sediment and aquatic organisms. Therefore, the detectable concentrations of triclosan in various environmental and biological matrices emerged concerns about the potential toxicity. Triclosan impairs thyroid homeostasis and could be associated with neurodevelopment impairment, metabolic disorders, cardiotoxicity and the increased cancer risk. The growing resistance of the vast groups of bacteria, the evidenced toxicity on different aquatic organisms, its adverse health effects observed in vitro, in vivo as well as the available epidemiological studies suggest that further efforts to monitor triclosan toxicity at environmental levels are necessary. The safety precaution measures and full commitment to proper legislation in compliance with the environmental protection are needed in order to obtain triclosan good ecological status. This paper is an overview of the possible negative triclosan effects on human health. Sources of exposure to triclosan, methods and levels of detection in aquatic environment are also discussed.
Collapse
Affiliation(s)
- Maja Milanović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia.
| | - Larisa Đurić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milošević
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| |
Collapse
|
32
|
Gély CA, Lacroix MZ, Roques BB, Toutain PL, Gayrard V, Picard-Hagen N. Comparison of toxicokinetic properties of eleven analogues of Bisphenol A in pig after intravenous and oral administrations. ENVIRONMENT INTERNATIONAL 2023; 171:107722. [PMID: 36584424 DOI: 10.1016/j.envint.2022.107722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Due to the restrictions of its use, Bisphenol A (BPA) has been replaced by many structurally related bisphenols (BPs) in consumer products. The endocrine disrupting potential similar to that of BPA has been described for several bisphenols, there is therefore an urgent need of toxicokinetic (TK) data for these emerging BPs in order to evaluate if their internal exposure could increase the risk of endocrine disruption. We investigated TK behaviors of eleven BPA substitutes (BPS, BPAF, BPB, BPF, BPM, BPZ, 3-3BPA, BP4-4, BPAP, BPP, and BPFL) by intravenous and oral administrations of mixtures of them to piglets and serial collection of blood over 72 h and urine over 24 h, to evaluate their disposition. Data were analyzed using nonlinear mixed-effects modeling and a comparison was made with TK predicted by the generic model HTTK package. The low urinary excretion of some BPs, in particular BPM, BPP and BPFL, is an important aspect to consider in predicting human exposure based on urine biomonitoring. Despite their structural similarities, for the same oral dose, all BPA analogues investigated showed a higher systemic exposure (area under the plasma concentration-time curve (AUC) of the unconjugated Bisphenol) than BPA (2 to 4 fold for 3-3BPA, BPAF, BPB and BPZ, 7-20 fold for BP4-4, BPAP, BPP, BPFL, BPF and BPM and 150 fold for BPS) due mainly to a considerable variation of oral bioavailability (proportion of BP administered by oral route that attains the systemic circulation unchanged). Given similarities in the digestive tract between pigs and humans, our TK data suggest that replacing BPA with some of its alternatives, particularly BPS, will likely lead to higher internal exposure to potential endocrine disruptive compounds. These findings are crucial for evaluating the risk of human exposure to these emerging BPs.
Collapse
Affiliation(s)
- Clémence A Gély
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | | | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France; The Royal Veterinary College, University of London, London, United Kingdom.
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
33
|
Zhao N, Zhu J, Zhao M, Jin H. Twenty bisphenol analogues in take-out polystyrene-made food containers: concentration levels, simulated migration, and risk evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10516-10526. [PMID: 36083374 DOI: 10.1007/s11356-022-22890-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is mainly used to produce polycarbonate consumer products. However, the occurrence of BPA and other bisphenol analogues (BPs) in polystyrene-made plastic products, such as white foam take-out containers (WFTOCs), has not been well investigated. In this study, occurrence of 20 BPs in WFTOC samples collected from China, Canada, and Poland were investigated with a sample size of 152. Results showed that 11 out of 20 BPs have been detected at least in one WFTOC sample. Among them, BPA was the most frequently detected BP, followed by bisphenol S (BPS) and bisphenol AF, while BPF was the least detected BP. Very high concentrations of BPA and BPS were detected in WFTOCs from China (mean 2694 and 552 ng/g), compared with Canada (81 and 45 ng/g, respectively) and Poland (95 and 16 ng/g). Other BPs, such as bisphenol TMC (BPTMC; detection frequency 65%, range < LOQ - 224 ng/g), bisphenol G (17%, < LOQ - 11 ng/g), and bisphenol BP (11%, < LOQ - 1.6 ng/g), were also detected in Chinese WFTOC samples. The mean partitioning coefficients of BPA, BPS, bisphenol AP, and BPTMC between WFTOCs and tap water, 10% ethanol, 50% ethanol, corn oil, or steamed rice were 0.22 - 2.9%, 0.16 - 5.1%, 0.11 - 7.5%, 2.3 - 6.5%, or 0.19 - 0.36%, respectively. The estimated daily intake of BPA, BPS, and BPTMC through using WFTOCs were 0.50 - 547, 0.054 - 229, and < 0.66 ng/kg bw/day, respectively, for general population in China, Canada, and Poland. Overall, this study first reveals the unexpected presence of BPs in WFTOCs made of polystyrene, which contributes to the better understanding of the sources of human exposure to BPs.
Collapse
Affiliation(s)
- Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
34
|
Ding T, Cai M, Wu CC, Bao LJ, Li J. Distribution profiles of bisphenols in school supplies and implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157938. [PMID: 35952887 DOI: 10.1016/j.scitotenv.2022.157938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol compounds (BPs) are usually applied in the production of school supplies, however, little is known on the occurrence of BPs in school supplies. In this study, 15 BPs were detected in 121 samples of school supplies collected from commercial market. Among all compounds studied, BPA, BPF, and BPS were the dominant compounds in school supplies with the detection frequency of 93.15 %, 85.62 % and 82.53 %, respectively, and at median concentrations of 161, 23.64 and 14.11 ng g-1 dw. The total concentrations of BPs varied among types of school supplies in the following order: paper (median: 1347 ng g-1 dw) > fabric (521.4 ng g-1 dw) > plastic (472.7 ng g-1 dw) > rubber (352.4 ng g-1 dw). Risk assessment of BPs in school supplies was evaluated by the estimated daily intake (EDI) via dermal absorption, and the median EDIs of ∑15 BPs were 156.78 ng d-1 (11.27-37,042.37 ng d-1) and 432.75 ng d-1 (32.44-91,624.22 ng d-1) for general and occupational people, respectively.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miao Cai
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chen-Chou Wu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
35
|
Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: an updated review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Güil-Oumrait N, Cano-Sancho G, Montazeri P, Stratakis N, Warembourg C, Lopez-Espinosa MJ, Vioque J, Santa-Marina L, Jimeno-Romero A, Ventura R, Monfort N, Vrijheid M, Casas M. Prenatal exposure to mixtures of phthalates and phenols and body mass index and blood pressure in Spanish preadolescents. ENVIRONMENT INTERNATIONAL 2022; 169:107527. [PMID: 36126421 DOI: 10.1016/j.envint.2022.107527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pregnant women are simultaneously exposed to several non-persistent endocrine-disrupting chemicals, which may influence the risk of childhood obesity and cardiovascular diseases later in life. Previous prospective studies have mostly examined single-chemical effects, with inconsistent findings. We assessed the association between prenatal exposure to phthalates and phenols, individually and as a mixture, and body mass index (BMI) and blood pressure (BP) in preadolescents. METHODS We used data from the Spanish INMA birth cohort study (n = 1,015), where the 1st and 3rd- trimester maternal urinary concentrations of eight phthalate metabolites and six phenols were quantified. At 11 years of age, we calculated BMI z-scores and measured systolic and diastolic BP. We estimated individual chemical effects with linear mixed models and joint effects of the chemical mixture with hierarchical Bayesian kernel machine regression (BKMR). Analyses were stratified by sex and by puberty status. RESULTS In single-exposure models, benzophenone-3 (BP3) was nonmonotonically associated with higher BMI z-score (e.g. Quartile (Q) 3: β = 0.23 [95% CI = 0.03, 0.44] vs Q1) and higher diastolic BP (Q2: β = 1.27 [0.00, 2.53] mmHg vs Q1). Methyl paraben (MEPA) was associated with lower systolic BP (Q4: β = -1.67 [-3.31, -0.04] mmHg vs Q1). No consistent associations were observed for the other compounds. Results from the BKMR confirmed the single-exposure results and showed similar patterns of associations, with BP3 having the highest importance in the mixture models, especially among preadolescents who reached puberty status. No overall mixture effect was found, except for a tendency of higher BMI z-score and lower systolic BP in girls. CONCLUSIONS Prenatal exposure to UV-filter BP3 may be associated with higher BMI and diastolic BP during preadolescence, but there is little evidence for an overall phthalate and phenol mixture effect.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Parisa Montazeri
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maria-Jose Lopez-Espinosa
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; FISABIO-Universitat Jaume I-Universitat de Valencia, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad Miguel Hernández, Alicante, Spain
| | - Loreto Santa-Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Spain
| | - Alba Jimeno-Romero
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
37
|
Li Y, Zhu Q, Bi S, Zhou Q, Liang Y, Liu S, Liao C. Associations between concentrations of typical ultraviolet filter benzophenones in indoor dust and human hair from China: A human exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156789. [PMID: 35724781 DOI: 10.1016/j.scitotenv.2022.156789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-3 (BP-3) has been widely used as a typical ultraviolet (UV) filter in various personal care products. While BP-3 and its derivatives (BPs) have been detected in various environmental matrices, very little is known about the concentration profile of BPs in human hair. The associations of BPs in human hair with those in indoor dust samples collected from the same locations remain largely unclear. In this study, a total of 258 indoor dust samples and 66 human hair samples were collected across China and analyzed to determine the presence of BP-3 and its derivatives. The BP-3 concentrations ranged from 0.386 to 1230 ng/g dw in indoor dust and from 0.149 to 696 ng/g dw in human hair. No difference was found between BPs in indoor dust samples from different geographic regions (p > 0.05), whereas relatively higher BP concentrations were observed for dust from urban regions than dust from rural ones (p < 0.05). A positive correlation was found between the BP-3 concentrations of indoor dust and human hair samples (p < 0.05). The estimated daily intake (EDI) of BPs for humans from indoor dust showed a gender difference (females > males; p < 0.05), with the highest EDI value being found in Southwest China (males: 35.5 pg/kg bw/day; females: 40.6 pg/kg bw/day). This study provides the concentration profiles of BPs in human hair and elucidates the associations between the BP concentrations in indoor dust samples and human hair samples collected across China.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Zhang C, Zhou L, Wu XC, Guan TY, Zou XM, Chen C, Yuan MY, Li YH, Wang S, Tao FB, Hao JH, Su PY. Association of serum bisphenol AF concentration with depressive symptoms in adolescents: A nested case-control study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113734. [PMID: 35679728 DOI: 10.1016/j.ecoenv.2022.113734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As an important alternative to bisphenol A (BPA), bisphenol AF (BPAF) is widely used and can be detected in multiple human biological samples. However, there are few studies on neurotoxicity of BPAF at present. In particular, no epidemiological studies have investigated BPAF in relation to depressive symptoms in adolescents. Here, our study aimed to evaluate the associations between serum BPAF concentrations and depressive symptoms in adolescents. METHODS A nested case-control study within an ongoing longitudinal prospective adolescent cohort that was established in Huaibei, China was conducted. A total of 175 participants who had new-onset depressive symptoms (cases) and 175 participants without depressive symptoms (controls) were included. Serum BPAF concentrations was measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. The associations between BPAF exposure and the risk of depressive symptoms in adolescents were assessed using conditional logistic regression. The dose-response relationship between BPAF level and depressive symptoms was estimated using restricted cubic spline analyses. RESULTS In this study, the detection rate of serum BPAF was 100%, and the median (interquartile range, IQR) serum BPAF concentration was 5.24 (4.41-6.11) pg/mL in the case group and 4.86 (4.02-5.77) pg/mL in the control group (P = 0.009). Serum BPAF exposure was a risk factor for depressive symptoms (odds ratio (OR)= 1.132, 95% confidence interval (CI):1.013-1.264). After adjustment for all for confounders, compared with the low-exposure group, the high-exposure group had a 2.806-fold increased risk of depressive symptoms (OR=2.806, 95% CI: 1.188-6.626). Stratified analysis by sex revealed that males were more vulnerable to BPAF exposure than females. After adjustment for all confounders, compared with the low-exposure group, the relative risk of depressive symptoms in the high-exposure group was 3.858 (95% CI: 1.118-12.535) for males, however, no significant association between BPAF exposure and depressive symptoms was found in females. In addition, there was a marked linear association between BPAF exposure and the risk of depressive symptoms in the total population and in males. CONCLUSIONS The adolescents in this study were widely exposed to low levels of BPAF. A significant positive association was found between serum BPAF levels and the risk of depressive symptoms. The association was significantly modified by sex, and males were more vulnerable to BPAF exposure than females.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiao-Chang Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tian-Yue Guan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xuan-Min Zou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chen Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Meng-Yuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yong-Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
39
|
Jin Y, Yuan T, Li J, Shen Z, Tian Y. Occurrence, health risk assessment and water quality criteria derivation of six personal care products (PCPs) in Huangpu River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:577. [PMID: 35819530 DOI: 10.1007/s10661-022-10271-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Personal care products (PCPs) have shown adverse health effects on humans. However, their health risk associated with fish consumption and relevant water quality criteria are still not well documented. This study investigated the occurrence and health risk of six PCPs (triclosan, bisphenol-A, and four commonly used organic ultraviolet (UV) filters, i.e., homosalate (HMS), 4-methylbenzylidene camphor (4-MBC), oxybenzone (BP-3), and octocrylene (OC)). River water and three trophic levels of fish species were collected from Huangpu River in Shanghai. The concentration range of the six PCPs were 1.48-89.76 ng/L in water and 0.40-10.75 ng/g dry weight in fish. Estimated daily intake (EDI) and target hazard quotient (THQ) of the PCPs indicated that consuming these fish would not pose non-carcinogenic risks. The maximum allowable fish consumption rates ranged from 85 to 1760 and 155 to 3230 meals per month for children and adults, respectively. As to the four organic UV filters, it is the first time to report the fish consumption advisories. Finally, the human health ambient water quality criteria (AWQC) values of HMS, 4-MBC, BP-3, OC, TCS, and BPA (i.e., 0.1218, 0.7311, 0.3494, 0.0477, 235.8, and 154.7 μg/L, respectively) were proposed, and they can serve as a valuable technical reference for global development and revision of aquatic environmental quality standards for these emerging contaminants.
Collapse
Affiliation(s)
- Yihui Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiafan Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
40
|
Cui Z, He F, Li X, Jing M, Huo C, Zong W, Liu R. Molecular insights into the binding model and response mechanisms of triclosan with lysozyme. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Jala A, Varghese B, Dutta R, Adela R, Borkar RM. Levels of parabens and bisphenols in personal care products and urinary concentrations in Indian young adult women: Implications for human exposure and health risk assessment. CHEMOSPHERE 2022; 297:134028. [PMID: 35218786 DOI: 10.1016/j.chemosphere.2022.134028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/22/2023]
Abstract
Limited information is available about the levels of exposure of paraben and bisphenols emerging from personal care products (PCPs) use in Indian women and the risk associated with it. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the concentrations of six parabens (methyl-, ethyl-, propyl-, butyl, benzyl-, and heptyl-parabens) and 8 bisphenols (Bisphenol A, B, F, P, S, Z, AP, and AF) in PCPs samples (n = 114) obtained from Indian market and in the urine samples of young adult females (n = 52). The concentrations measured in PCPs and urine samples were used to determine the estimated daily intake. The mean concentrations of 6 parabens and 8 bisphenols in PCPs ranged from 38.3 to 2.38 × 105 ng/g and 2.71-148 ng/g, respectively. In urine samples analysed, the mean concentrations of 6 parabens and 8 bisphenols ranged from 0.007 to 293 ng/mL and 0.10-10.8 ng/mL, respectively. There was no significant correlation of EDCs with age, BMI and waist-to-hip ratio (WHR), but significant correlations (p < 0.05) were observed between urinary paraben and bisphenol concentrations. A statistically significant difference (p < 0.05) exists between the BMI and WHR groups by bisphenol concentrations. Estimated daily intake and exposure risks for parabens and bisphenols revealed no possible concerns for Indian young adult females. Hitherto, this is the first study to show that Indian young adult females were exposed to parabens and bisphenols. This study provides evidence on PCPs usage contribute to the urinary concentrations of EDCs.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Changsari, 781101, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Changsari, 781101, India
| | - Ratul Dutta
- Down Town Hospital, Guwahati, Assam, 781106, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Changsari, 781101, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Changsari, 781101, India.
| |
Collapse
|
42
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|
43
|
Wang M, Hu B, Zhou W, Huang K, Fu J, Zhang A, Jiang G. Enhanced hand-to-mouth exposure from hand sanitizers during the COVID-19 pandemic: a case study of triclosan. Sci Bull (Beijing) 2022; 67:995-998. [PMID: 36546255 DOI: 10.1016/j.scib.2022.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meilin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Xing J, Zhang S, Zhang M, Hou J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109275. [PMID: 35077873 DOI: 10.1016/j.cbpc.2022.109275] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a synthetic organic compound that is mainly used in the production of polymer materials polycarbonate and epoxy resin. Widespread use and irregular processing methods have led to BPA being detected globally, raising concerns about its environmental and health effects. This review outlines an overview of the presence and removal of BPA in the environment and consumer products. We also summarized the endocrine-disrupting toxicity of BPA, and the relatively less summarized neurotoxicity, cytotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity. Human exposure data show that humans have been exposed to low concentrations of BPA for a long time, future research should focus on the long-term exposure and the migration of BPA from consumer products to humans and the possible health risks associated with human exposure to BPA. Exploring economical and effective methods to reduce and remove BPA from the environment is imperative. The development of safe, functional and reproducible BPA analogs and the study of its degradation products can be the focus of subsequent research.
Collapse
Affiliation(s)
- Jianing Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Miaolian Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
45
|
A facial electrochemical method for efficient triclosan detection constructed on dodecanethiol monolayers functioned Au nanoparticles-ErGO. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Gajjar P, Liu Y, Li N, Buckley JP, Chen A, Lanphear BP, Kalkwarf HJ, Cecil KM, Yolton K, Braun JM. Associations of mid-childhood bisphenol A and bisphenol S exposure with mid-childhood and adolescent obesity. Environ Epidemiol 2022; 6:e187. [PMID: 35169665 PMCID: PMC8835638 DOI: 10.1097/ee9.0000000000000187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a suspected obesogen that has been associated with adiposity in children. Bisphenol S (BPS), a structural analog of BPA, is used as a BPA substitute and may have similar health effects as BPA. However, few studies have examined whether BPS is associated with childhood adiposity. METHODS We quantified urinary BPA and BPS concentrations in 212 children age 8 years from the HOME Study, a prospective pregnancy and birth cohort study that enrolled pregnant women in Cincinnati, Ohio (2003-2006). We assessed children's adiposity by bioelectric impedance at age 8 years (n = 212), and by anthropometry and dual-energy X-ray absorptiometry at age 12 years (n = 181). We measured serum adipocytokine concentrations at age 12 years (n = 155). Using multivariable linear regression, we estimated covariate-adjusted associations of BPA and BPS with adiposity measures at ages 8 and 12 years and adipocytokine concentrations at age 12 years. RESULTS Each 10-fold increase in urinary BPA concentrations were inversely associated with percent body fat at age 8 years [β = -1.2, 95% confidence interval (CI) = -3.4, 1.0] and 12 years (β = -1.6, 95% CI = -4.0, 0.9). In contrast, urinary BPS concentrations were positively associated with percent body fat at age 8 years (β = 1.1, 95% CI = -0.6, 2.7), but not at 12 years (β = 0.1, 95% CI = -1.7, 1.8). Urinary BPA and BPS concentrations were not associated with serum adiponectin or leptin concentrations. CONCLUSIONS We did not observe evidence that urinary BPA or BPS concentrations during childhood were associated with greater child adiposity at ages 8 and 12 years in this cohort.
Collapse
Affiliation(s)
- Priya Gajjar
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Nan Li
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aimin Chen
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kim M. Cecil
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| |
Collapse
|
47
|
Jambor T, Knížatová N, Lukáč N. Men´s reproductive alterations caused by bisphenol A and its analogues: a review. Physiol Res 2021. [DOI: 10.33549//physiolres.934742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Male reproductive functions are an important area affecting men´s overall health and well-being. However, during the last years, there has been observed increasing incidence of male reproductive issues. The radical growth has been recorded parallelly with a massive expanse of industrialization and agricultural chemigation. Many groups of experts have begun to identify several potential factors and substances that may have adverse effects on men´s reproductive health. Since then, xenobiotics have become a major concern of many scientific studies. There is evidence that most of them have multigenerational and transgenerational effects on reproductive health, which is a serious problem for our population. Bisphenol A could be considered as one of the most studied endocrine disruptors. Until now, several negative effects of bisphenol A were associated with reduced weight testes, histological alterations, impairment spermatogenesis, and steroidogenesis as well as with testes or prostate cancer. Due to convincing evidence, bisphenol A has been started to replace by its analogues such as bisphenol B, S, F, in order to eliminate and suppress the risk of exposure to bisphenol A. However, it seems that a lack of toxicological analyses allows using of these hazardous substances in daily life. Their harmful effect was confirmed by the animal in vitro and in vivo models, while the epidemiological studies monitoring the impact of bisphenol analogues on men's reproductive health are markedly limited. This review provides information about the effects of bisphenol on reproductive health in men. At the same time, it is focused on physiological aspects of sperm viability, steroid hormone secretion, sperm motility, or testes histology in relation to bisphenols exposure.
Collapse
Affiliation(s)
- T Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Slovak Republic.
| | | | | |
Collapse
|
48
|
Zhang H, Li J, Chen Y, Wang D, Xu W, Gao Y. Profiles of parabens, benzophenone-type ultraviolet filters, triclosan, and triclocarban in paired urine and indoor dust samples from Chinese university students: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149275. [PMID: 34333440 DOI: 10.1016/j.scitotenv.2021.149275] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 05/05/2023]
Abstract
Parabens, benzophenone (BP)-type UV filters, triclosan (TCS), and triclocarban (TCC) are commonly used in personal care products. Human exposure to these compounds has received increasing concern because of their adverse health effects. However, the levels of these chemicals in paired urine and indoor samples have never been simultaneously measured. In this work, eight parabens, eight BP-type UV filters, TCS, and TCC were measured in paired urine and indoor dust samples collected from university students and their dormitories in South China. The target analytes were commonly measured in urine (71%-100%) and indoor dust (30%-98%), with median concentrations ranging from 0.16 ng/mL to 19.3 ng/mL in urine and from <0.01 ng/g to 3700 ng/g in indoor dust samples. Females had high levels of most of these target compounds, and gender-related differences were found in the levels of most target analytes. Positive correlations were found in the levels of methylparaben, ethyl paraben, benzophenone-3, and TCS between urine and indoor dust samples. This finding suggested that indoor dust is an important source for human exposure to these compounds. The estimated daily intake (EDI) of these analytes in paired samples was also evaluated. The median EDI-urine values of target analytes varied in the range of 4.02-59,280 ng/kg bw/day. Females had higher median EDI-urine values for most of target analytes than males. In addition, the median EDI-indoor dust values of most target analytes in dust from female dormitories were higher than those in dust from male dormitories. Indoor dust ingestion only had minor contribution (<0.5%) to the total exposure. To the best of the authors' knowledge, this study is the first to simultaneously analyze the concentrations of parabens, BP-type UV filters, TCS, and TCC in the paired urine and indoor samples from university students in South China.
Collapse
Affiliation(s)
- Hua Zhang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, PR China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jingxia Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, PR China
| | - Yanfang Chen
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, PR China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Desheng Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Weiguo Xu
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, PR China.
| | - Yunfei Gao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, PR China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| |
Collapse
|
49
|
Zheng R, Lin S, Yang Y, Fu W. Variability and profiles of lipophilic marine toxins in shellfish from southeastern China in 2017-2020. Toxicon 2021; 201:37-45. [PMID: 34416253 DOI: 10.1016/j.toxicon.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
A total of 1338 samples were analyzed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to study the toxin profiles of lipophilic marine toxins in bivalve mollusks collected from the southeast coast of China from 2017 to 2020. The most abundant toxin was HomoYTX, followed progressively by YTX and PTX2. Low proportions of OA, DTX-1, and DTX-2 were found. No AZA1, AZA2, and AZA3 were quantified above limit of quantitation (LOQ). The highest concentrations of HomoYTX, YTX, PTX2, OA, DTX-1, and DTX-2 were 429, 98.0, 40.3, 33.0, 22.6, and 26.5 μg/kg, respectively. Mussels (Mytilus galloprovincialis, Perna viridis), scallop (Chlamys farreri) and clam (Atrina pectinate) accumulated higher toxin levels than clams (Sinonovaculla Constricta, Ruditapes philippinarum), oyster (Crassostrea gigas) and scallop (Arca granosa). Homo YTX and PTX2 levels reached the maximum in July and June, respectively, and the OA-group peaked in August. The results provide a reliable basis for monitoring marine toxins and protecting the health of aquatic consumers.
Collapse
Affiliation(s)
- Renjin Zheng
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Shouer Lin
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Yan Yang
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China
| | - Wusheng Fu
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China
| |
Collapse
|
50
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|