1
|
Ibáñez J, Pérez-de-Mora A, Santiago-Herrera M, Belloncle B, de Wilde H, Martel-Martín S, Blanco-Alcántara D, Barros R. Environmental and socio-economic evaluation of a groundwater bioremediation technology using social Cost-Benefit Analysis: Application to an in-situ metal(loid) precipitation case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176720. [PMID: 39378832 DOI: 10.1016/j.scitotenv.2024.176720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Bioremediation can be an alternative or complementary approach to conventional soil and water treatment technologies. Determining the environmental and socio-economic impacts of bioremediation is important but rarely addressed. This work presents a comprehensive sustainability assessment for a specific groundwater bioremediation case study based on In-situ Metal(loid) Precipitation (ISMP) by conducting a social Cost-Benefit Analysis (CBA) using two different approaches: environmental Life Cycle Costing (eLCC) and Impact Pathway Approach (IPA). Externalities are calculated in two ways: i) using Environmental Prices (EP) to monetize Life Cycle Assessment (LCA) results and metal(loid)s removed at field scale, and ii) following the IPA steps to determine the social costs avoided by removing arsenic contamination at full scale. The results show that, in the baseline scenario, the project is not socio-economically viable in both cases as the Net Present Value (NPV) is -129,512.61 € and - 415,185,140 € respectively. Sensitivity and scenario analyses are performed to identify the key parameters and actions needed to reach a positive NPV. For instance, increasing the amount of water treated per year to 90 m3 and assuming a 20 % increase in operation costs and a 60 % increase in construction costs can make the project socio-economically viable at the field scale, while a reduction in the social discount rate from a 4 % to a 2 % can lead to a positive NPV at the full scale. The approaches proposed in this work may be useful for practitioners and policymakers when evaluating the environmental and socio-economic impacts of bioremediation technologies at different scales and regions, as well as human health impacts caused by contaminants at the current legal limits.
Collapse
Affiliation(s)
- Jesús Ibáñez
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | | | - Mario Santiago-Herrera
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | | | - Herwig de Wilde
- TAUW België nv, Dept. of Soil & Groundwater, Waaslandlaan 8A3, 9160 Lokeren, Belgium
| | - Sonia Martel-Martín
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - David Blanco-Alcántara
- Department of Economics and Business Administration, Faculty of Economic and Business Sciences, University of Burgos, Calle Parralillos, s/n, 09001 Burgos, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
2
|
Yang Z, Wei C, Sima J, Yan S, Yin L, Xian A, Wan J, Yang J, Song X. Quantitative sustainability assessment for in-situ electrical resistance heating coupled with steam enhanced extraction: An effective approach for the development of green remediation technologies. WATER RESEARCH 2024; 267:122450. [PMID: 39293344 DOI: 10.1016/j.watres.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
There is a lack of quantitative methodology for the sustainability assessment based on field data in the process of innovative technology development for groundwater remediation. This study developed a quantitative assessment framework, a model based on the life cycle assessment integrated with best management practices (LCA-BMPs), to evaluate the environmental, economic, and social sustainability of in-situ electrical resistance heating coupled with steam enhanced extraction (ERH-SEE), an innovative technology being demonstrated in the field. The results indicated that ERH-SEE offered better environmental sustainability performance compared to ERH only, with a reduction in carbon emissions by 52.6 %. ERH-SEE also significantly reduces human toxicity, resource consumption, and ecosystem impacts under the same remediation scenarios. The further assessment indicated that if taking the renewable energy share in energy structure in different countries into consideration, higher shares of renewable energy used in energy supplies can substantially reduce the environmental footprint of the studied scenarios. The economic sustainability assessment results showed that ERH-SEE was more sustainable than ERH only, as it reduces direct economic costs by 35.7 % and provides higher levels of worker employment. Regarding the social sustainability, ERH-SEE involved more complex operational procedures and presented more health risk exposure scenarios compared to ERH only, resulting in slightly more pronounced worker safety issues. Based on the final normalized results, the overall sustainability results of ERH-SEE and ERH only were 78.4 and 61.5, respectively, demonstrating that the sustainability performance of ERH-SEE was better than ERH only. It can be concluded that the application of ERH-SEE in groundwater remediation where significant heterogeneities occur in subsurface can increase the sustainability in developing countries, due to the lower percentage in renewable electricity in the energy supply. This study provided new insights into the technology development for the remediation of soil and groundwater contamination.
Collapse
Affiliation(s)
- Zongshuai Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changlong Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jingke Sima
- Shanghai Academy of Environmental Science, Shanghai 200233, China
| | - Song Yan
- China State Science Dingshi Environmental Engineering Co., Ltd., Beijing 100073, China
| | - Lipu Yin
- China State Science Dingshi Environmental Engineering Co., Ltd., Beijing 100073, China
| | - Ao Xian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jinzhong Wan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jie Yang
- Shanghai Academy of Environmental Science, Shanghai 200233, China.
| | - Xin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Song Y, Pan S, Jin Y, O'Connor D, Nathanail P, Bardos P, Kang Y, Zuo X, Zhang H, Hou D. Comparative life-cycle sustainability assessment of centralized and decentralized remediation strategies at the city level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170908. [PMID: 38350574 DOI: 10.1016/j.scitotenv.2024.170908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Remediation of contaminated soil at industrial sites has become a challenge and an opportunity for sustainable urban land use, considering the substantial secondary impacts resulting from remediation activities. The design of soil remediation strategies for multi-site remediation from a regional perspective is of great significance for cities with a large number of brownfields. Centralized and decentralized facilities have been studied in different environmental fields, yet limited research has focused on centralized soil remediation, specifically the treatment of contaminated soil from different sites through the construction of shared soil treatment facilities. This study proposes a framework for comparing centralized and decentralized strategies for contaminated soil remediation based on the integration of life-cycle sustainability assessment and multi-objective optimization. With Zhuzhou, an industrial city in China, serving as an example, results show that after optimization, the centralized scenario can reduce total environmental impacts by 25 %-41 %. In addition, the centralized scenario can reduce economic costs by 27 %-39 %, saving up to 176 million USD. The advantages of the centralized soil remediation strategy include: (1) increased use of soil washing, (2) reduced use of off-site disposal, and (3) reduced construction and efficient utilization of soil treatment facilities. In conclusion, the centralized strategy is relatively suitable for cities or areas with a large number of medium or small-sized contaminated sites. The built framework can quantitatively evaluate multiple sites soil remediation at both the city and individual site level, allowing for a straightforward and objective comparison with the optimal remediation design.
Collapse
Affiliation(s)
- Yinan Song
- School of Environment, Tsinghua University, Beijing 100084, China; CNPC Research Institute of Safety & Environment Technology, Beijing 102206, China
| | - Sihan Pan
- School of Environment, Tsinghua University, Beijing 100084, China; Department of Civil & Environmental Engineering, Stanford University, Stanford, CA 94305, United States
| | - Yuanliang Jin
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester GL7 1RS, United Kingdom
| | - Paul Nathanail
- Land Quality Management Ltd, Nottingham NG7 2TU, United Kingdom
| | - Paul Bardos
- r3 Environmental Technology Ltd, RG6 6AT Reading, United Kingdom
| | - Yang Kang
- Hunan Zhongsen Environmental Technologies Co., Ltd., Zhuzhou 412004, China
| | - Xiaoyong Zuo
- China Communications Third Navigation Engineering Bureau Co., Ltd., Shanghai 200032, China
| | - Hengyong Zhang
- China Communications Third Navigation Engineering Bureau Co., Ltd., Shanghai 200032, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Çankaya S, Pekey B. Evaluating the environmental and economic performance of biological and advanced biological wastewater treatment plants by life cycle assessment and life cycle costing. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:373. [PMID: 38491308 DOI: 10.1007/s10661-024-12519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
The primary objective of this study is to assess and establish benchmarks for environmental and economic sustainability of biological and advanced biological wastewater treatment plants (WWTPs) with different treatment technologies and characteristics. Furthermore, the study aims to determine the beneficial role of WWTPs to reduction of eutrophication potential. Environmental and economic sustainability of ten municipal WWTPs was assessed using life cycle assessment (LCA) and life cycle costing (LCC). In the first section of the study, LCA was performed to determine the environmental performance of the WWTPs. Furthermore, net environmental benefit (NEB) approach was implemented to reveal the beneficial role of WWTPs to eutrophication potential. In the subsequent section, LCA-based LCC was conducted by integrating the results of LCA. The most significant environmental impact was determined as marine aquatic ecotoxicity, which is highly affected from the generation and transmission of electricity consumed in the WWTPs. Wastewater recovery and co-incineration of sewage sludge in cement kiln ensure significant environmental savings on ozone layer depletion, human toxicity, acidification, photochemical oxidation, and abiotic depletion (fossil fuel) potential. Considering NEB approach, the highest NEB values were found for the WWTPs with the higher organic load and nutrient concentration in the influent. The results of LCC in WWTPs varied between 0.21 and 0.53 €/m3. External (environmental) costs were evaluated higher than internal (operational) costs for all selected WWTPs. While eutrophication was the highest among environmental costs, electricity cost was the highest among operational costs for almost all WWTPs.
Collapse
Affiliation(s)
- Simge Çankaya
- Department of Environmental Engineering, Kocaeli University, Kocaeli, Turkey.
| | - Beyhan Pekey
- Department of Environmental Engineering, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
5
|
Lee H, Sam K, Coulon F, De Gisi S, Notarnicola M, Labianca C. Recent developments and prospects of sustainable remediation treatments for major contaminants in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168769. [PMID: 38008308 DOI: 10.1016/j.scitotenv.2023.168769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Rapid industrialisation and urbanisation are contributing to the entry of emerging contaminants into the environment, posing a significant threat to soil health and quality. Therefore, several remediation technologies have been investigated and tested at a field scale to address the issue. However, these remediation technologies face challenges related to cost-effectiveness, environmental concerns, secondary pollution due to the generation of by-products, long-term pollution leaching risks, and social acceptance. Overcoming these constraints necessitates the implementation of sustainable remediation methodologies that prioritise approaches with minimal environmental ramifications and the most substantial net social and economic advantages. Hence, this review delves into diverse contaminants that threaten soil health and quality. Moreover, it outlines the research imperatives for advancing innovative remediation techniques and effective management strategies to tackle this concern. The review discusses a remediation treatment train approach that encourages resource recovery, strengthens the circular economy, and employs a Life Cycle Assessment (LCA) framework to assess the environmental impacts of different remediation strategies. Additionally, the study explores mechanisms to integrate sustainability principles into soil remediation practices. It underscores the necessity for a comprehensive and systematic approach that takes into account the economic, social, and environmental consequences of remediation methodologies in the development of sustainable solutions.
Collapse
Affiliation(s)
- H Lee
- College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - K Sam
- School of the Environment, Geography and Geoscience, University of Portsmouth, University House, Winston Churchill Ave, Portsmouth PO1 2UP, UK
| | - F Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - S De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - M Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - C Labianca
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Arup, Level 5, Festival Walk, 80 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
6
|
Ji A, Guan J, Zhang S, Ma X, Jing S, Yan G, Liu Y, Li H, Zhao H. Environmental and economic assessments of industry-level medical waste disposal technologies - A case study of ten Chinese megacities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:203-217. [PMID: 38061188 DOI: 10.1016/j.wasman.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Medical waste (MW) is exploding due to the COVID-19 pandemic, posing a significant environmental threat, and leading to the urgent requirement for affordable and environmentally friendly MW disposal technologies. Prior research on individual MW disposal plants is region-specific, applying these results to other regions may introduce bias. In this study, major MW disposal technologies in China, i.e., incineration technologies (pyrolysis incineration and rotary kiln incineration), and sterilization technologies (steam sterilization, microwave sterilization, and chemical disinfection) with residue landfill or incineration were analyzed from an industry-level perspective via life cycle assessment (LCA), life cycle costing (LCC) and net present value (NPV) methods. Life cycle inventories and economic cost data for 4-5 typical companies were selected from 128 distinct enterprises and academic sources for each technology. LCA results show that microwave sterilization with residue incineration has the lowest environmental impact, emitting only 480 kg CO2 eq. LCC and NPV analyses indicate that steam sterilization with landfilling is the most economical, yielding revenues of 1,210 CNY/t and breaking even in the first year. Conversely, pyrolysis and rotary kiln incineration break even between the 4th and 5th years. Greenhouse gas emissions from the MW disposal in ten cities with the largest MW production in 2020 increased by 7% over 2019 to 43,800 tons and other pollutants increased by 6% to 12%. Economically, Shanghai exhibits the highest cost-effectiveness, while Nanjing delivers the lowest. It can be observed that the adoption of optimal environmental technologies has resulted in a diminution of greenhouse gas emissions by 279,000 tons and energy conservation of 1.76 billion MJ.
Collapse
Affiliation(s)
- Aimin Ji
- Ocean College, Tangshan Normal University, Tangshan 063210, China
| | - Jinghua Guan
- School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
| | - Siqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaoling Ma
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Sida Jing
- School of Basic Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Guanghao Yan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yue Liu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Haiying Li
- School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
| | - Hailong Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Li T, Wei G, Liu H, Gong Y, Zhao H, Wang Y, Wang J. Comparative study of electroplating sludge reutilization in China: environmental and economic performances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106598-106610. [PMID: 37733201 DOI: 10.1007/s11356-023-29849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Harmless disposal and reutilization of electroplating sludge (ES) attract growing interests due to the high content of heavy metals, which requires economical-affordable and environmentally friendly processing technologies. Main reutilization alternatives in China, i.e., acid leaching, bioleaching, smelting, ironmaking blast furnace co-processing (IBFC), and cement kiln co-processing (CKC), were evaluated and compared via life cycle assessment (LCA) and life cycle costing (LCC) methods. In addition, the heavy metal recovery potential of these scenarios was also evaluated to focus on the sustainable use of metal resources. LCA results show that acid leaching outperforms other scenarios due to the environmental benefits originating from recovering heavy metals, while smelting exhibits the worst due to high energy consumption. The environmental contribution analysis reveals that the product nickel sulfate has a significant positive impact on acid leaching and bioleaching scenarios, and energy consumption is the key factor for smelting, IBFC, and CKC. LCC results show that bioleaching outperforms others, while CKC performs the worst because only inorganic materials are utilized. Bioleaching has the lowest externality cost while CKC has the highest. The heavy metal recovery assessment indicates that bioleaching exhibits the greatest potential with recovery rates of 99%, 99%, 93%, 96%, and 95% for Cu, Cr, Ni, Zn, and Fe, respectively. In contrast, the target heavy metal recovery rate for both acid leaching and smelting is 93%. Acid leaching and bioleaching scenarios are more advantageous from a comprehensive comparison.
Collapse
Affiliation(s)
- Tong Li
- College of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Guoxia Wei
- College of Science, Tianjin Chengjian University, Tianjin, 300384, China
| | - Hanqiao Liu
- College of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Yongyue Gong
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang, 110819, China
| | - Hailong Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanzhang Wang
- College of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Jincheng Wang
- Research Institute for Eco-civilization, Chinese Academy of Social Sciences, Beijing, 102488, China
| |
Collapse
|
8
|
Xu Z, Ito L, Dos Muchangos LS, Tokai A. Health risk assessment and cost-benefit analysis of agricultural soil remediation for tailing dam failure in Jinding mining area, SW China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3759-3775. [PMID: 36513912 DOI: 10.1007/s10653-022-01445-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
The impact of the tailing dams and the economic feasibility of the remediation process is significant for future risk management for tailing dams. In this research, we develop a hypothetical failure scenario for a tailing dam in the Jinding mining area, Southwest China. We assess the exposure with the Geo-Environmental Risk Assessment System, tier-1 model, and health impact with Disability-Adjusted Life Years (DALY). Cost and benefit are also analyzed for the following clean-up process. The result shows that the exposure dose (mg/kg-BW/d) of As, Cd, and Pb right after the dam failure is 1.07 × 10-2 for As, 1.76 × 10-4 for Cd, and 5.68 × 10-3 for Pb, respectively. The DALY caused by heavy metal exposure is 2.63 × 10-2 DALY per year, which significantly exceeds the tolerable level. This indicates that the tailing dam failure will pose a high health risk to the residents, and remediation is necessary. After remediation, the DALY is 1.24 × 10-8 DALY per year, indicating the clean-up process effectively reduces the resident's health impact. From the financial point of view, the net present value of the clean-up is $- 1.02 × 107. This indicates that the clean-up process is not economically feasible. Sensitivity analysis shows that the amount of released tailing influences the output result. The time span for benefit estimation is also an important issue. This research shows that the impact of a tailing dam failure will be severe, and remediation may be effective but economically infeasible. Therefore, preventing tailing dam failure is the most crucial task for the local government.
Collapse
Affiliation(s)
- Zhongyu Xu
- Laboratory of Environmental Management, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | - Lisa Ito
- Laboratory of Environmental Management, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Leticia Sarmento Dos Muchangos
- Laboratory of Environmental Management, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Akihiro Tokai
- Laboratory of Environmental Management, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Ding D, Jiang D, Zhou Y, Xia F, Chen Y, Kong L, Wei J, Zhang S, Deng S. Assessing the environmental impacts and costs of biochar and monitored natural attenuation for groundwater heavily contaminated with volatile organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157316. [PMID: 35842168 DOI: 10.1016/j.scitotenv.2022.157316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Although biochar (BC) and monitored natural attenuation (MNA) are regarded as green technologies for remediating volatile organic compounds (VOCs) contaminated groundwater, their life cycle environmental impacts and costs have not been systematically quantified. This work assessed the primary and secondary environmental impacts and the cost of three options for remediating the groundwater at a closed pesticide manufacturing plant site, which was contaminated by high levels of multiple VOCs and is undergoing MNA. The studied options include a combination of MNA and BC (MNA + BC), BC, and pump and treat (PT). The environmental impacts were examined through a Life Cycle Assessment (LCA) using the ReCiPe 2016 method. The costs were evaluated using a Life Cycle Cost (LCC) method created in the SimaPro. The LCA results show that the overall environmental impacts follow the sequence of PT > BC > MNA + BC, but MNA + BC shows evident primary impacts. The CO2 eq emissions generated from PT are more than five times of MNA + BC or BC. The cement, electricity, and steel for construction, and the operation energy are the environmental hotspots in PT. In MNA + BC and BC, the electricity for feedstock pyrolysis is the environmental hotspot, while the use of BC by-products to generate heat and power has positive environmental credit that compensates other negative environmental burdens. Incorporating institutional controls, using renewable energy and recycled or alternative materials, and developing BC with superior adsorption capacity are recommended to optimize the remediation strategies. The LCC results show that PT renders the highest cost, with cement and electricity being the two most expensive items. Electricity is the dominant contributor to the costs of MNA + BC and BC, while the avoided heat and power generation can save the cost of other items. Overall, this study provides scientific support to develop and optimize green remediation solutions for VOCs contaminated groundwater.
Collapse
Affiliation(s)
- Da Ding
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Dengdeng Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Yan Zhou
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Feiyang Xia
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Lingya Kong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Shengtian Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| |
Collapse
|
10
|
Li X, Cundy AB, Chen W, Lyu S. Systematic and bibliographic review of sustainability indicators for contaminated site remediation: Comparison between China and western nations. ENVIRONMENTAL RESEARCH 2021; 200:111490. [PMID: 34116018 DOI: 10.1016/j.envres.2021.111490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Sustainable remediation, which promotes the use of more sustainable practices during environmental clean-up activities, is an area of intense international development. While numerous indicators related to sustainable remediation assessment have been utilized and published in related academic literature, they are difficult to unify and vary in emphasis between countries. Following literature retrieval from CNKI, Springer, ScienceDirect, and Wiley Online databases, we present a systematic and bibliometric analysis of relevant national and international literature to define the most frequently considered indicators of sustainability, which play important roles in selecting remediation technologies or site management methods from a sustainability perspective. Following the application of co-occurrence analysis and social network analysis, the results indicate that 1) environmental criteria are most commonly used in evaluating remediation technologies, with significantly less emphasis on social criteria in Chinese publications in particular; 2) with an increasing number of publications in the last 20 years, sustainable remediation has gone through an initial stage, rising stage, and burst or wider adoption stage, characterized by a transformation of the research theme from a predominantly risk-based management approach to a sustainability-based one, with risk management as an underpinning principle; 3) health, resource, cost, and time are the most widely used indicators in terms of social, environmental, economic, and technical criteria, respectively; 4) clear differences exist between China and other nations, particularly in the frequency of usage of each indicator, the application of social criteria, and preferred stakeholders. Nevertheless, China has made significant progress and now makes increasing contributions to sustainable remediation at an international level.
Collapse
Affiliation(s)
- Xiaonuo Li
- Laboratory of Soil Environmental Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Andrew B Cundy
- School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | - Weiping Chen
- Laboratory of Soil Environmental Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100085, China.
| | - Sidan Lyu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Günkaya Z, Özkan A, Banar M. The effect of energy-saving options on environmental performance of a building: a combination of energy audit-life cycle assessment for a university building. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8822-8832. [PMID: 33073310 DOI: 10.1007/s11356-020-11141-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
An energy audit was realized for a building group located on a university campus to measure the environmental sustainability and efficient usage of natural resources. As a result of energy audit, exterior insulation and double-glazing application were came to the front for energy-saving options. Although energy audit provides energy-saving options as output, it is not enough to provide information about how environmental impacts will change if the defined options are used. To determine the improvements in terms of environmental indicators, these options were assessed with life cycle assessment (LCA). LCA was realized for 50 years life span for 1 m3 of the building. CML-IA method was used to conduct LCA analyses. Ecovalue08 was applied as a monetary weighting method since the used CML-IA method has no weighting function. Results show that there are significant improvements (> 5%) on ADPff (11-12.5%) and GWP100 (8.5-9.7%) impacts provided by both of the energy-saving options. Additionally, double glazing would provide a 10.5% improvement on ODP. On the other hand, the exterior insulation application would increase the ODP value of EB by 34%. The impact category of GWP100 is found as the most dominant impact according to Ecovalue08. The ranking of the other impact categories from higher to lower value is HTP, ADPff, and AP.
Collapse
Affiliation(s)
- Zerrin Günkaya
- Department of Environmental Engineering, Eskişehir Technical University, 26555, Eskisehir, Turkey.
| | - Aysun Özkan
- Department of Environmental Engineering, Eskişehir Technical University, 26555, Eskisehir, Turkey
| | - Müfide Banar
- Department of Environmental Engineering, Eskişehir Technical University, 26555, Eskisehir, Turkey
| |
Collapse
|
12
|
Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110587. [PMID: 32325327 DOI: 10.1016/j.ecoenv.2020.110587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The persistence and bioaccumulation of environmental pollutants in water bodies, soils and living tissues remain alarmingly related to environmental protection and ecosystem restoration. Adsorption-based techniques appear highly competent in sequestering several environmental pollutants. In this review, the recent research findings reported on the assessments of composts and compost-amended soils as adsorbents of heavy metal ions, dye molecules and xenobiotics have been appraised. This review demonstrates clearly the high adsorption capacities of composts for umpteen environmental pollutants at the lab-scale. The main inferences from this review are that utilization of composts for the removal of heavy metal ions, dye molecules and xenobiotics from aqueous environments and soils is particularly worthwhile and efficient at the laboratory scale, and the adsorption behaviors and effectiveness of compost-type adsorbents for agrochemicals (e.g. herbicides and insecticides) vary considerably because of variabilities in structure, topology, bond connectivity, distribution of functional groups and interactions of xenobiotics with the active humic substances in composts. Compost-based field-scale remediation of environmental pollutants is still sparse and arguably much challenging to implement if, furthermore, real-world soil and water contamination issues are to be addressed effectively. Hence, significant research and process development efforts should be promptly geared and intensified in this direction by extrapolating the lab-scale findings in a cost-effective manner.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia.
| |
Collapse
|
13
|
Ameller J, Rinaudo JD, Merly C. The Contribution of Economic Science to Brownfield Redevelopment: A Review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:184-196. [PMID: 31799791 DOI: 10.1002/ieam.4233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Urban planners increasingly perceive Brownfield redevelopment (BFR) as a strategic priority. BFR not only allows suppressing some of the nuisances caused by derelict and contaminated lands, it also contributes to revitalizing dense urban areas and preventing the undesired effects of urban sprawl. This literature review analyzes how economists have contributed to removing some of the barriers that prevent or restrict BFR. A first contribution was to demonstrate the economic benefits of BFR. Economists also contributed to the development of multidisciplinary decision support tools used to rank BFR projects in terms of long-term sustainability and social welfare. They contributed to the design of institutional arrangements, including regulatory and economic instruments, that can facilitate the engagement of stakeholders in BFR projects. Our literature search combines the use of a standard and a systematic literature review to identify relevant papers scattered in very diverse publications. We show that there is significant scope for better integration of economic analysis within the multidisciplinary mainstream of BFR literature and provide pathways for future research. Integr Environ Assess Manag 2020;16:184-196. © 2019 SETAC.
Collapse
Affiliation(s)
- Joaquin Ameller
- French Environment and Energy Management Agency (ADEME), Angers, France
- BRGM, University Montpellier, Montpellier, France
- Montpellier SupAgro, Montpellier, France
| | | | | |
Collapse
|
14
|
da S Trentin AW, Reddy KR, Kumar G, Chetri JK, Thomé A. Quantitative Assessment of Life Cycle Sustainability (QUALICS): Framework and its application to assess electrokinetic remediation. CHEMOSPHERE 2019; 230:92-106. [PMID: 31102876 DOI: 10.1016/j.chemosphere.2019.04.200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/21/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
In recent years, the broader environmental impacts of remediation that arise from different remediation activities has drawn attention of practitioners, remediation design professionals and academicians to evaluate the net environmental benefit of environmental remediation projects. The main objective of this paper is to describe the Quantitative Assessment of Life Cycle Sustainability (QUALICS) framework, a new tool developed to strengthen decision-making in the selection of sustainable remedial technologies for the clean-up of contaminated sites. The proposed framework is a combination of two multi-criteria evaluation methods namely, the Integrated Value Model for Sustainable Assessment (MIVES) and Analytic Hierarchy Process (AHP). The QUALICS uses a multi-criteria assessment framework to support decision-making in remediation projects. A description of the methodology adopted for sustainability assessment of alternative remedial strategies using QUALICS framework is presented in this study. In addition, a case study is discussed to demonstrate the application of the QUALICS framework for the sustainability assessment of different remediation options for clean-up of a contaminated site. The case study involves sustainability assessment of different remediation options namely, electrokinetic remediation (EKR), excavation/disposal, and phytoremediation for remediation of a contaminated site. A sensitivity analysis was also performed for the EKR option by varying different parameters including electrode materials, energy source, electrolyte used, to analyze their influence on the sustainability of the alternative remedial options. The proposed framework can also be applied to any project in general to quantify and compare the sustainability indices of each of the alternative options considered and thereby identify the most sustainable option.
Collapse
Affiliation(s)
- Adan W da S Trentin
- Graduate Program of Civil and Environmental Engineering, University of Passo Fundo, Passo Fundo, Brazil
| | - Krishna R Reddy
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, USA.
| | - Girish Kumar
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, USA
| | - Jyoti K Chetri
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, USA
| | - Antonio Thomé
- Graduate Program of Civil and Environmental Engineering, University of Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
15
|
Visentin C, da Silva Trentin AW, Braun AB, Thomé A. Application of life cycle assessment as a tool for evaluating the sustainability of contaminated sites remediation: A systematic and bibliographic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:893-905. [PMID: 30978551 DOI: 10.1016/j.scitotenv.2019.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
As the discussion surrounding sustainable remediation has advanced, numerous tools have been developed to evaluate the sustainability of remediation technologies, including life cycle assessment (LCA). In the present study, a systematic and bibliometric analysis of scientific articles indexed in the databases of Scopus and the Web of Science in the field of LCA was performed, particularly studies relating to the remediation of contaminated sites from a sustainability perspective. We selected a bibliographic portfolio (BP) of papers related to sustainable remediation using LCA. Then, we performed a bibliometric analysis of the selected BP, presenting theoretical development, highlighting the authors, journals, and countries associated with these publications. Finally, we conducted a thematic synthesis and reviewed the prospects for future research. The BP was composed of 44 papers from 2007 to 2018. In 2018 there was the highest number of publications, corresponding to 27% of the total BP. The results showed that developed countries have generated the largest number of publications, whereas developing countries had lower representation in the BP. However, China stands out as the second country with the highest number of publications. The thematic analysis showed that most articles have aimed to assess the environmental impacts of remediation techniques. However, several publications have performed a broader analysis considering the economic and social pillars of sustainability through using LCA in conjunction with other tools. The study also highlights the main application of LCA in decision-making on the remediation processes in the context of sustainable remediation. The present research study makes several new contributions, providing academics and practitioners with an overview of the implementation of LCA in the field of sustainable remediation of contaminated sites through sorting published data according to scientific indexes and bibliometrics, describing the main research approaches, and highlighting prospects for new research.
Collapse
Affiliation(s)
- Caroline Visentin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900 Passo Fundo, RS, Brazil.
| | - Adan William da Silva Trentin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900 Passo Fundo, RS, Brazil
| | - Adeli Beatriz Braun
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900 Passo Fundo, RS, Brazil
| | - Antônio Thomé
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
16
|
Chemical or Natural? Including LCA in Social CBA to Compare Remediation Alternatives for a Dry-Cleaning Facility. SUSTAINABILITY 2019. [DOI: 10.3390/su11071975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The choice between remediation alternatives for contaminated sites is complicated by different elements, e.g., the occurrence of multiple contaminants, the extent of the contamination, or the urban location, complicate the choice between remediation alternatives. This paper addresses this challenging choice by analyzing a case study of an extensive soil and groundwater contamination by a dry-cleaning company. For remediating this site, two alternatives were proposed. The first remediation alternative combines several techniques with in-situ chemical oxidization being the most important one. Due to the potential negative impact of this alternative on local residents a second remediation alternative was drawn up, in which the focus lies on the use of stimulated biological degradation. A Life Cycle Assessment (LCA) was performed on both alternatives and showed that the second alternative had a lower environmental impact. The inclusion of monetized LCA results in the calculation of a social Cost-Benefit Analysis (CBA) provided a more extensive view of the secondary environmental costs and benefits of the remediation alternatives. The results of the social CBA allow to conclude that both alternatives are not socially desirable, the chemical alternative however is socially less disadvantageous than the more natural remediation alternative.
Collapse
|
17
|
Green Project Planning with Realistic Multi-Objective Consideration in Developing Sustainable Port. SUSTAINABILITY 2018. [DOI: 10.3390/su10072385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
The Development and Use of Sustainability Criteria in SuRF-UK’s Sustainable Remediation Framework. SUSTAINABILITY 2018. [DOI: 10.3390/su10061781] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sustainability considerations have become widely recognised in contaminated land management and are now accepted as an important component of remediation planning and implementation around the world. The Sustainable Remediation Forum for the UK (SuRF-UK) published guidance on sustainability criteria for consideration in drawing up (or framing) assessments, organised across 15 “headline” categories, five for the environment element of sustainability, five for the social, and five for the economic. This paper describes how the SuRF-UK indicator guidance was developed, and the rationale behind its structure and approach. It describes its use in remediation option appraisal in the UK, and reviews the international papers that have applied or reviewed it. It then reviews the lessons learned from its initial use and the opinions and findings of international commentators, and concludes with recommendations on how the indicator categories might be further refined in the future. The key findings of this review are that the SuRF-UK framework and indicator guidance is well adopted into practice in the UK. It is widely recognised as the most appropriate mechanism to support sustainability-based decision making in contaminated land decision making. It has influenced the development of other national and international guidance and standards on sustainable remediation. However, there is room for some fine tuning of approach based on the lessons learned during its application.
Collapse
|