1
|
Hamzah N, Höjer Holmgren K, Åstot C, van der Schans MJ, de Reuver L, Vanninen P. Chlorinated organic compounds in concrete as specific markers for chlorine gas exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132332. [PMID: 37598516 DOI: 10.1016/j.jhazmat.2023.132332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
The formation of chlorinated organic compounds in concrete debris exposed to reactive chlorine was studied to search for markers specific to chlorine gas exposure. Concrete materials of different origins were exposed to a range of species of reactive chlorine including bleach, humid and dry chlorine gas at different concentrations. Chlorinated organic compounds in concrete extracts were analysed by targeted gas and liquid chromatography-tandem mass spectrometry (GC-MS/MS and LC-MS/MS) and by non-targeted screening using the corresponding high-resolution techniques (GC-HRMS and LC-HRMS). Overall, different levels and species of chlorinated organic compounds namely chlorophenols, chlorobenzenes, chloromethoxyphenols, chloromethylbenzenes and chloral hydrate were identified in these chlorinated concrete extracts; two examples of diagnostic markers for neat chlorine exposure were trichloromethylbenzene and tetrachlorophenol. The old concrete samples from the 1930s and 1950s had the most chlorinated organic compounds after exposure to neat chlorine gas. Lignin or lignin degradation products were identified as probable candidates for phenolic precursor molecules in the concrete samples. Multivariate data analysis (OPLS-DA) shows distinct patterns for bleach and chlorine exposure. The chlorinated chemicals and specific markers for chlorine gas discovered in our research assist other laboratories in forensic investigations of chlorine gas attacks.
Collapse
Affiliation(s)
- Nurhazlina Hamzah
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.
| | - Karin Höjer Holmgren
- The Swedish Defence Research Agency, FOI CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Crister Åstot
- The Swedish Defence Research Agency, FOI CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Marcel J van der Schans
- TNO Defence, Safety and Security, Dep. CBRN Protection, Lange Kleiweg 137, 2288GJ Rijswijk, the Netherlands
| | - Leo de Reuver
- TNO Defence, Safety and Security, Dep. CBRN Protection, Lange Kleiweg 137, 2288GJ Rijswijk, the Netherlands
| | - Paula Vanninen
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
2
|
Ma M, Wei Y, Wei H, Liu X, Liu H. High-efficiency solid-phase microextraction performance of polypyrrole enhanced titania nanoparticles for sensitive determination of polar chlorophenols and triclosan in environmental water samples. RSC Adv 2021; 11:28632-28642. [PMID: 35478593 PMCID: PMC9038157 DOI: 10.1039/d1ra04405b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/01/2021] [Indexed: 12/17/2022] Open
Abstract
In this work, a polypyrrole (PPy)/TiO2 nanocomposite coating was fabricated by the direct electropolymerization of pyrrole on annealed TiO2 nanoparticles and evaluated as a novel direct immersion solid phase microextraction (DI-SPME) fiber coating for extraction of trace amounts of pollutants in environmental water samples. The functionalized fiber is mechanically and chemically stable, and can be easily prepared in a highly reproducible manner. The effects of the pyrrole monomer concentration, polymerization voltage and polymerization time on the fiber were discussed. Surface morphological and compositional analyses revealed that the composite coating of nano polypyrrole and titanium dioxide nanoparticles (TiO2NPs) uniformly doped the Ti substrate. The as-fabricated fiber exhibited good extraction capability for phenolic compounds in combination with high performance liquid chromatography-UV detection (HPLC-UV). At the optimum SPME conditions, the calibration curves were linear (R2 ≥ 0.9965). LODs and LOQs of less than 0.026 μg L−1 and 0.09 μg L−1 , respectively, were achieved, and RSDs were in the range 3.5–7.2%. The results obtained in this work suggest that PPy/TiO2 is a promising coating material for future applications of SPME and related sample preparation techniques. A PPy/TiO2 nanocomposite coating was fabricated by direct electropolymerization of pyrrole on annealed TiO2 nanoparticles and evaluated as a novel direct immersion solid phase microextraction fiber coating for the extraction of trace pollutants in water.![]()
Collapse
Affiliation(s)
- Mingguang Ma
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| | - Yunxia Wei
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| | - Huijuan Wei
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| | - Xianyu Liu
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| |
Collapse
|
3
|
Zhuang M, Ren D, Guo H, Wang Z, Zhang S, Zhang X, Gong X. Degradation of 2,4-dichlorophenol contaminated soil by ultrasound-enhanced laccase. ENVIRONMENTAL TECHNOLOGY 2021; 42:1428-1437. [PMID: 31530251 DOI: 10.1080/09593330.2019.1669723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
In this paper, ultrasound was used to enhance the degradation effect of laccase for 2,4-dichlorophenol (2,4-DCP) in soil. The degradation effect and mechanism of the ultrasound-enhanced laccase were investigated. From the results, the degradation rate of 2,4-DCP can reach as high as 51.7% under the following conditions: reaction period was 21 h, pH = 5.5, ultrasound power was 240 W, duty cycle was 50%, and moisture content was 50%. Using the ultrasound-enhanced laccase, the degradation rate of 2,4-DCP was significantly higher than that using only laccase or only ultrasound. In addition, when ultrasound was used, the optimum pH for the degradation of 2,4-DCP using laccase was increased, making the degradation technology more practical. The analysis results from high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) revealed the degradation pathway of 2,4-DCP in soil: first, 2,4-DCP gradually became phenol through dechlorination, then the small molecular organic matter was generated from the hydroxyl radical or laccase reaction.
Collapse
Affiliation(s)
- Mengjuan Zhuang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Dajun Ren
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Huiwen Guo
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Zhaobo Wang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Shuqin Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Xiaoqing Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Xiangyi Gong
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| |
Collapse
|
4
|
Wang Z, Ren D, Zhao Y, Huang C, Zhang S, Zhang X, Kang C, Deng Z, Guo H. Remediation and improvement of 2,4-dichlorophenol contaminated soil by biochar-immobilized laccase. ENVIRONMENTAL TECHNOLOGY 2021; 42:1679-1692. [PMID: 31591947 DOI: 10.1080/09593330.2019.1677782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
In this paper, laccase was immobilized with the adsorption-crosslinking method in which biochar was used as the carrier and glutaraldehyde was used as the crosslinking agent. Firstly, the optimal immobilization conditions and optimal operating conditions were investigated, and then the stability of both free laccase and immobilized laccase was compared. Finally, the 2,4-dichlorophenol contaminated soil was remedied with both free laccase and immobilized laccase, and the improvement on the remediation of the contaminated soil by immobilized laccase was analysed through the ecological evaluation. The results showed that in the optimal immobilization condition, the biochar with a particle size of 30 mesh should be selected, and glutaraldehyde with a volume fraction of 4% and 20 mL of laccase solution should be added to complete the 6-hour adsorption operation and 4-hour crosslinking operation. The stability of immobilized laccase was better than that of free laccase, and the thermal deactivation kinetic equation for the free laccase was lnA = -0.7657t + 0.4344 and the thermal deactivation kinetic equation for the immobilized laccase was lnA = -0.1048t + 0.0608, respectively. The degradation ability of immobilized laccase for 2-4 dichlorophenol was better than that of free laccase. The degradation rate of 2,4-dichlorophenol was 44.4% in the free laccase group and 64.6% in the immobilized laccase group. The ecological evaluation showed that the biochar-immobilized laccase had a positive effect on the soil ecological environment in the remediation process of the soil and can improve the remediation of the contaminated soil to some extent.
Collapse
Affiliation(s)
- Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Yusheng Zhao
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Chaofan Huang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Chen Kang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Zhiqun Deng
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Huiwen Guo
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Hong J, Hao X, Liu T, Liu W, Xie M, Wang M, Xu Q, Yang B. Rapid Synergistic Cloud Point Extraction (RS-CPE) with Partial Least Squares (PLS) for the Simultaneous Determination of Chlorophenols (CPs) in Environmental Water Samples Using a Microplate Assay (MPA). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1717508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiajia Hong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaotang Hao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tiantian Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Weiting Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Meiyi Xie
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mei Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qian Xu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Bingyi Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|