1
|
Hu Y, Zhang X, Chen H, Jiang Y, Zhang J. Effects of forest age and season on soil microbial communities in Chinese fir plantations. Microbiol Spectr 2024; 12:e0407523. [PMID: 38980023 PMCID: PMC11302042 DOI: 10.1128/spectrum.04075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Understanding changes in the distribution patterns and diversity of soil microbial communities from the perspectives of age-related changes, seasonal variations, and the interaction between the two factors can facilitate the management of plantations. In Chinese fir plantations, we collected soils from different depths in over-mature forests, mature forests, near-mature forests, middle-aged forests, and young forests in summer, autumn, and winter in China's subtropical regions. As the forests developed, bacterial and fungal communities' diversity changed, reached a minimum value at near-mature forests, and then increased in mature forests or over-mature forests. Near-mature forests had the lowest topological properties. The Shannon index of microbial communities varied with seasonal changes (P < 0.05). Bacterial and fungal community composition at genus level was more closely related to temperature indicators (including daily average temperature, daily maximum temperature, and daily minimum temperature) (P < 0.01, 0.5554 < R2 <0.8185) than daily average precipitation (P > 0.05, 0.0321 < R2 <0.6773). Bacteria were clustered by season and fungi were clustered by forest age. We suggested that extending the tree cultivation time of plantations could promote microbial community recovery. In addition, we found some species worthy of attention, including Bacteroidetes in autumn in over-mature forests, and Firmicutes in summer in young forests.IMPORTANCEChinese fir [Cunninghamia lanceolata (Lamb.) Hook] is an important fast-growing species with the largest artificial forest area in China, with the outstanding problems of low quality in soil. Soil microorganisms play a crucial role in soil fertility by decomposing organic matter, optimizing soil structure, and releasing essential nutrients for plant growth. In order to maintain healthy soil quality and prevent nutrient depletion and land degradation, it is crucial to understand the changes of soil microbial composition and diversity. Our study determined to reveal the change of soil microbial community from stand age, season, and the interaction between the two aspects, which is helpful to understand how interannual changes in different years and seasonal changes in one year affect soil fertility restoration and sustainable forest plantation management. It is a meaningful exploration of soil microbial communities and provides new information for further research.
Collapse
Affiliation(s)
- Yuxin Hu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiongqing Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hanyue Chen
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yihang Jiang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Wei Y, Quan F, Lan G, Wu Z, Yang C. Space Rather than Seasonal Changes Explained More of the Spatiotemporal Variation of Tropical Soil Microbial Communities. Microbiol Spectr 2022; 10:e0184622. [PMID: 36416607 PMCID: PMC9769686 DOI: 10.1128/spectrum.01846-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Soil microbiomes play an essential role in maintaining soil geochemical cycle and function. Although there have been some reports on the diversity patterns and drivers of the tropical forest soil microbial community, how space and seasonal changes affect spatiotemporal distribution at the regional scales are poorly understood. Based on 260 soil samples, we investigated the spatiotemporal patterns of rubber plantations and rainforest soil microbial communities across the whole of Hainan Island, China during the dry and rainy seasons. We examined soil bacterial and fungal composition and diversity and the main drivers of these microbes using Illumina sequencing and assembly. Our results revealed that the diversity (both alpha and beta) spatiotemporal variation in microbial communities is highly dependent on regional location rather than seasonal changes. For example, the site explained 28.5% and 37.2% of the variation in alpha diversity for soil bacteria and fungi, respectively, and explained 34.6% of the bacterial variance and 14.3% of the fungal variance in beta diversity. Soil pH, mean annual temperature, and mean annual precipitation were the most important factors associated with the distribution of soil microbial communities. Furthermore, we identified that variations in edaphic (e.g., soil pH) and climatic factors (e.g., mean annual temperature [MAT] and mean annual precipitation [MAP]) were mainly caused by regional sites (P < 0.001). Collectively, our work provides empirical evidence that space, rather than seasonal changes, explained more of the spatiotemporal variation of soil microbial communities in tropical forests, mediated by regional location-induced changes in climatic factors and edaphic properties. IMPORTANCE The soil microbiomes communities of the two forests were not only affected by environmental factors (e.g., edaphic and climatic factors), but also by different dominant geographic factors. In particular, our work showed that spatial variation in bacterial and fungal community composition was mainly dominated by edaphic properties (e.g., pH) and climatic factors (e.g., MAT and MAP). Moreover, the environmental factors were mainly explained by geographic location effect rather than by seasonal effect, and environmental dissimilarity significantly increased with geographic distance. In conclusion, our study provides solid empirical evidence that space rather than season explained more of the spatiotemporal variation of soil microbial communities in the tropical forest.
Collapse
Affiliation(s)
- Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Fei Quan
- School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Chuan Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| |
Collapse
|
3
|
Qiao D, Liu H, Zhang D, Xu T, Gan Y. Chasing the unbiased willingness to pay: Using an integrated contingent valuation survey in estimating the non-market value of rubber plantation ecological restoration programs in China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The rubber expansion in Asian countries has led to various environmental problems. To smoothly promote the ecological restoration programs, an essential premise is that the local government must consider public attitude and understand the public willingness to pay (WTP) for the programs. In this study, we employ an integrated contingent valuation (ICV) survey to evaluate the citizen’s WTP of implementing rubber plantation ecological restoration (RPER) programs in Hainan, China. Considering three types of the respondents’ WTP data (interval truncated, merged, and point data), we adopt the Point and Interval Data (PID) model to estimate the determinants of WTP and calculate the non-market value with the comparison of the Tobit model. Results show that the mean value of WTP for the RPER program is 178 yuan per year, and the total non-market value throughout the province is worth approximately 1.839 billion yuan per year after controlling the regional differences. We also find that the respondents’ WTP has a significant regional difference, in which Danzhou has the highest WTP, followed by Haikou, Wanning, and Sanya. Age has a significant negative effect on the WTP for the restoration program, whereas the factors such as education, family burden, income, and residents’ environmental knowledge have a significant positive effect. Our findings add to the evidence that using improved estimation methods can generate diverse results, where neglecting the bias caused by the usual interval data model would lead to downward biased estimates.
Collapse
|
4
|
Shen C, He JZ, Ge Y. Seasonal dynamics of soil microbial diversity and functions along elevations across the treeline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148644. [PMID: 34192632 DOI: 10.1016/j.scitotenv.2021.148644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Although microbial diversity patterns along elevations have been extensively studied, little is known about whether the patterns are influenced by seasonality. To test the seasonal and elevational effects on microbial communities and functions, we collected soil samples across a mountain gradient above and below the treeline in three seasons (spring, summer and autumn). Microbial diversity based on the sequencing of 16S rRNA, 18S rRNA and nifH genes was measured, and microbial functions represented by soil basal respiration and microbial biomass were analyzed. As expected, we found significant seasonal and elevational effects on microbial α- and β-diversity and functions, and the effects of elevations were greater than seasonal effects. Elevational patterns of microbial β-diversity and functions were not influenced by seasonality. However, the elevational α-diversity patterns showed by specific groups (bacteria, protist and metazoa) changed among seasons. Further, we identified key soil properties (i.e. moisture, total carbon, total nitrogen and nitrate) which had higher seasonal and elevational variations, mainly contributing to the spatiotemporal variations of microbial diversity and functions. The findings of higher soil nutrients, archaeal and metazoan richness, and microbial functions at the treeline elevation, imply a strong edge effect of treeline on microbial diversity and functions. Together, our study highlights that seasonality influences the elevational patterns of soil microbial α-diversity, rather than that of β-diversity and functions, thus provides new insights into the seasonal and elevational effects on microbial communities and functions.
Collapse
Affiliation(s)
- Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Wang Y, Chen L, Xiang W, Ouyang S, Zhang T, Zhang X, Zeng Y, Hu Y, Luo G, Kuzyakov Y. Forest conversion to plantations: A meta-analysis of consequences for soil and microbial properties and functions. GLOBAL CHANGE BIOLOGY 2021; 27:5643-5656. [PMID: 34431166 DOI: 10.1111/gcb.15835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Primary or secondary forests around the world are increasingly being converted into plantations. Soil microorganisms are critical for all biogeochemical processes in ecosystems, but the effects of forest conversion on microbial communities and their functioning remain unclear. Here, we conducted a meta-analysis to quantify the impacts that converting forests to plantations has on soil microbial communities and functioning as well as on the associated plant and soil properties. We collected 524 paired observations from 138 studies globally. We found that conversion leads to broad range of adverse impacts on soils and microorganisms, including on soil organic carbon (-24%), total nitrogen (-29%), bacterial and fungal biomass (-36% and -42%, respectively), microbial biomass carbon (MBC, -31%) and nitrogen (-33%), and fungi to bacteria ratio (F:B, -16%). In addition, we found impacts on the ratio of MBC to soil organic C (qMBC, -20%), microbial respiration (-18%), N mineralization (-18%), and enzyme activities including β-1,4-glucosidase (-54%), β-1,4-N-acetylglucosaminidase (-39%), and acid phosphatase (ACP; -34%). In contrast, conversion to plantations increases bacterial richness (+21%) and microbial metabolic quotient (qCO2 , +21%). The effects of forest conversion were consistent across stand ages, stand types, and climate zone. Soil C and N contents as well as the C:N ratio were the main factors responsible for the changes of microbial C, F:B, and bacterial richness. The responses of qCO2 , N mineralization, and ACP activity were mainly driven by the reductions in F:B, MBC, and soil C:N. Applying macro-ecology theory on ecosystem disturbance in soil microbial ecology, we show that microbial groups shifted from K to r strategists after conversion to plantations. Our meta-analysis underlines the adverse effects of natural forests conversion to plantations on soil microbial communities and functioning, and suggests that the preservation of soil functions should be a consideration in forest management practices.
Collapse
Affiliation(s)
- Ying Wang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Taidong Zhang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Xiulan Zhang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Yakov Kuzyakov
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, Göttingen, Germany
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
- Agro-Technological Institute, RUDN University, Moscow, Russia
| |
Collapse
|
6
|
Huang T, Liu W, Long XE, Jia Y, Wang X, Chen Y. Different Responses of Soil Bacterial Communities to Nitrogen Addition in Moss Crust. Front Microbiol 2021; 12:665975. [PMID: 34566900 PMCID: PMC8460773 DOI: 10.3389/fmicb.2021.665975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial communities in soil serve an important role in controlling terrestrial biogeochemical cycles and ecosystem processes. Increased nitrogen (N) deposition in Northwest China is generating quantifiable changes in many elements of the desert environment, but the impacts of N deposition, as well as seasonal variations, on soil bacterial community composition and structure are poorly understood. We used high-throughput sequencing of bacterial 16S rRNA genes from Gurbantünggüt Desert moss crust soils to study the impacts of N addition on soil bacterial communities in March, May, and November. In November, we discovered that the OTU richness and diversity of soil bacterial community dropped linearly with increasing N input. In November and March, the diversity of the soil bacterial community decreased significantly in the medium-N and high-N treatments. In May, N addition caused a substantial change in the makeup of the soil bacterial composition, while the impacts were far less apparent in November and March. Furthermore, the relative abundance of major bacterial phyla reacted non-linearly to N addition, with high-N additions decreasing the relative richness of Proteobacteria, Bacteroidetes, and Acidobacteria while increasing the relative abundance of Actinobacteria and Chloroflexi. We also discovered that seasonality, as characterized by changes in soil moisture, pH, SOC, and AK content, had a significant impact on soil bacterial communities. Significant variations in the makeup of the community were discovered at the phylum and genus levels throughout the various months. In May, the variety of soil bacterial community was at its peak. Further investigation showed that the decrease in soil bacterial diversity was mostly attributed to a drop in soil pH. These results indicated that the impact of N deposition on the soil bacterial community was seasonally dependent, suggesting that future research should evaluate more than one sample season at the same time.
Collapse
Affiliation(s)
- Tingwen Huang
- Ministry of Education, Key Laboratory of Oasis Ecology, College of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Weiguo Liu
- Ministry of Education, Key Laboratory of Oasis Ecology, College of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xi-En Long
- School of Geographic Sciences, Nantong University, Nantong, China
| | - Yangyang Jia
- Ministry of Education, Key Laboratory of Oasis Ecology, College of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xiyuan Wang
- Ministry of Education, Key Laboratory of Oasis Ecology, College of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Yinguang Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Isoprene-Degrading Bacteria from Soils Associated with Tropical Economic Crops and Framework Forest Trees. Microorganisms 2021; 9:microorganisms9051024. [PMID: 34068745 PMCID: PMC8150984 DOI: 10.3390/microorganisms9051024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Isoprene, a volatile hydrocarbon emitted largely by plants, plays an important role in regulating the climate in diverse ways, such as reacting with free radicals in the atmosphere to produce greenhouse gases and pollutants. Isoprene is both deposited and formed in soil, where it can be consumed by some soil microbes, although much remains to be understood about isoprene consumption in tropical soils. In this study, isoprene-degrading bacteria from soils associated with tropical plants were investigated by cultivation and cultivation-independent approaches. Soil samples were taken from beneath selected framework forest trees and economic crops at different seasons, and isoprene degradation in soil microcosms was measured after 96 h of incubation. Isoprene losses were 4-31% and 15-52% in soils subjected to a lower (7.2 × 105 ppbv) and a higher (7.2 × 106 ppbv) concentration of isoprene, respectively. Sequencing of 16S rRNA genes revealed that bacterial communities in soil varied significantly across plant categories (framework trees versus economic crops) and the presence of isoprene, but not with isoprene concentration or season. Eight isoprene-degrading bacterial strains were isolated from the soils and, among these, four belong to the genera Ochrobactrum, Friedmanniella, Isoptericola and Cellulosimicrobium, which have not been previously shown to degrade isoprene.
Collapse
|
8
|
Ma W, Yang Z, Hou S, Ma Q, Liang L, Wang G, Liang C, Zhao T. Effects of Living Cover on the Soil Microbial Communities and Ecosystem Functions of Hazelnut Orchards. FRONTIERS IN PLANT SCIENCE 2021; 12:652493. [PMID: 33841481 PMCID: PMC8033216 DOI: 10.3389/fpls.2021.652493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Living cover is an important management measure for orchards in China, and has certain influences on soil properties, microorganisms, and the micro-ecological environment. However, there are few studies on the effects of living cover on the soil changes in hazelnut orchards. In this study, we compared the soils of living cover treatments with Vulpia myuros and the soils of no cover treatments, and analyzed the observed changes in soil properties, microorganisms, and microbial functions by using high-throughput ITS rDNA and 16S rRNA gene Illumina sequencing. The results demonstrated that the total organic carbon content in the 20-40 cm deep soils under the living cover treatments increased by 32.87 and 14.82% in May and July, respectively, compared with those under the no cover treatments. The living cover treatment with V. myuros also significantly increased the contents of total phosphorus (TP), total nitrogen (TN), available phosphorus (AP), and available potassium (AK) in the soil samples. Moreover, the influence of seasons was not as significant as that of soil depth. The living cover treatment also significantly improved the soil enzyme activity levels. The results demonstrated that Ascomycota, Mortierellomycota and Basidiomycota were the dominant fungal phyla in all samples, while Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, and Chloroflexi were the dominant bacterial phyla, but the different treatments impacted the compositions of fungal and bacterial communities. Principal component analysis (PCA) showed that living cover with V. myuros significantly changed the soil fungal community structures whereas the bacterial community structures may be more sensitive to seasonal changes. At the microbial functional level, the living cover treatment increased the fungal operational taxonomic units (OTUs) of symbiotrophs and decreased that of pathotrophs. According to this study, we believe that the application of a living cover with V. myuros has a favorable regulating influence on soil properties, microbial communities and microbial function. This treatment can also reduce the use of herbicides, reduce the cost of orchard management, and store more carbon underground to achieve sustainable intensification of production in hazelnut orchards, so it can be considered as a management measure for hazelnut orchards.
Collapse
Affiliation(s)
- Wenxu Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Sihao Hou
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Guixi Wang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Chunli Liang
- Liaoning Agricultural Technical College, Yingkou, China
| | - Tiantian Zhao
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| |
Collapse
|
9
|
Liu Y, Li Y, Pan B, Zhang X, Zhang H, Steinberg CEW, Qiu H, Vijver MG, Peijnenburg WJGM. Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143807. [PMID: 33288254 DOI: 10.1016/j.scitotenv.2020.143807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
With the expanding nanotechnology, nanoparticles (NPs) embedded products are used in the agricultural sector to improve soil fertility. Thus, two typical metal oxides NPs and their mixtures were applied in different doses to evaluate the impacts on soil microbes. CuO and ZnO NPs boosted soil microbial communities as reflected by the increased number of extractable bacterial or fungal groups and the enlarged values of Chao 1, ACE, and Shannon indices. Relative abundance of some susceptible taxa such as Sphingomonadales increased with increasing concentrations of ZnO NPs, while IMCC26256 decreased with increasing concentrations of CuO NPs. The mixture of CuO and ZnO NPs did not show more promotional effects on the soil bacterial community than the sum of individual effects. Increased soil organic carbon mitigated the impacts on soil bacteria for CuO NPs, but not for ZnO NPs. As micro-nutrients, the ions released from CuO and ZnO NPs had the potential to promote soil microbial community richness and diversity. However, the positive impacts of MNPs were impaired at dosage higher than 250 mg kg-1 soil (213.08 mg kg-1 soil of Cu, 162.73 mg kg-1 soil of Zn). Thus, the application dose and soil type other than the coexistence of MNPs should be considered before the wide use in increasing agricultural productivity.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xinyue Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huang Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Christian E W Steinberg
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Institute of Biology, Freshwater & Stress Ecology, Humboldt University, Berlin 12437, Germany
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300, RA, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300, RA, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven 3720 BA, the Netherlands
| |
Collapse
|
10
|
Kiesewalter HT, Lozano-Andrade CN, Strube ML, Kovács ÁT. Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein J Org Chem 2020; 16:2983-2998. [PMID: 33335606 PMCID: PMC7722629 DOI: 10.3762/bjoc.16.248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites provide Bacillus subtilis with increased competitiveness towards other microorganisms. In particular, nonribosomal peptides (NRPs) have an enormous antimicrobial potential by causing cell lysis, perforation of fungal membranes, enzyme inhibition, or disruption of bacterial protein synthesis. This knowledge was primarily acquired in vitro when B. subtilis was competing with other microbial monocultures. However, our understanding of the true ecological role of these small molecules is limited. In this study, we have established soil-derived semisynthetic mock communities containing 13 main genera and supplemented them with B. subtilis P5_B1 WT, the NRP-deficient strain sfp, or single-NRP mutants incapable of producing surfactin, plipastatin, or bacillaene. Through 16S amplicon sequencing, it was revealed that the invasion of NRP-producing B. subtilis strains had no major impact on the bacterial communities. Still, the abundance of the two genera Lysinibacillus and Viridibacillus was reduced. Interestingly, this effect was diminished in communities supplemented with the NRP-deficient strain. Growth profiling of Lysinibacillus fusiformis M5 exposed to either spent media of the B. subtilis strains or pure surfactin indicated the sensitivity of this strain towards the biosurfactant surfactin. Our study provides a more in-depth insight into the influence of B. subtilis NRPs on semisynthetic bacterial communities and helps to understand their ecological role.
Collapse
Affiliation(s)
- Heiko T Kiesewalter
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael L Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Schmid CAO, Reichel R, Schröder P, Brüggemann N, Schloter M. 52 years of ecological restoration following a major disturbance by opencast lignite mining does not reassemble microbiome structures of the original arable soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140955. [PMID: 32721609 DOI: 10.1016/j.scitotenv.2020.140955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Opencast mining for lignite continuously creates areas of land that require restoration. Here we applied a chronosequence approach to investigate the development of soil bacterial communities during 52 years as influenced by the restoration process and subsequent changes in soil physico-chemical conditions starting from the initial reclamation of the sites. By comparison with the unaffected soils near the mine, we were able to address the question if soil bacterial communities have reached a steady state within 52 years, which is comparable to the original soil. Our study revealed three distinct phases of the restoration process, each with a specific bacterial community composition. The effect size of these changes was similar to the one observed for seasonal dynamics at our sites. At the beginning of the restoration process Flavobacteriaceae, Cytophagaceae and Sphingobacteriaceae were found as typical members of the bacterial community as well as Rhizobiales as a result of the cultivation of alfalfa on the restored plots. At later stage the families Peptostreptococcaceae, Desulfurellaceae as well as Streptomycetaceae increased in relative abundance and became dominant members of the bacterial community. Even though overall bacterial abundance and richness exhibited values comparable to the original soil already 5 years after the start of the restoration process, main responder analyses reveal differences in the bacterial community structure even 52 years after the start of the restoration process. Mostly Nitrospirae were reduced in abundance in the soils restored for 52 years compared to the original soils. To broaden the significance of our study, we compared our data bioinformatically with published results from other restored areas, which were previously affected by opencast mining. Despite different durations of the different restoration phase, we could observe a large degree of conformity when bacterial patterns of succession were compared indicating common modes of action of ecological restoration tools for bacterial communities.
Collapse
Affiliation(s)
- Christoph A O Schmid
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Rüdiger Reichel
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Peter Schröder
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Nicolas Brüggemann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Michael Schloter
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Technical University of Munich, Chair of Soil Science, Emil-Ramann-Straße 2, 85354 Freising, Germany.
| |
Collapse
|
12
|
Zhai DL, Wang J, Thaler P, Luo Y, Xu J. Contrasted effects of temperature during defoliation vs. refoliation periods on the infection of rubber powdery mildew (Oidium heveae) in Xishuangbanna, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:1835-1845. [PMID: 32666309 DOI: 10.1007/s00484-020-01969-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Rubber powdery mildew caused by the foliar fungi Oidium heveae is one of the main diseases affecting rubber plantations (Hevea brasiliensis) worldwide. It is particularly serious in sub-optimal growing areas, such as Xishuangbanna in SW China. To prevent and control this disease, fungicides causing serious environmental problems are widely used. Strong correlations between the infection level and the temperature variables were reported previously, but they were related to monthly data that did not allow unraveling the patterns during the entire sensitive period. We correlated the infection level of powdery mildew of rubber trees recorded over 2003-2011 with antecedent 365 days daily temperature variables using partial least squares (PLS) regression. Our PLS regression results showed that the infection level of powdery mildew responded differently to the temperature variables of the defoliation and refoliation periods. Further analysis with Kriging interpolation showed that the infection level increased by 20% and 11%, respectively, per 1 °C rise of the daily maximum and mean temperature in the defoliation season, while it decreased by 8% and 10%, respectively, per 1 °C rise of the daily maximum and temperature difference in the refoliation season. This pattern was likely linked to the effects of temperature on leaf phenology. It seems highly possible that the infection level of powdery mildew increases, as increasing trends of maximum temperature and mean temperature during the defoliation continue.
Collapse
Affiliation(s)
- De-Li Zhai
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
| | - Jing Wang
- Tiantong National Forest Ecosystem Observation and Research Station & Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China
| | - Philippe Thaler
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- Eco&Sols, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier, Montpellier, France
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Arizona, Flagstaff, AZ, 86011, USA
| | - Jianchu Xu
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- East and Central Asia Office, World Agroforestry Centre (ICRAF), 132 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
13
|
De Gruyter J, Weedon JT, Bazot S, Dauwe S, Fernandez-Garberí PR, Geisen S, De La Motte LG, Heinesch B, Janssens IA, Leblans N, Manise T, Ogaya R, Löfvenius MO, Peñuelas J, Sigurdsson BD, Vincent G, Verbruggen E. Patterns of local, intercontinental and interseasonal variation of soil bacterial and eukaryotic microbial communities. FEMS Microbiol Ecol 2020; 96:5719567. [DOI: 10.1093/femsec/fiaa018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Although ongoing research has revealed some of the main drivers behind global spatial patterns of microbial communities, spatio-temporal dynamics of these communities still remain largely unexplored. Here, we investigate spatio-temporal variability of both bacterial and eukaryotic soil microbial communities at local and intercontinental scales. We compare how temporal variation in community composition scales with spatial variation in community composition, and explore the extent to which bacteria, protists, fungi and metazoa have similar patterns of temporal community dynamics. All soil microbial groups displayed a strong correlation between spatial distance and community dissimilarity, which was related to the ratio of organism to sample size. Temporal changes were variable, ranging from equal to local between-sample variation, to as large as that between communities several thousand kilometers apart. Moreover, significant correlations were found between bacterial and protist communities, as well as between protist and fungal communities, indicating that these microbial groups change in tandem, potentially driven by interactions between them. We conclude that temporal variation can be considerable in soil microbial communities, and that future studies need to consider temporal variation in order to reliably capture all drivers of soil microbiome changes.
Collapse
Affiliation(s)
- Johan De Gruyter
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - James T Weedon
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Stéphane Bazot
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Steven Dauwe
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Pere-Roc Fernandez-Garberí
- CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands
| | - Louis Gourlez De La Motte
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, B-5030 Gembloux, Belgium
| | - Bernard Heinesch
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, B-5030 Gembloux, Belgium
| | - Ivan A Janssens
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Niki Leblans
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tanguy Manise
- AGROBIOCHEM Research Unit, Gembloux Agro-Bio Tech, University of Liege, B-5030 Gembloux, Belgium
| | - Romà Ogaya
- CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Mikaell Ottosson Löfvenius
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Bjarni D Sigurdsson
- Faculty of Environmental Sciences, Agricultural University of Iceland, Hvanneyri, IS-311 Borgarnes, Iceland
| | - Gaëlle Vincent
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Erik Verbruggen
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
14
|
Individual Rubber Tree Segmentation Based on Ground-Based LiDAR Data and Faster R-CNN of Deep Learning. FORESTS 2019. [DOI: 10.3390/f10090793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual rubber trees from scanned point clouds is an essential prerequisite for accurate tree parameter retrieval. In this paper, three plots of different rubber tree clones, PR107, CATAS 7-20-59, and CATAS 8-7-9, were taken as the study subjects. Through data collection using ground-based mobile light detection and ranging (LiDAR), a voxelisation method based on the scanned tree trunk data was proposed, and deep images (i.e., images normally used for deep learning) were generated through frontal and lateral projection transform of point clouds in each voxel with a length of 8 m and a width of 3 m. These images provided the training and testing samples for the faster region-based convolutional neural network (Faster R-CNN) of deep learning. Consequently, the Faster R-CNN combined with the generated training samples comprising 802 deep images with pre-marked trunk locations was trained to automatically recognize the trunk locations in the testing samples, which comprised 359 deep images. Finally, the point clouds for the lower parts of each trunk were extracted through back-projection transform from the recognized trunk locations in the testing samples and used as the seed points for the region’s growing algorithm to accomplish individual rubber tree crown segmentation. Compared with the visual inspection results, the recognition rate of our method reached 100% for the deep images of the testing samples when the images contained one or two trunks or the trunk information was slightly occluded by leaves. For the complicated cases, i.e., multiple trunks or overlapping trunks in one deep image or a trunk appearing in two adjacent deep images, the recognition accuracy of our method was greater than 90%. Our work represents a new method that combines a deep learning framework with point cloud processing for individual rubber tree crown segmentation based on ground-based mobile LiDAR scanned data.
Collapse
|
15
|
Zhang Z, Zhang P, Lin Q, Cha Z, Luo W. Response of bacterial communities in rubber plantations to different fertilizer treatments. 3 Biotech 2019; 9:293. [PMID: 31297306 PMCID: PMC6609652 DOI: 10.1007/s13205-019-1821-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/19/2019] [Indexed: 11/28/2022] Open
Abstract
In the present study, the effects of chemical fertilizer (CF) and organic fertilizer plus chemical fertilizer application (OF-CF) on natural rubber yield, soil properties, and soil bacterial community were systematically investigated in rubber plantations. The rubber dry yield was 26.3% more in the OF treatment group than in the CF treatment group. The contents of total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) as well as soil organic matter (SOM) and pH value were higher following OF-CF treatment. Using Illumina sequencing, a total of 927 operational taxonomic units (OTUs) were obtained following CF treatment, while 955 OTUs were obtained after OF-CF treatment. Relative abundance analysis showed the relative abundances of four phyla (Acidobacteria, Proteobacteria, Actinobacteria, Gemmatimonadetes) were different between the two treatment groups. Correlation analysis revealed Acidobacteria, Bacteroidetes, Thaumarchaeota, Elusimicrobia, Verrucomicrobia were the key taxa that determined the soil properties. Additionally, five OTUs (OTU_506, OTU_391, OTU_189, OTU_278, OTU_1057) were thought to be related to the biodegradation of natural rubber. Taken together, these results improve our understanding of the OF-mediated improvement in soil fertility and contribute to the identification of rubber-degrading bacteria in rubber plantations.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Peisong Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Qinghuo Lin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Zhengzao Cha
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Wei Luo
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| |
Collapse
|
16
|
An F, Li H, Diao Z, Lv J. The soil bacterial community in cropland is vulnerable to Cd contamination in winter rather than in summer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:114-125. [PMID: 30382516 DOI: 10.1007/s11356-018-3531-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Potentially toxic metal contamination exerts a significant impact on soil microbes, thus deteriorating soil quality. The seasonality also has effects in shaping soil microbial community. The soil microbial community is a crucial factor representing soil health. However, whether the influence of potentially toxic metals on the microbial community differs in different seasons are still unknown. In this study, we established nine mesocosms of three cadmium treatments to investigate the impact of Cd amendments on the bacterial community of croplands in winter and summer. High bacterial diversity was revealed from the soil samples with 31 phyla. In winter, the abundance of dominant phylum Bacteroidetes, Gemmatimonadetes, and Verrucomicrobia increased, but Firmicutes decreased in Cd-contaminated soil in winter. Meanwhile, the abundance of Actinobacteria, Planctomycetes, and Chloroflexi showed Cd dose-dependent pattern in winter. In summer, the phylum Gemmatimonadetes and Verrucomicrobia decreased along with Cd dosing, while the dose-effect of Cd was found on the abundance of Actinobacteria and Chloroflexi. At the genus level, 55 genera of bacteria were significantly affected by Cd stress in winter, 24 genera decreased, 11 genera increased along with Cd gradients, and 20 genera changed depending on Cd dosage. In particular, genera Lactococcus, Psychrobacter, Brochothrix, Enhydrobacter, and Carnobacterium disappeared in Cd treatments, suggesting high sensitivity to Cd stress in winter. In summer, one genus decreased, seven genera increased with Cd dosing, and three genera were dose-dependent. The contrasting effects of Cd on soil bacterial community could be due to different edaphic factors in winter (moisture, available phosphorus, and total Cd) and summer (available Cd). Collectively, the winter-induced multiple stressors increase the impact of Cd on bacterial community in cropland. In further studies, the seasonal factor should be taken into consideration during the sampling stage.
Collapse
Affiliation(s)
- Fengqiu An
- College of Natural Resources and Environment, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Northwest A&F University, Yangling, 712100, China
- College of Environmental and Chemical Engineering, Polytechnic University, Xi'an, 710048, China
| | - Haihong Li
- College of Environmental and Chemical Engineering, Polytechnic University, Xi'an, 710048, China
| | - Zhan Diao
- College of Natural Resources and Environment, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Northwest A&F University, Yangling, 712100, China
- Law School & Intellectual Property School, JiNan University, Guangzhou, 510632, China
| | - Jialong Lv
- College of Natural Resources and Environment, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|