1
|
Zhou L, Lai CY, Wu M, Guo J. Simultaneous Biogas Upgrading and Valuable Chemical Production Using Homoacetogens in a Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12509-12519. [PMID: 38963393 DOI: 10.1021/acs.est.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.
Collapse
Affiliation(s)
- Linjie Zhou
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
2
|
Andreides D, Lopez Marin MA, Zabranska J. Selective syngas fermentation to acetate under acidic and psychrophilic conditions using mixed anaerobic culture. BIORESOURCE TECHNOLOGY 2024; 394:130235. [PMID: 38141884 DOI: 10.1016/j.biortech.2023.130235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Syngas fermentation to acetate offers a promising solution for its valorisation, particularly when syngas contains a high N2 concentration, which otherwise impedes the utilisation of syngas biomethanation gaseous product in cogeneration or upgrading units. In this study, continuous lab-scale syngas fermentation assessing the effects of acidic pH and psychrophilic conditions (28 °C and 20 °C) on bioconversion efficiency and anaerobic consortium diversity was studied. The results showed that as temperature and pH decrease, acetate yield increases. The highest H2 and CO consumption rates were observed at 20 °C and pH 4.5, reaching 48.4 mmol/(L·d) and 31.5 mmol/(L·d), respectively, and methanogenic activity was not completely suppressed. The microbial community composition indicated an enhanced abundance of acetate-producing bacteria and hydrogenotrophic methanogens at 28 °C. The PICRUSt2 prediction of metabolic potential indicated that temperature and pH changes appear to have a more pronounced impact on acetotrophic methanogenesis genes than carbon dioxide-based methanogenesis genes.
Collapse
Affiliation(s)
- Dominik Andreides
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic.
| | - Marco A Lopez Marin
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic
| | - Jana Zabranska
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic
| |
Collapse
|
3
|
Fuchs W, Rachbauer L, Rittmann SKMR, Bochmann G, Ribitsch D, Steger F. Eight Up-Coming Biotech Tools to Combat Climate Crisis. Microorganisms 2023; 11:1514. [PMID: 37375016 DOI: 10.3390/microorganisms11061514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Biotechnology has a high potential to substantially contribute to a low-carbon society. Several green processes are already well established, utilizing the unique capacity of living cells or their instruments. Beyond that, the authors believe that there are new biotechnological procedures in the pipeline which have the momentum to add to this ongoing change in our economy. Eight promising biotechnology tools were selected by the authors as potentially impactful game changers: (i) the Wood-Ljungdahl pathway, (ii) carbonic anhydrase, (iii) cutinase, (iv) methanogens, (v) electro-microbiology, (vi) hydrogenase, (vii) cellulosome and, (viii) nitrogenase. Some of them are fairly new and are explored predominantly in science labs. Others have been around for decades, however, with new scientific groundwork that may rigorously expand their roles. In the current paper, the authors summarize the latest state of research on these eight selected tools and the status of their practical implementation. We bring forward our arguments on why we consider these processes real game changers.
Collapse
Affiliation(s)
- Werner Fuchs
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Lydia Rachbauer
- Lawrence Berkeley National Laboratory, Deconstruction Division at the Joint Bioenergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria
| | - Günther Bochmann
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Doris Ribitsch
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Franziska Steger
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| |
Collapse
|
4
|
Zhou Y, Remón J, Pang X, Jiang Z, Liu H, Ding W. Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163920. [PMID: 37156381 DOI: 10.1016/j.scitotenv.2023.163920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Biomass is a renewable and carbon-neutral resource with good features for producing biofuels, biochemicals, and biomaterials. Among the different technologies developed to date to convert biomass into such commodities, hydrothermal conversion (HC) is a very appealing and sustainable option, affording marketable gaseous (primarily containing H2, CO, CH4, and CO2), liquid (biofuels, aqueous phase carbohydrates, and inorganics), and solid products (energy-dense biofuels (up to 30 MJ/kg) with excellent functionality and strength). Given these prospects, this publication first-time puts together essential information on the HC of lignocellulosic and algal biomasses covering all the steps involved. Particularly, this work reports and comments on the most important properties (e.g., physiochemical and fuel properties) of all these products from a holistic and practical perspective. It also gathers vital information addressing selecting and using different downstream/upgrading processes to convert HC reaction products into marketable biofuels (HHV up to 46 MJ/kg), biochemicals (yield >90 %), and biomaterials (great functionality and surface area up to 3600 m2/g). As a result of this practical vision, this work not only comments on and summarizes the most important properties of these products but also analyzes and discusses present and future applications, establishing an invaluable link between product properties and market needs to push HC technologies transition from the laboratory to the industry. Such a practical and pioneering approach paves the way for the future development, commercialization and industrialization of HC technologies to develop holistic and zero-waste biorefinery processes.
Collapse
Affiliation(s)
- Yingdong Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China; China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain.
| | - Xiaoyan Pang
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Haiteng Liu
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China.
| |
Collapse
|
5
|
Harahap BM, Ahring BK. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023; 11:microorganisms11040995. [PMID: 37110418 PMCID: PMC10143712 DOI: 10.3390/microorganisms11040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation.
Collapse
Affiliation(s)
- Budi Mandra Harahap
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Paniagua S, Lebrero R, Muñoz R. Syngas biomethanation: Current state and future perspectives. BIORESOURCE TECHNOLOGY 2022; 358:127436. [PMID: 35680093 DOI: 10.1016/j.biortech.2022.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In regions highly dependent on fossil fuels imports, biomethane represents a promising biofuel for the transition to a bio-based circular economy. While biomethane is typically produced via anaerobic digestion and upgrading, biomethanation of the synthesis gas (syngas) derived from the gasification of recalcitrant solid waste has emerged as a promising alternative. This work presents a comprehensive and in-depth analysis of the state-of-the-art and most recent advances in the field, compiling the potential of this technology along with the bottlenecks requiring further research. The key design and operational parameters governing syngas production and biomethanation (e.g. organic feedstock, gasifier design, microbiology, bioreactor configuration, etc.) are critically analysed.
Collapse
Affiliation(s)
- Sergio Paniagua
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
7
|
Synthesis of MOF-Derived Hybrids for Efficient Electrocatalytic Reduction of CO2 to Syngas. Catal Letters 2022. [DOI: 10.1007/s10562-022-04089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:373-407. [PMID: 34811579 DOI: 10.1007/10_2021_180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syngas, a gaseous mixture of CO, H2 and CO2, can be produced by gasification of carbon-containing materials, including organic waste materials or lignocellulosic biomass. The conversion of bio-based syngas to chemicals is foreseen as an important process in circular bioeconomy. Carbon monoxide is also produced as a waste gas in many industrial sectors (e.g., chemical, energy, steel). Often, the purity level of bio-based syngas and waste gases is low and/or the ratios of syngas components are not adequate for chemical conversion (e.g., by Fischer-Tropsch). Microbes are robust catalysts to transform impure syngas into a broad spectrum of products. Fermentation of CO-rich waste gases to ethanol has reached commercial scale (by axenic cultures of Clostridium species), but production of other chemical building blocks is underexplored. Currently, genetic engineering of carboxydotrophic acetogens is applied to increase the portfolio of products from syngas/CO, but the limited energy metabolism of these microbes limits product yields and applications (for example, only products requiring low levels of ATP for synthesis can be produced). An alternative approach is to explore microbial consortia, including open mixed cultures and synthetic co-cultures, to create a metabolic network based on CO conversion that can yield products such as medium-chain carboxylic acids, higher alcohols and other added-value chemicals.
Collapse
|
9
|
Aryal N, Odde M, Bøgeholdt Petersen C, Ditlev Mørck Ottosen L, Vedel Wegener Kofoed M. Methane production from syngas using a trickle-bed reactor setup. BIORESOURCE TECHNOLOGY 2021; 333:125183. [PMID: 33895671 DOI: 10.1016/j.biortech.2021.125183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Syngas from gasification of waste biomass is a mixture of carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2), which can be utilized for the synthesis of biofuels such as methane (CH4). The aim of the study research work was to demonstrate how syngas could be methanated and upgraded to natural gas quality (biomethane) in a fed-batch trickle-bed reactor system using either manure - (AD-M) or sludge-based (AD-WW) inoculum as microbial basis. The methanated syngas had a high concentration of CO2 and did not fulfil the criteria for natural gas quality biomethane. Further upgrading of syngas to biomethane could be achieved simultaneously in the same reactors by addition of exogenous H2, resulting in CH4 concentrations up to 91.0 ± 3.5% (AD-WW) and 95.3 ± 1.0% (AD-M). Microbial analysis indicated that the communities differed between AD-M and AD-WW demonstrating functional redundancy among the microbial communities of different inocula.
Collapse
Affiliation(s)
- Nabin Aryal
- Department of Biological and Chemical Engineering, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Mikkel Odde
- Department of Biological and Chemical Engineering, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | | | | | | |
Collapse
|
10
|
Awasthi MK, Sarsaiya S, Wainaina S, Rajendran K, Awasthi SK, Liu T, Duan Y, Jain A, Sindhu R, Binod P, Pandey A, Zhang Z, Taherzadeh MJ. Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110837. [DOI: 10.1016/j.rser.2021.110837] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
11
|
Wang H, Bai S, Zhao P, Tan L, Ning C, Liu G, Wang J, Shen T, Zhao Y, Song YF. Green light (550 nm) driven tunable syngas synthesis from CO 2 photoreduction using heterostructured layered double hydroxide/TiC photocatalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01366a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under visible light, LDH/TiC photocatalysts were prepared and exhibited tunable syngas synthesis with different CO/H2 ratios.
Collapse
Affiliation(s)
- Huijuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Pu Zhao
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK
| | - Ling Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Chenjun Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Jikang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| |
Collapse
|
12
|
Influence of Liquid-to-Gas Ratio on the Syngas Fermentation Efficiency: An Experimental Approach. Bioengineering (Basel) 2020; 7:bioengineering7040138. [PMID: 33142703 PMCID: PMC7712742 DOI: 10.3390/bioengineering7040138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
Syngas fermentation by methanogens is a novel process to purify biogas. Methanogens are able to ferment non-desirable CO2, H2, and CO to methane. However, to use methanogens on an industrial scale, more research has to be done. There are studies that discuss the growth of methanogens on syngas in combination with acetate. In this research, growth of methanogens on syngas as sole carbon source is discussed. Effluent of an anaerobic fed-batch was selectively cultivated with syngas in 400 mL Eppendorf© bioreactors. After a period of 7 days, fifteen 120 mL flasks were filled with three different liquid-to-gas ratios (1:1, 1:3, 1:5). Results showed that different liquid-to-gas ratios change the metabolic preference of the anaerobic microbial community. Moreover, complete conversion in a four-to-eight-day period, via the carboxidotrophic pathway, was observed in all three liquid-to-gas ratios.
Collapse
|
13
|
Giwa AS, Ali N, Vakili M, Guo X, Liu D, Wang K. Opportunities for holistic waste stream valorization from food waste treatment facilities: a review. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Difficult-to-biodegrade fractions (DBFs) generated from the biological treatment of food waste (FW) account for approximately 30% of the actual waste. These wastes are difficult to degrade or are considered indigestible residues of the aerobic and anaerobic fermentation treatment of FW treatment facilities. The currently applied disposal routes for DBFs exert environmental pressure and underutilize waste as resources. Therefore, these challenges must be overcome. An innovative strategy for the enhancement of the energy value and beneficial products from FW and the associated DBFs is proposed in this review. We propose conceptual future optimization routes for FW and DBFs via three types of technology integration. Pyrolysis techniques thoroughly treat DBFs to produce various value-added bio-energy products, such as pyrogenic bio-char, syngas, and bio-oil. Anaerobic digestion treats FW while utilizing pyrolysis products for robust performance enhancement and bio-methane upgrade. This holistic route offers conceptual information and proper direction as crucial knowledge for real application to harness the inherent resources of waste streams generated from FW treatment facilities.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Nasir Ali
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
- Key Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China
| | - Mohammadtaghi Vakili
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
| | - Xiaogang Guo
- College of Chemistry and Chemical Engineering, Yangtze Normal University , Chongqing 408003 , China
| | - Dongsheng Liu
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
14
|
Liu C, Wang W, O-Thong S, Yang Z, Zhang S, Liu G, Luo G. Microbial insights of enhanced anaerobic conversion of syngas into volatile fatty acids by co-fermentation with carbohydrate-rich synthetic wastewater. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:53. [PMID: 32190118 PMCID: PMC7076986 DOI: 10.1186/s13068-020-01694-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The co-fermentation of syngas (mainly CO, H2 and CO2) and different concentrations of carbohydrate/protein synthetic wastewater to produce volatile fatty acids (VFAs) was conducted in the present study. RESULTS It was found that co-fermentation of syngas with carbohydrate-rich synthetic wastewater could enhance the conversion efficiency of syngas and the most efficient conversion of syngas was obtained by co-fermentation of syngas with 5 g/L glucose, which resulted in 25% and 43% increased conversion efficiencies of CO and H2, compared to syngas alone. The protein-rich synthetic wastewater as co-substrate, however, had inhibition on syngas conversion due to the presence of high concentration of NH4 +-N (> 900 mg/L) produced from protein degradation. qPCR analysis found higher concentration of acetogens, which could use CO and H2, was present in syngas and glucose co-fermentation system, compared to glucose solo-fermentation or syngas solo-fermentation. In addition, the known acetogen Clostridium formicoaceticum, which could utilize both carbohydrate and CO/H2 was enriched in syngas solo-fermentation and syngas with glucose co-fermentation. In addition, butyrate was detected in syngas and glucose co-fermentation system, compared to glucose solo-fermentation. The detected n-butyrate could be converted from acetate and lactate/ethanol which produced from glucose in syngas and glucose co-fermentation system supported by label-free quantitative proteomic analysis. CONCLUSIONS These results demonstrated that the co-fermentation with syngas and carbohydrate-rich wastewater could be a promising technology to increase the conversion of syngas to VFAs. In addition, the syngas and glucose co-fermentation system could change the degradation pathway of glucose in co-fermentation and produce fatty acids with longer carbon chain supported by microbial community and label-free quantitative proteomic analysis. The above results are innovative and lead to achieve effective conversion of syngas into VFAs/longer chain fatty acids, which would for sure have a great interest for the scientific and engineering community. Furthermore, the present study also used the combination of high-throughput sequencing of 16S rRNA genes, qPCR analysis and label-free quantitative proteomic analysis to provide deep insights of the co-fermentation process from the taxonomic and proteomic aspects, which should be applied for future studies relating with anaerobic fermentation.
Collapse
Affiliation(s)
- Chao Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Sompong O-Thong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China
- Department of Biology, Faculty of Science, Thaksin University, Phathalung, 93110 Thailand
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| |
Collapse
|
15
|
Rezk H, Nassef AM, Inayat A, Sayed ET, Shahbaz M, Olabi AG. Improving the environmental impact of palm kernel shell through maximizing its production of hydrogen and syngas using advanced artificial intelligence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1150-1160. [PMID: 30677979 DOI: 10.1016/j.scitotenv.2018.12.284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Fossil fuel depletion and the environmental concerns have been under discussion for energy production for many years and finding new and renewable energy sources became a must. Biomass is considered as a net zero CO2 energy source. Gasification of biomass for H2 and syngas production is an attractive process. The main target of this research is to improve the production of hydrogen and syngas from palm kernel shell (PKS) steam gasification through defining the optimal operating parameters' using a modern optimization algorithm. To predict the gaseous outputs, two PKS models were built using fuzzy logic based on the experimental data sets. A radial movement optimizer (RMO) was applied to determine the system's optimal operating parameters. During the optimization process, the decision variables were represented by four different operating parameters. These parameters include; temperature, particle size, CaO/biomass ratio and coal bottom ash (CBA) with their operating ranges of (650-750 °C), (0.5-1 mm), (0.5-2) and wt% (0.02-0.10), respectively. The individual and interactive effects of different combinations were investigated on the production of H2 and syngas yield. The optimized results were compared with experimental data and results obtained from Response Surface Methodology (RSM) reported in literature. The obtained optimal values of the operating parameters through RMO were found 722 °C, 0.92 mm, 1.72 and 0.06 wt% for the temperature, particle size, CaO/biomass ratio and coal bottom ash, respectively. The results showed that syngas production was significantly improved as it reached 65.44 vol% which was better than that obtained in earlier studies.
Collapse
Affiliation(s)
- Hegazy Rezk
- College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Saudi Arabia; Electrical Engineering Department, Faculty of Engineering, Minia University, Egypt.
| | - Ahmed M Nassef
- College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Saudi Arabia; Computers and Automatic Control Engineering Department, Faculty of Engineering, Tanta University, Egypt
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Enas Taha Sayed
- Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt; Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Muhammad Shahbaz
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bander Seri Iskander, Malaysia; Department of Chemical Engineering, University of Gujrat, Gujrat, Pakistan
| | - A G Olabi
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, United Kingdom.
| |
Collapse
|