1
|
Šereš M, Černá T, Hnátková T, Rozkošný M, Grasserová A, Semerád J, Němcová K, Cajthaml T. Environmental aspects of wastewater recycling from the point of view of emergent pollutant removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:876-892. [PMID: 40219596 DOI: 10.2166/wst.2025.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 04/14/2025]
Abstract
This study evaluates the removal efficiency of 15 estrogenic endocrine-disrupting compounds in two operational constructed wetlands with different designs: a hybrid system (constructed wetland A) and a horizontal system (constructed wetland B). The assessment involved analyzing composite water samples obtained from passive samplers through liquid chromatography-mass spectrometry coupled with yeast assays. Additionally, grab samples of sludge and sediment were examined to determine the endocrine-disrupting compound's adsorption efficacy. The application of the full logistic model enabled the discernment and ranking of the chemicals contributing to mixture toxicity. The findings revealed constructed wetland A's superior efficacy in the removal of individual endocrine-disrupting compounds (with an average efficiency of 94%) compared to constructed wetland B (60%). Furthermore, constructed wetland A displayed a higher estimated estrogenic activity removal efficiency (83%) relative to constructed wetland B (52%). Estrogenic activity was adequately accounted for (58-120%) in half of the analyzed samples, highlighting estrone as the primary estrogenic agent. The investigation underscores constructed wetlands' effectiveness in purging endocrine-disrupting compounds, suggesting that their integration as secondary or tertiary treatment systems for such pollutants removal merits further exploration.
Collapse
Affiliation(s)
- Michal Šereš
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic E-mail:
| | - Tereza Černá
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic; Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tereza Hnátková
- Faculty of Environmental Science, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Miloš Rozkošný
- Water Quality Protection Department, TGM Water Research Institute, Mojmírovo nám. 16, 612 00 Brno, Czech Republic
| | - Alena Grasserová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic; Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jaroslav Semerád
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic; Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Kateřina Němcová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic; Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| |
Collapse
|
2
|
MacKeown H, Scapuzzi C, Baglietto M, Benedetti B, Di Carro M, Magi E. Wastewater and seawater monitoring in Antarctica: Passive sampling as a powerful strategy to evaluate emerging pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171755. [PMID: 38494027 DOI: 10.1016/j.scitotenv.2024.171755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The Ross Sea, among the least human-impacted marine environments worldwide, recently became the first marine protected area in Antarctica. To assess the impact of the Italian research station Mario Zucchelli (MZS) on the surrounding waters, passive sampling - as well as spot sampling for comparison - took place in the effluent of the wastewater treatment plant (WWTP) and the receiving surface marine waters. Polar Organic Chemical Integrative Samplers (POCIS) were deployed for six consecutive 2-week periods from November to February in a reservoir collecting the wastewater effluent. Passive samplers were also deployed at shallow depth offshore from the wastewater effluent outlet from MZS for two separate 3-week periods (November 2021 and January 2022). Grab water samples were collected alongside each POCIS deployment, for comparison with passive sampling results. POCIS, used for the first time in Antarctica, demonstrated to be advantageous to estimate time-averaged concentrations in waters and the results were comparable to those obtained by repeated spot samplings. Among the 23 studied ECs - including drugs, UV-filters, perfluorinated substances, caffeine - 15 were detected in both grab and passive sampling in the WWTP effluent and followed similar concentration profiles in both types of sampling. High concentrations of caffeine, naproxen and ketoprofen in the dozens of μg L-1 were detected. Other compounds, including drugs and several UV filters, were detected down to sub- μg L-1 concentrations. In marine waters close to the effluent output, only traces of a drug (4.8 ng L-1) and two UV filters (up to 0.04 μg L-1) were quantified.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| |
Collapse
|
3
|
Leusch FDL, Allen H, De Silva NAL, Hodson R, Johnson M, Neale PA, Stewart M, Tremblay LA, Wilde T, Northcott GL. Effect-based monitoring of two rivers under urban and agricultural influence reveals a range of biological activities in sediment and water extracts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119692. [PMID: 38039589 DOI: 10.1016/j.jenvman.2023.119692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Chemical contaminants, such as pesticides, pharmaceuticals and industrial compounds are ubiquitous in surface water and sediment in areas subject to human activity. While targeted chemical analysis is typically used for water and sediment quality monitoring, there is growing interest in applying effect-based methods with in vitro bioassays to capture the effects of all active contaminants in a sample. The current study evaluated the biological effects in surface water and sediment from two contrasting catchments in Aotearoa New Zealand, the highly urbanised Whau River catchment in Tāmaki Makaurau (Auckland) and the urban and mixed agricultural Koreti (New River) Estuary catchment. Two complementary passive sampling devices, Chemcatcher for polar chemicals and polyethylene (PED) for non-polar chemicals, were applied to capture a wide range of contaminants in water, while composite sediment samples were collected at each sampling site. Bioassays indicative of induction of xenobiotic metabolism, receptor-mediated effects, genotoxicity, cytotoxicity and apical effects were applied to the water and sediment extracts. Most sediment extracts induced moderate to strong estrogenic and aryl hydrocarbon (AhR) activity, along with moderate toxicity to bacteria. The water extracts showed similar patterns to the sediment extracts, but with lower activity. Generally, the polar Chemcatcher extracts showed greater estrogenic activity, photosynthesis inhibition and algal growth inhibition than the non-polar PED extracts, though the PED extracts showed greater AhR activity. The observed effects in the water extracts were compared to available ecological effect-based trigger values (EBT) to evaluate the potential risk. For the polar extracts, most sites in both catchments exceeded the EBT for estrogenicity, with many sites exceeding the EBTs for AhR activity and photosynthesis inhibition. Of the wide range of endpoints considered, estrogenic activity, AhR activity and herbicidal activity appear to be the primary risk drivers in both the Whau and Koreti Estuary catchments.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Hamish Allen
- Research and Evaluation Unit, Auckland Council, Auckland, 1010, New Zealand
| | | | - Roger Hodson
- Environment Southland Regional Council, Invercargill, 9810, New Zealand; Riverscape Enhancement Consulting, Invercargill, 9840, New Zealand
| | - Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | | | - Louis A Tremblay
- Cawthron Institute, Nelson, 7010, New Zealand; School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Taylor Wilde
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | | |
Collapse
|
4
|
Arcila-Saenz J, Hincapié-Mejía G, Londoño-Cañas YA, Peñuela GA. Role of the hydrolytic-acidogenic phase on the removal of bisphenol A and sildenafil during anaerobic treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1552. [PMID: 38032365 PMCID: PMC10689534 DOI: 10.1007/s10661-023-12009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
This paper presents the main results of the removal of two pharmaceutical and personal care products (PPCPs), bisphenol A (BPA) and sildenafil (SDF), by applying anaerobic biological batch tests. The biomass used was previously acclimatized and the experiment lasted 28 days. The effect of factors such as compound (BPA and SDF), concentration and type of inoculum was assessed, considering the factorial experimental design. The results indicated that evaluated factors did not significantly affect the PPCPs elimination in the evaluated range with a confidence level of 95%. On the other hand, the removal percentages obtained with BPA were mainly related to mechanisms, such as sorption and abiotic reactions. Regarding SDF, biodegradation was the predominant mechanism of removal under the experimental conditions of this study; however, the degradation of SDF was partial, with percentages lower than 43% in the tests with hydrolytic/acidogenic inoculum (H/A) and lower than 41% in the tests with methanogenic inoculum (MET). Finally, these findings indicated that hydrolysis/acidogenesis phase is a main contributor to SDF biodegradation in anaerobic digestion. The study provides a starting point for future research that seeks to improve treatment systems to optimize the removal of pollutants from different water sources.
Collapse
Affiliation(s)
- Jennifer Arcila-Saenz
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 #, 52-21, Medellín, Colombia.
| | - Gina Hincapié-Mejía
- Environment, Habitat and Sustainability Research Group, University Institution Colegio Mayor de Antioquia, Street 78 # 65 -, 46, Medellín, Colombia
| | - Yudy Andrea Londoño-Cañas
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 #, 52-21, Medellín, Colombia
| | - Gustavo A Peñuela
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 #, 52-21, Medellín, Colombia
| |
Collapse
|
5
|
Šauer P, Vrana B, Escher BI, Grabic R, Toušová Z, Krauss M, von der Ohe PC, König M, Grabicová K, Mikušová P, Prokeš R, Sobotka J, Fialová P, Novák J, Brack W, Hilscherová K. Bioanalytical and chemical characterization of organic micropollutant mixtures in long-term exposed passive samplers from the Joint Danube Survey 4: Setting a baseline for water quality monitoring. ENVIRONMENT INTERNATIONAL 2023; 178:107957. [PMID: 37406370 PMCID: PMC10445204 DOI: 10.1016/j.envint.2023.107957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 07/07/2023]
Abstract
Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany
| | - Peter C von der Ohe
- UBA - German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | - Maria König
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Petra Mikušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Belidla 986/4a, 60300 Brno, Czech Republic
| | - Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Pavla Fialová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt/Main, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
6
|
Grobin A, Roškar R, Trontelj J. A robust multi-residue method for the monitoring of 25 endocrine disruptors at ultra-trace levels in surface waters by SPE-LC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37194301 DOI: 10.1039/d3ay00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Estrogenic endocrine disruptors are one of the biggest ecotoxicological threats in water that pose a significant ecological burden and health-risk for humans due to their high biological activity and proven additive effects. Therefore, we have developed and validated the most comprehensive and ultra-sensitive analytical method published to date, for reliable quantification of 25 high-risk endocrine disruptors at their ecologically relevant concentrations: naturally excreted hormones (estradiol, estrone, estriol, testosterone, corticosterone, and progesterone), synthetic hormones used for contraception and menopausal symptoms (ethinylestradiol, drospirenone, chlormadinone acetate, norgestrel, gestodene, tibolone, norethindrone, dienogest, and cyproterone) and bisphenols (BPS, BPA, BPF, BPE, BPAF, BPB, BPC, and BPZ). It is based on a solid-phase extraction of water samples, followed by a robust dansyl chloride derivatization with detection by liquid chromatography-tandem mass spectrometry with a single sample preparation and two analytical methods using the same analytical column and mobile phases. The achieved limits of quantitation are in the sub-ng L-1 range, and detection limits as low as 0.02 ng L-1, meeting the newest proposal for environmental quality standards (EQS) by the EU water framework directive for estradiol and ethinylestradiol. The method was extensively validated and applied to seven representative Slovenian water samples, where we detected 21 out of 25 analytes; 13 were quantified in at least one sample. Estrone and progesterone were quantified in all samples, reaching levels up to 50 ng L-1; ethinylestradiol was higher than the current EQS (0.035 ng L-1) in three samples, and estradiol was above its EQS (0.4 ng L-1) in one sample, proving the method's applicability and the necessity for monitoring these pollutants.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Macías M, Jiménez JA, Rodríguez de San Miguel E, Moreira-Santos M. Appraisal on the role of passive sampling for more integrative frameworks on the environmental risk assessment of contaminants. CHEMOSPHERE 2023; 324:138352. [PMID: 36898436 DOI: 10.1016/j.chemosphere.2023.138352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Over time multiple lines of research have been integrated as important components of evidence for assessing the ecological quality status of water bodies within the framework of Environmental Risk Assessment (ERA) approaches. One of the most used integrative approaches is the triad which combines, based on the weight-of-evidence, three lines of research, the chemical (to identify what is causing the effect), the ecological (to identify the effects at the ecosystem level) and the ecotoxicological (to ascertain the causes of ecological damage), with the agreement between the different lines of risk evidence increasing the confidence in the management decisions. Although the triad approach has proven greatly strategic in ERA processes, new assessment (and monitoring) integrative and effective tools are most welcome. In this regard, the present study is an appraisal on the boost that passive sampling, by allowing to increase information reliability, can give within each of the triad lines of evidence, for more integrative ERA frameworks. In parallel to this appraisal, examples of works that used passive samplers within the triad are presented providing support for the use of these devices in a complementary form to generate holistic information for ERA and ease the process of decision-making.
Collapse
Affiliation(s)
- Mariana Macías
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, Cd.Mx., Mexico
| | - Jesús A Jiménez
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, Cd.Mx., Mexico
| | | | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology - Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
8
|
Ramírez DG, Narváez Valderrama JF, Palacio Tobón CA, García JJ, Echeverri JD, Sobotka J, Vrana B. Occurrence, sources, and spatial variation of POPs in a mountainous tropical drinking water supply basin by passive sampling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120904. [PMID: 36565914 DOI: 10.1016/j.envpol.2022.120904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Persistent organic pollutants (POPs) are widely distributed along the world and their levels in surface waters may pose a risk to human health due to consumption of contaminated water or fish long-term exposure to contaminated water. The occurrence of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in the Piedras river (Colombia) is a problem of serious concern since freshwater is conducted to a drinking water supply system that provides more than 3 million users. In this research, we deployed silicone rubber membranes as passive samplers in two sampling campaigns at seven sampling stations selected along the river, to assess sources and spatial variation of POPs. The measurements confirmed freely dissolved concentration of the EPA prioritized PAHs (excluding naphthalene), PCBs, heptachlor isomers, dieldrin, endosulfan isomers, among other POPs at trace levels in the water source. The Risk Quotient (RQ) method was applied to prioritize POPs with the highest potential toxicity over aquatic ecosystems. The OCP Heptachlor overcome RQ, while Dieldrin and Endosulfan, and some PAHs congeners such as Perylene, Pyrene, Benzo[a]pyrene, and Fluoranthene displayed medium-risk RQ. Significant differences between sampling stations assessed by One-way ANOVA suggested that the main PAHs and PCBs sources to the river were the punctual discharge from the WWTP and a leachate discharge form a landfill located in the study area. Additionally, nonpoint sources of OCPs were identified. Our results showed that the origin of PAHs and PCBs are associated with urban activities, while the contribution of OCPs is related to the presence of legacy pesticides from past usage in agricultural activities in the basin.
Collapse
Affiliation(s)
- Daniel Gil Ramírez
- Grupo de Investigación en Ingeniería y Gestión Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Calle 67 No. 53 - 108, Medellín, Colombia; Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Jhon Fredy Narváez Valderrama
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia.
| | - Carlos Alberto Palacio Tobón
- Grupo de Investigación en Ingeniería y Gestión Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Calle 67 No. 53 - 108, Medellín, Colombia
| | - Juan José García
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Juan David Echeverri
- Corporación Autónoma Regional de los Ríos Negro y Nare CORNARE, Carrera 59 No. 44 - 48, El Santuario, Colombia
| | - Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| |
Collapse
|
9
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
10
|
MacKeown H, Benedetti B, Scapuzzi C, Di Carro M, Magi E. A Review on Polyethersulfone Membranes in Polar Organic Chemical Integrative Samplers: Preparation, Characterization and Innovation. Crit Rev Anal Chem 2022; 54:1758-1774. [PMID: 36263980 DOI: 10.1080/10408347.2022.2131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The membranes in polar organic chemical integrative samplers (POCIS) enclose the receiving sorbent and protect it from coming into direct contact with the environmental matrix. They have a crucial role in extending the kinetic regime of contaminant uptake, by slowing down their diffusion between the water phase and the receiving phase. The drive to improve passive sampling requires membranes with better design and enhanced performances. In this review, the preparation of standard polyethersulfone (PES) membranes for POCIS is presented, as well as methods to evaluate their composition, morphology, structure, and performance. Generally, only supplier-related morphological and structural data are provided, such as membrane type, thickness, surface area, and pore diameter. The issues related to the use of PES membranes in POCIS applications are exposed. Finally, alternative membranes to PES in POCIS are also discussed, although no better membrane has yet been developed. This review highlights the urge for more membrane characterization details and a better comprehension of the mechanisms which underlay their behavior and performance, to improve membrane selection and optimize passive sampler development.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
de Araújo EP, Caldas ED, Oliveira-Filho EC. Pesticides in surface freshwater: a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:452. [PMID: 35608712 DOI: 10.1007/s10661-022-10005-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
The objective of this study was to critically review studies published up to November 2021 that investigated the presence of pesticides in surface freshwater to answer three questions: (1) in which countries were the studies conducted? (2) which pesticides are most evaluated and detected? and (3) which pesticides have the highest concentrations? Using the Prisma protocol, 146 articles published from 1976 to November 2021 were included in this analysis: 127 studies used grab sampling, 10 used passive sampling, and 9 used both sampling techniques. In the 45-year historical series, the USA, China, and Spain were the countries that conducted the highest number of studies. Atrazine was the most evaluated pesticide (56% of the studies), detected in 43% of the studies using grab sampling, and the most detected in passive sampling studies (68%). The compounds with the highest maximum and mean concentrations in the grab sampling were molinate (211.38 µg/L) and bentazone (53 µg/L), respectively, and in passive sampling, they were oxyfluorfen (16.8 µg/L) and atrazine (4.8 μg/L), respectively. The levels found for atrazine, p,p'-DDD, and heptachlor in Brazil were higher than the regulatory levels for superficial water in the country. The concentrations exceeded the toxicological endpoint for at least 11 pesticides, including atrazine (Daphnia LC50 and fish NOAEC), cypermethrin (algae EC50, Daphnia and fish LC50; fish NOAEC), and chlorpyrifos (Daphnia and fish LC50; fish NOAEC). These results can be used for planning pesticide monitoring programs in surface freshwater, at regional and global levels, and for establishing or updating water quality regulations.
Collapse
Affiliation(s)
| | - Eloisa Dutra Caldas
- Toxicology Laboratory, Faculty of Health Sciences, University of Brasília - UnB, Brasília, Federal District, Brazil
| | | |
Collapse
|
12
|
Dehkordi SK, Paknejad H, Blaha L, Svecova H, Grabic R, Simek Z, Otoupalikova A, Bittner M. Instrumental and bioanalytical assessment of pharmaceuticals and hormone-like compounds in a major drinking water source-wastewater receiving Zayandeh Rood river, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9023-9037. [PMID: 34498192 DOI: 10.1007/s11356-021-15943-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Zayandeh Rood river is the most important river in central Iran supplying water for a variety of uses including drinking water for approximately three million inhabitants. The study aimed to investigate the quality of water concerning the presence of pharmaceutical active compounds (PhACs) and hormonelike compounds, which have been only poorly studied in this region. Sampling was performed at seven sites along the river (from headwater sites to downstream drinking water source, corresponding drinking water, and treated wastewater) affected by wastewater effluents, specific drought conditions, and high river-water demand. The targeted and nontargeted chemical analyses and in vitro bioassays were used to evaluate the presence of PhACs and hormonelike compounds in river water. In the samples, 57 PhACs and estrogens were detected with LC-MS/MS with the most common and abundant compounds valsartan, carbamazepine, and caffeine present in the highest concentrations in the treated wastewater in the concentrations of 8.4, 19, and 140 μg/L, respectively. A battery of in vitro bioassays detected high estrogenicity, androgenicity, and AhR-mediated activity (viz., in treated wastewater) in the concentrations 24.2 ng/L, 62.2 ng/L, and 0.98 ng/L of 17β-estradiol, dihydrotestosterone and 2,3,7,8-TCDD equivalents, respectively. In surface water samples, estrogenicity was detected in the range of <0.42 (LOD) to 1.92 ng/L of 17β-estradiol equivalents, and the drinking water source contained 0.74 ng/L of 17β-estradiol equivalents. About 19% of the estrogenicity could be explained by target chemical analyses, and the remaining estrogenicity can be at least partially attributed to the potentiation effect of detected surfactant residues. Drinking water contained several PhACs and estrogens, but the overall assessment suggested minor human health risk according to the relevant effect-based trigger values. To our knowledge, this study provides some of the first comprehensive information on the levels of PhACs and hormones in Iranian waters.
Collapse
Affiliation(s)
- Shima Kouhi Dehkordi
- Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan, Iran
| | - Hamed Paknejad
- Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan, Iran
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Helena Svecova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czechia
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czechia
| | - Zdenek Simek
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Alena Otoupalikova
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Michal Bittner
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia.
| |
Collapse
|
13
|
Recent nanomaterials development and application in diffusive gradients in thin-film devices. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Yang Y, Zhang X, Jiang J, Han J, Li W, Li X, Yee Leung KM, Snyder SA, Alvarez PJJ. Which Micropollutants in Water Environments Deserve More Attention Globally? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13-29. [PMID: 34932308 DOI: 10.1021/acs.est.1c04250] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Shane A Snyder
- Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Grobin A, Roškar R, Trontelj J. Multi-parameter risk assessment of forty-one selected substances with endocrine disruptive properties in surface waters worldwide. CHEMOSPHERE 2022; 287:132195. [PMID: 34826907 DOI: 10.1016/j.chemosphere.2021.132195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of substances with endocrine disruptive properties (EDs) not only impacts aquatic organisms but can also have a direct negative effect on human health. In this comprehensive worldwide review, we collected ecotoxicology and concentration data observed in surface water for 53 high-potency EDs and performed a risk assessment. The compounds were selected from the EU watchlist of priority substances, expanded with new compounds of emerging concern (total 41), where quantifiable data were available for the past three years (2018-2020). The risk quotients ranged from <0.01 for 22 substances to 1974 for tamoxifen. The frequency of samples in which the predicted no-effect concentrations were exceeded also varied, from 1.8% to 92.7%. By using the comprehensive multi-parameter risk assessment in our study, the most current to date, we determined that tamoxifen, imidacloprid, clothianidin, four bisphenols (BPA, BPF, BPS, and BPAF), PFOA, amoxicillin, and three steroid hormones (estriol, estrone, and cyproterone) pose significant risks in the environment. Comparing two structurally very similar bisphenols, BPA and BPB, suggested that the risk from BPB is currently underestimated by at least four orders of magnitude due to the lack of ecotoxicological data availability. The methodological limitations encountered suggest that a standardized methodology for data selection and assessment is necessary, highlighting the fact that some substances are currently under-represented in the field of ecotoxicological research. A new prioritization system is therefore presented, which provides a potential basis for new substances to be included in environmental monitoring lists.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Yusuf A, O'Flynn D, White B, Holland L, Parle-McDermott A, Lawler J, McCloughlin T, Harold D, Huerta B, Regan F. Monitoring of emerging contaminants of concern in the aquatic environment: a review of studies showing the application of effect-based measures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5120-5143. [PMID: 34726207 DOI: 10.1039/d1ay01184g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is increasingly a global cause of concern mainly due to widespread changes in climate conditions and increased consumptive water use driven by the exponential increase in population growth. In addition, increased pollution of fresh water sources due to rising production and consumption of pharmaceuticals and organic chemicals will further exacerbate this concern. Although surface water contamination by individual chemicals is often at very low concentration, pharmaceuticals for instance are designed to be efficacious at low concentrations, creating genuine concern for their presence in freshwater sources. Furthermore, the additive impact of multiple compounds may result in toxic or other biological effects that otherwise will not be induced by individual chemicals. Globally, different legislative frameworks have led to pre-emptive efforts which aim to ensure good water ecological status. Reports detailing the use and types of effect-based measures covering specific bioassay batteries that can identify specific mode of actions of chemical pollutants in the aquatic ecosystem to evaluate the real threat of pollutants to aquatic lives and ultimately human lives have recently emerged from monitoring networks such as the NORMAN network. In this review, we critically evaluate some studies within the last decade that have implemented effect-based monitoring of pharmaceuticals and organic chemicals in aquatic fauna, evaluating the occurrence of different chemical pollutants and the impact of these pollutants on aquatic fauna with special focus on pollutants that are contaminants of emerging concern (CEC) in urban wastewater. A critical discussion on studies that have used effect-based measures to assess biological impact of pharmaceutical/organic compound in the aquatic ecosystem and the endpoints measurements employed is presented. The application of effect-based monitoring of chemicals other than assessment of water quality status is also discussed.
Collapse
Affiliation(s)
- Azeez Yusuf
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Dylan O'Flynn
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Blanaid White
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Anne Parle-McDermott
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Jenny Lawler
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Thomas McCloughlin
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
| | - Belinda Huerta
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Fiona Regan
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| |
Collapse
|
17
|
Caban M, Lis H, Stepnowski P. Limitations of Integrative Passive Samplers as a Tool for the Quantification of Pharmaceuticals in the Environment - A Critical Review with the Latest Innovations. Crit Rev Anal Chem 2021; 52:1386-1407. [PMID: 33673780 DOI: 10.1080/10408347.2021.1881755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review starts with a presentation of the theory of kinetic uptake by passive sampling (PS), which is traditionally used to distinguish between integrative and equilibrium samplers. Demonstrated limitations of this model for the passive sampling of pharmaceuticals from water were presented. Most notably, the contribution of the protective membrane in the resistance to mass transfer of lipophilic analytes and the well documented effect of external parameters on sampling rates contributed to the greatest uncertainty in PS application. The diffusion gradient in thin layer (DGT) technique seems to reduce the effect of external parameters (e.g., flow rate) to some degree. The laboratory-determined integrative uptake periods over defined sampler deployments was compared, and the discrepancy found suggests that the most popular Polar Organic Chemical Integrative Sampler (POCIS) could in some cases utilized as an equilibrium sampler. This assertion is supported by own calculations for three pharmaceuticals with extremely different lipophilic characters. Finally, the reasons performance reference compounds (PRCs) are not recommended for the reduction in uncertainty of the TWAC found by adsorptive samplers were presented. It was concluded that techniques of passive sampling of pharmaceuticals need a new uptake model to fit the current situation.
Collapse
Affiliation(s)
- Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
18
|
Snow DD, Cassada DA, Biswas S, Malakar A, D'Alessio M, Marshall AHL, Sallach JB. Detection, occurrence, and fate of emerging contaminants in agricultural environments (2020). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1741-1750. [PMID: 32762100 DOI: 10.1002/wer.1429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
A review of 79 papers published in 2019 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, antibiotics, anthelmintics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Antibiotics in Agroecosystems, Pharmaceutical Fate and Occurrence, Anthelmintics and Engineered Nanomaterials. PRACTITIONER POINTS: New research describes innovative new techniques for emerging contaminant detection in agricultural settings Newer classes of contaminants include human and veterinary pharmaceuticals Research in nanomaterials show that these also occur in agricultural environments and will likely be topics of future work.
Collapse
Affiliation(s)
- Daniel D Snow
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - David A Cassada
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Saptashati Biswas
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Arindam Malakar
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Matteo D'Alessio
- Department of Civil Engineering, University of Mississippi, Oxford, MS, USA
| | | | | |
Collapse
|
19
|
Tyumina EA, Bazhutin GA, Cartagena Gómez ADP, Ivshina IB. Nonsteroidal Anti-inflammatory Drugs as Emerging Contaminants. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720020125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
20
|
Pochiraju SS, Linden K, Gu AZ, Rosenblum J. Development of a separation framework for effects-based targeted and non-targeted toxicological screening of water and wastewater. WATER RESEARCH 2020; 170:115289. [PMID: 31785562 DOI: 10.1016/j.watres.2019.115289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 05/25/2023]
Abstract
An environmental water sample fractionation framework was developed based on effects-directed analysis (EDA) to detect known and unknown compounds of concern in different waters. Secondary effluent from a wastewater treatment plant was used to demonstrate the effectiveness of the developed framework for characterizing estrogenic compounds in the effluent. The effluent was spiked with known estrogenic compounds to validate the framework in a targeted approach and an unspiked sample was also investigated in a non-targeted approach. The framework separated compounds based on polarity and adsorption using liquid-liquid extraction followed by solid phase extraction. The targeted and non-targeted effluents generated six fractions each, which were assessed for estrogenic activity using an in vitro bioassay (yeast estrogen screen - YES). Three out of the six fractions in each case, along with the raw effluent, showed estrogen equivalent concentrations (EEQs) ranging between 1.0 and 3.0 μg/L. Directed by the assay results, these estrogenic fractions were further analyzed using liquid- and gas-chromatography coupled with mass spectrometry for compound identification. The developed separation framework coupled with a bioassay aided in identification of both known and unknown compounds producing estrogenic effects in the water sample. The approach of fractionation followed by concentration helped isolate and elevate contaminant levels without necessarily concentrating potential matrix effects that could cause interfering cytotoxicity and inhibition in the bioassay. The targeted analysis showed consistency between predicted and observed results, while the non-targeted analysis revealed the presence of three estrogenic compounds in the unspiked effluent: di-isobutyl phthalate, diethyl phthalate and benzophenone, that were confirmed with standards. The study mainly aimed at development and validation of a simple yet effective EDA framework with low cost techniques for water and wastewater toxicity screening and evaluation, and the results suggested that the developed framework could be used as a screening tool for isolating and identifying unknown compounds in a complex water sample.
Collapse
Affiliation(s)
- Susheera S Pochiraju
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Karl Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - April Z Gu
- Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - James Rosenblum
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
21
|
Shakerian F, Zhao J, Li SP. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants - A review. CHEMOSPHERE 2020; 239:124716. [PMID: 31521938 DOI: 10.1016/j.chemosphere.2019.124716] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 05/05/2023]
Abstract
During the past several years, abundant progresses has been made in the development of immobilized oxidative enzymes with focus on finding new support materials, improving the immobilization methods and their applications. Nowadays, immobilized oxidative enzymes are broadly accepted as a green way to face the challenge of high amounts of micropollutants in nature. Among all oxidative enzymes, laccases and horseradish peroxidase were used frequently in recent years as they are general oxidative enzymes with ability to oxidize various types of compounds. Immobilized laccase or horseradish peroxidase are showed better stability, and reusability as well as easy separation from reaction mixture that make them more favorable and economic in compared to free enzymes. However, additional improvements are still essential such as: development of the new materials for immobilization with higher capacity, easy preparation, and cheaper price. Moreover, immobilization methods are still need improving to become more efficient and avoid enzyme wasting during immobilization and enzyme leakage through working cycles.
Collapse
Affiliation(s)
- Farid Shakerian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
22
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Susana Y. Kimura
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
23
|
Taylor AC, Fones GR, Vrana B, Mills GA. Applications for Passive Sampling of Hydrophobic Organic Contaminants in Water—A Review. Crit Rev Anal Chem 2019; 51:20-54. [DOI: 10.1080/10408347.2019.1675043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adam C. Taylor
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UK
| | - Gary R. Fones
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UK
| | - Branislav Vrana
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
| | - Graham A. Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|