1
|
Wang J, Zhao W, Xu Z, Ding J, Yan Y, Sofia Santos Ferreira C. Plant functional traits explain long-term differences in ecosystem services between artificial forests and natural grasslands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118853. [PMID: 37660423 DOI: 10.1016/j.jenvman.2023.118853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Declining ecosystem services have prompted numerous studies aiming at developing more sustainable management practices for vegetation restoration. Advances in functional ecology indicate that the sustainable management of afforestation ecosystems should be performed based on plant functional traits, which provides pivotal knowledge for long-term sustainable vegetation restoration. Currently, the mechanism of how plant functional traits affect long term ecosystem services in restored areas is still unclear. This study investigates plant functional traits and the associated ecosystem services from artificial forestlands (Robinia pseudoacacia, Caragana korshinskii) and natural grasslands following different durations of vegetation restoration (10, 20, 30 and 40 years) in the Danangou watershed, a loess hilly-gully region in the Loess Plateau, China. The results showed that 1) the water conservation services of artificial forestlands first decreased and then increased over time, whereas the soil conservation service had an opposite trend; in turn, natural grassland led to a consistent increase in soil conservation and carbon sequestration services over time. 2) Artificial forestlands had greater soil conservation and carbon sequestration services than natural grassland but had lower water conservation services. 3) Leaves had a greater impact on carbon sequestration and water conservation services than did root length and root biomass density. 4) Root biomass density had a greater effect on soil conservation services than did leaf carbon content and soil organic matter. 5) Leaf carbon content, specific root length, and root biomass density had significant effects on the trade-off value between any two ecosystem services with increasing time after restoration of artificial forestland. 6) Specific leaf area had a greater effect on the trade-off values among the three services than did the other functional traits in the natural grassland. In arid ecosystems, natural grasslands are the best restoration strategy given their higher water conservation services. However, in soil erosion-affected areas, restoration through artificial forestlands is more appropriate. To mitigate the trade-offs between ecosystem services, it is recommended that artificial forestlands be thinned before the leaf carbon content, specific root length, and root biomass density reach a maximum (i.e., mature forestland).
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; College of Water Sciences, Beijing Normal University, Beijing, 100083, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Zongxue Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100083, China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing, 100875, China
| | - Jingyi Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yue Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Carla Sofia Santos Ferreira
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm SE, 10691, Sweden; Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra Agrarian Technical School, Coimbra, Portugal
| |
Collapse
|
2
|
Shi L, Lin Z, Wei X, Peng C, Yao Z, Han B, Xiao Q, Zhou H, Deng Y, Liu K, Shao X. Precipitation increase counteracts warming effects on plant and soil C:N:P stoichiometry in an alpine meadow. FRONTIERS IN PLANT SCIENCE 2022; 13:1044173. [PMID: 36407610 PMCID: PMC9666903 DOI: 10.3389/fpls.2022.1044173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Temperature and precipitation are expected to increase in the forthcoming decades in the northeastern Qinghai-Tibetan Plateau, with uncertain effects of their interaction on plant and soil carbon:nitrogen:phosphorus (C:N:P) stoichiometry in alpine ecosystems. A two-year field experiment was conducted to examine the effects of warming, precipitation increase, and their interaction on soil and plant C:N:P stoichiometry at functional groups and community level in an alpine meadow. Warming increased aboveground biomass of legumes and N:P ratios of grasses and community, but did not affect soil C:N:P stoichiometry. The piecewise structural equation model (SEM) indicated that the positive effect of warming on community N:P ratio was mainly resulted from its positive influence on the aboveground biomass of functional groups. Precipitation increase reduced C:N ratios of soil, grasses, and community, indicating the alleviation in soil N-limitation and the reduction in N use efficiency of plant. SEM also demonstrated the decisive role of grasses C:N:P stoichiometry on the response of community C:N:P stoichiometry to precipitation increase. The interaction of warming and precipitation increase did not alter plant community and soil, N:P and C:P ratios, which was resulting from their antagonistic effects. The stable soil and plant community C:N:P stoichiometry raised important implications that the effect of warming was offset by precipitation increase. Our study highlights the importance of considering the interaction between warming and precipitation increase when predicting the impacts of climate change on biogeochemical cycles in alpine meadow ecosystems.
Collapse
Affiliation(s)
- Lina Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhenrong Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoting Wei
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Cuoji Peng
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zeying Yao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Bing Han
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qing Xiao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
| | - Yanfang Deng
- Qilian Mountain National Park Qinghai Service Guarantee Center, Xining, China
| | - Kesi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xinqing Shao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Yang W, Diao L, Wang Y, Yang X, Zhang H, Wang J, Luo Y, An S, Cheng X. Responses of soil fungal communities and functional guilds to ~160 years of natural revegetation in the Loess Plateau of China. Front Microbiol 2022; 13:967565. [PMID: 36118195 PMCID: PMC9479326 DOI: 10.3389/fmicb.2022.967565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Natural revegetation has been widely confirmed to be an effective strategy for the restoration of degraded lands, particularly in terms of rehabilitating ecosystem productivity and soil nutrients. Yet the mechanisms of how natural revegetation influences the variabilities and drivers of soil residing fungal communities, and its downstream effects on ecosystem nutrient cycling are not well understood. For this study, we investigated changes in soil fungal communities along with ~160 years of natural revegetation in the Loess Plateau of China, employing Illumina MiSeq DNA sequencing analyses. Our results revealed that the soil fungal abundance was greatly enhanced during the later stages of revegetation. As revegetation progresses, soil fungal richness appeared first to rise and then decline at the climax Quercus liaotungensis forest stage. The fungal Shannon and Simpson diversity indexes were the lowest and highest at the climax forest stage among revegetation stages, respectively. Principal component analysis, Bray–Curtis similarity indices, and FUNGuild function prediction suggested that the composition, trophic modes, and functional groups for soil fungal communities gradually shifted along with natural revegetation. Specifically, the relative abundances of Basidiomycota, Agaricomycetes, Eurotiomycetes, and ectomycorrhizal fungi progressively increased, while that of Ascomycota, Sordariomycetes, Dothideomycetes, Tremellomycetes, saprotrophic, pathotrophic, arbuscular mycorrhizal fungi, and endophyte fungi gradually decreased along with natural revegetation, respectively. The most enriched members of Basidiomycota (e.g., Agaricomycetes, Agaricales, Cortinariaceae, Cortinarius, Sebacinales, Sebacinaceae, Tricholomataceae, Tricholoma, Russulales, and Russulaceae) were found at the climax forest stage. As important carbon (C) sources, the most enriched symbiotic fungi (particularly ectomycorrhizal fungi containing more recalcitrant compounds) can promote organic C and nitrogen (N) accumulation in soils of climax forest. However, the most abundant of saprotrophic fungi in the early stages of revegetation decreased soil organic C and N accumulation by expediting the decomposition of soil organic matter. Our results suggest that natural revegetation can effectively restore soil fungal abundance, and modify soil fungal diversity, community composition, trophic modes, and functional groups by altering plant properties (e.g., plant species richness, diversity, evenness, litter quantity and quality), quantity and quality of soil nutrient substrates, soil moisture and pH. These changes in soil fungal communities, particularly their trophic modes and functional groups along with natural revegetation, impact the accumulation and decomposition of soil C and N and potentially affect ecosystem C and N cycling in the Loess Plateau of China.
Collapse
Affiliation(s)
- Wen Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- *Correspondence: Wen Yang,
| | - Longfei Diao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaqi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xitong Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yiqi Luo
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Shuqing An
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoli Cheng
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Xiaoli Cheng,
| |
Collapse
|
4
|
Understory Plant Abundance Is More Important than Species Richness in Explaining Soil Nutrient Variation Following Afforestation on the Eastern Loess Plateau, China. FORESTS 2022. [DOI: 10.3390/f13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Afforestation plays an important role in controlling soil erosion and nutrient loss on the Loess Plateau in China. However, previous studies on soil nutrient changes have mainly focused on the effects of tree species, whereas little is known about how changes in shrubs and herbs caused by afforestation drive soil nutrient changes. In this study, we examined the variation characteristics of understory vegetation and soil nutrients for different vegetation types. The results showed that compared to abandoned farmland, plantations significantly increased soil organic carbon and total nitrogen but had no significant effect on total phosphorus. Robinia pseudoacacia L. forests were more effective than Pinus tabuliformis Carr. forests in increasing soil nutrient content. In addition, herbaceous vegetation in the R. pseudoacacia forest better explained the soil nutrient variation, and herb abundance was the best explanatory variable; however, shrub vegetation contributed more to soil nutrient variation in the P. tabuliformis forest, and shrub abundance contributed the most. Accordingly, we determined that understory plant abundance, rather than species richness, may be the most important factor driving soil nutrient changes. Specifically, herb abundance in the R. pseudoacacia forest may drive soil nutrient changes mainly by regulating herb biomass and litter biomass. By contrast, shrub abundance in the P. tabuliformis forest indirectly affected soil organic carbon mainly by altering shrub biomass. Furthermore, although the phylogenetic relationships had less effect on soil nutrients than species composition, they also made important contributions. Therefore, the phylogenetic relationships should also be considered in addition to species composition when assessing the impact of vegetation on soil properties in the future.
Collapse
|
5
|
Variation in carbon isotope composition of plants across an aridity gradient on the Loess Plateau, China. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Lyu Q, Liu J, Liu J, Luo Y, Chen L, Chen G, Zhao K, Chen Y, Fan C, Li X. Response of plant diversity and soil physicochemical properties to different gap sizes in a Pinus massoniana plantation. PeerJ 2021; 9:e12222. [PMID: 34616636 PMCID: PMC8462388 DOI: 10.7717/peerj.12222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
As one means of close-to-nature management, forest gaps have an important impact on the ecological service function of plantations. To improve the current situation of P. massoniana plantations, three different sizes of forest gaps (large gaps, medium gaps and small gaps) were established to observe whether gap setting can improve the soil fertility and plant diversity of forest plantations. The results showed that compared with the control, the soil organic matter content of different soil layers increased significantly in the medium forest gap and large forest gap. The content of soil organic matter in the surface layer of the middle gap had the largest increase (80.64%). Compared with the control, the content of soil-available potassium between different soil layers decreased significantly by 15.93% to 25.80%. The soil hydrolysable nitrogen reached its maximum under the medium gap. Soil moisture showed significant changes among different gap treatments, different soil layers and their interaction, decreasing significantly in large gaps and small gaps but increasing significantly in medium gaps. The soil bulk density decreased significantly compared with the control, and the surface soil reached the minimum in the medium gap. There were different plant species in forest gaps of different sizes, and shrub layer plants were more sensitive to gap size differences than herb layer plants. The plant diversity indices of the shrub layer increased significantly and showed a maximum under the medium gap. The plant diversity of the herb layer showed the opposite trend, and the Shannon-Wiener index, Simpson index and Pielou index were significantly lower than those of the control. RDA showed that different gap treatments had significant effects on the distribution of plants under the forest. Soil available potassium, soil moisture and soil bulk density affected the distribution and diversity of plants under the forest, serving as the limiting factors of plant growth. In forest management, if we strictly consider the improvement of plant diversity and soil physicochemical properties, these results suggest that a medium gap should be established in a plantation for natural restoration.
Collapse
Affiliation(s)
- Qian Lyu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jiangli Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Junjie Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Luman Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River (Sichuan Agricultural University), Chengdu, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River (Sichuan Agricultural University), Chengdu, China
| | - Yuqin Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River (Sichuan Agricultural University), Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River (Sichuan Agricultural University), Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River (Sichuan Agricultural University), Chengdu, China
| |
Collapse
|
7
|
Lyu Q, Shen Y, Li X, Chen G, Li D, Fan C. Early effects of crop tree management on undergrowth plant diversity and soil physicochemical properties in a Pinus massoniana plantation. PeerJ 2021; 9:e11852. [PMID: 34395087 PMCID: PMC8325914 DOI: 10.7717/peerj.11852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/04/2021] [Indexed: 01/23/2023] Open
Abstract
Background Soil and understory vegetation are vital components of forest ecosystems. Identifying the interaction of plantation management to vegetation and soil is crucial for developing sustainable plantation ecosystem management strategies. As one of the main measures of close-to-nature management of forest plantation, few studies have paid attention to the effect of crop tree management on the soil properties and understory vegetation. Methods A 36-year-old Pinus massoniana plantation in Huaying city, Sichuan Province was taken as the research object to analyse the changes in undergrowth plant diversity and soil physicochemical properties under three different crop tree densities (100, 150, and 200 N/ha). Results Our results showed that the contents of available phosphorus, organic matter and hydrolysable nitrogen in the topsoil increased significantly after crop tree management, while content of available potassium decreased. The composition of shrub and herb layer was richer, and the dominant species were obviously replaced after crop tree management. The Shannon-Wiener index and Richness index of shrub layer, and the diversity of herb layer increased significantly after crop tree management. Herb layer diversity indexes and Richness index of shrub layer were closely related to soil organic matter, available phosphorus, hydrolysable nitrogen, available potassium, soil moisture and bulk density. As the main limiting factors for plant growth, nitrogen, phosphorus and potassium were closely related to plant diversity and to the distribution of the dominant species. At the initial stage of crop tree management, each treatment significantly improved the soil physicochemical properties and plant diversity of Pinus massoniana plantation, and the comprehensive evaluation was 200 N/ha >100 N/ha >150 N/ha >CK. Compared with other treatments, 200 N/ha had the best effect on improving the undergrowth environment of the Pinus massoniana plantation in the initial stage of crop tree management.
Collapse
Affiliation(s)
- Qian Lyu
- College of Forestry, Sichuan Agricultural University, Cheng Du, China
| | - Yi Shen
- College of Forestry, Sichuan Agricultural University, Cheng Du, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Cheng Du, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Cheng Du, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Cheng Du, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Cheng Du, China
| | - Dehui Li
- College of Urban and Rural Planning and Construction, Mianyang Normal University, Mian Yang, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Cheng Du, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Cheng Du, China
| |
Collapse
|
8
|
Rao KS, Semwal RL, Ghoshal S, Maikhuri RK, Nautiyal S, Saxena KG. Participatory active restoration of communal forests in temperate Himalaya, India. Restor Ecol 2021. [DOI: 10.1111/rec.13486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Rajeev L. Semwal
- School of Environmental Sciences Jawaharlal Nehru University New Delhi 110067 India
| | - Shankharoop Ghoshal
- School of Environmental Sciences Jawaharlal Nehru University New Delhi 110067 India
- Gharwal Unit Ashoka Trust for Research in Ecology and Environment Royal Enclave, Sriramapura, Jakkur Post Bengaluru Karnataka 560064 India
| | - Rakesh K. Maikhuri
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development Garhwal Unit, Srinagar (Garhwal) 246174 India
- Department of Environmental Sciences H.N.B. Garhwal University Srinagar (Garhwal) 246174 India
| | - Sunil Nautiyal
- Center of Ecological Economics and Natural Resources Institute for Social and Economic Change Bangalore 560072 India
- Leibniz Centre for Agricultural Landscape Research (ZALF) Eberswalder Str. 84 Müncheberg 15374 Germany
| | | |
Collapse
|
9
|
Zhao Y, Li M, Wang X, Deng J, Zhang Z, Wang B. Influence of habitat on the phylogenetic structure of Robinia pseudoacacia forests in the eastern Loess Plateau, China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
10
|
Li J, Yang C, Zhou H, Shao X. Responses of plant diversity and soil microorganism diversity to water and nitrogen additions in the Qinghai-Tibetan Plateau. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|