1
|
Ravindran DR, Kannan S, Marudhamuthu M. Fabrication and characterisation of human gut microbiome derived exopolysaccharide mediated silver nanoparticles - An in-vitro and in-vivo approach of Bio-Pm-AgNPs targeting Vibrio cholerae. Int J Biol Macromol 2024; 256:128406. [PMID: 38007009 DOI: 10.1016/j.ijbiomac.2023.128406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Utilising bacteria to produce silver nanoparticles was highly favoured due to its ability to minimise costs and mitigate any potential negative environmental impact. Exopolysaccharides (EPS) extracted from the human gut microbe have demonstrated remarkable efficacy in combating various bacterial infections. Exopolysaccharide (EPS), a naturally occurring biomolecule found in the human gut isolate Proteus mirabilis DMTMMR-11, was characterised using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance, 13C-nuclear magnetic resonance (NMR), and chemical composition analysis, which confirms the presence of carbohydrates (81.03 ± 0.23), proteins (4.22 ± 1.2), uronic acid (12.1 ± 0.12), and nucleic acid content (2.44 ± 0.15) in exopolysaccharide. The one factor at a time (OFAT) and response surface methodology (RSM) - central composite design (CCD) approaches were used to optimise the production of Bio-Pm-AgNPs, leading to an increase in yield of up to 1.86 g/l. The Bio-Pm-AgNPs were then subjected to Fourier transform infrared spectroscopy (FTIR) which determines the functional groups, X-ray diffractometer confers that Bio-Pm-AgNPs are crystalline in nature, field emission-scanning electron microscopy (FE-SEM) reveals the morphology of Bio-Pm-AgNPs, energy dispersive X-ray spectroscopy (EDX) confirms the presence of elements like Ag, C and O, high-resolution transmission electron microscopy (HR-TEM) determines that the Bio-Pm-AgNPs are sphere-shaped at 75 nm. Dynamic light scattering (DLS) and zeta potential analysis were also carried out to reveal the physiological nature of Bio-Pm-AgNPs. Bio-Pm-AgNPs have a promising effect on the inhibitory mechanism of Vibrio cholerae cells at a MIC concentration of 20 μg/ml which significantly affects cellular respiration and energy metabolism through glycolysis and TCA cycles by deteriorating the enzyme responsible for ATP and NADH utilisation. The action of Bio-Pm-AgNPs reduces the purity and concentration of nucleic acids, which leads to higher DNA damage. In-vivo analysis reveals that the treatment of Bio-Pm-AgNPs decreased the colonisation of V. cholerae and improved the survival rates in C. elegans.
Collapse
Affiliation(s)
- Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu 625021, India
| | - Suganya Kannan
- Central Research Laboratory for Biomedical Research, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry 609609, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu 625021, India.
| |
Collapse
|
2
|
Ivanišević I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3692. [PMID: 37050752 PMCID: PMC10099384 DOI: 10.3390/s23073692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Irena Ivanišević
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Wang L, Wu D, Zhang Y, Li K, Wang M, Ma J. Dynamic distribution of gut microbiota in cattle at different breeds and health states. Front Microbiol 2023; 14:1113730. [PMID: 36876099 PMCID: PMC9978850 DOI: 10.3389/fmicb.2023.1113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Weining cattle is a precious species with high tolerance to cold, disease, and stress, and accounts for a large proportion of agricultural economic output in Guizhou, China. However, there are gaps in information about the intestinal flora of Weining cattle. In this study, high-throughput sequencing were employed to analyze the intestinal flora of Weining cattle (WN), Angus cattle (An), and diarrheal Angus cattle (DA), and explore the potential bacteria associated with diarrhea. We collected 18 fecal samples from Weining, Guizhou, including Weining cattle, Healthy Angus, and Diarrheal Angus. The results of intestinal microbiota analysis showed there were no significant differences in intestinal flora diversity and richness among groups (p > 0.05). The abundance of beneficial bacteria (Lachnospiraceae, Rikenellaceae, Coprostanoligenes, and Cyanobacteria) in Weining cattle were significantly higher than in Angus cattle (p < 0.05). The potential pathogens including Anaerosporobacter and Campylobacteria were enriched in the DA group. Furthermore, the abundance of Lachnospiraceae was very high in the WN group (p < 0.05), which might explain why Weining cattle are less prone to diarrhea. This is the first report on the intestinal flora of Weining cattle, furthering understanding of the relationship between intestinal flora and health.
Collapse
Affiliation(s)
- Lei Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Daoyi Wu
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingjin Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Jinping Ma
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| |
Collapse
|
4
|
Mondal A, Sen K, Mondal A, Mishra D, Debnath P, Mondal NK. Bio-fabricated silver nanoparticles for controlling dengue and filaria vectors and their characterization, as well as toxicological risk assessment in aquatic mesocosms. ENVIRONMENTAL RESEARCH 2022; 212:113309. [PMID: 35487260 DOI: 10.1016/j.envres.2022.113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The present study is focused on synthesis of silver nanoparticles from weeds and an assessment of their mosquito larvicidal efficacy. This study also presented the toxicological effects as well as the stability of these nanoparticles in aquatic mesocosms. The weed Digiteria sanguinallis was first time used for the synthesis of silver nanoparticles. The synthesized nanoparticles were characterized by various analytical techniques, such as UV-VIS, TEM, FESEM, EDX, XRD, FTIR, and zeta potential study. The result revealed that the nanoparticles are crystalline, spherical shape with band gap 2.44 eV, and average size 18 nm. The LC50 value of synthesized AgNPs were recorded as 7.47 and 6.31 mg/L at 24 h against Cx. quinquefasciatus and A. albopictus respectively. In contrast, larvicidal activity of weed extract was insignificant against two target species. In aquatic mesocosm study, AgNPs (LC50 dose) does not alter the nature of water parameters within experimental period. However only EC % and ORP were changes because of silver ion oxidation. In biochemical parameters, only stress enzymes for animal and plant species were moderately altered under long term exposure. But glycogen, protein, and AchE of two mosquito species were significantly changed under same mesocosm setup within short exposure. Comparatively, in control mesocosm, synthesized AgNPs are naturally change their nano form within 20 days with the presence of all non-target species and pond sediment. Therefore, it can be concluded that biosynthesized AgNPs could be used as a larvicidal agent in near future with negligible effects on aquatic organisms.
Collapse
Affiliation(s)
- Arghadip Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, W.B, 713104, India
| | - Kamalesh Sen
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, W.B, 713104, India
| | - Anupam Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, W.B, 713104, India
| | - Debojyoti Mishra
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, W.B, 713104, India
| | - Priyanka Debnath
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, W.B, 713104, India
| | - Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, W.B, 713104, India.
| |
Collapse
|
5
|
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation. SCOPE AND APPROACH Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells. KEY FINDINGS AND CONCLUSIONS Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Monika Kowalska-Góralska
- Department of Limnology and Fisheries, Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - P Garcia-Perez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, ul. Kożuchowska 7a, 51-631 Wrocław, Poland.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
6
|
Zhang Y, Zhao Q, Chen B. Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150336. [PMID: 34537699 DOI: 10.1016/j.scitotenv.2021.150336] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
In materials science, "green" synthesis has gotten a lot of interest as a reliable, long-lasting, and ecofriendly way to make a variety of materials/nanomaterials, including metal/metal oxide nanomaterials. To accommodate various biological materials, green synthesis of metallic nanoparticles has been used (e.g., bacteria, fungi, algae, and plant extracts). In this work, Shewanella oneidensis MR-1 was used to biosynthesize palladium nanoparticles (bioPd) under aerobic conditions for the Cr(VI) bio-reduction. The size and distribution of bio-Pd are controlled by adjusting the ratio of microbial biomass and palladium precursors. The high cell: Pd ratio has the smallest average particle size of 6.33 ± 1.69 nm. And it has the lowest electrocatalytic potential (-0.132 V) for the oxidation of formic acid, which is 0.158 V lower than commercial Pd/C (5%). Our results revealed that the small size and uniformly distributed extracellular bio-Pd could achieve completely catalytic reduction of 200 mg/L Cr(VI) solution within 10 min, while the commercial Pd/C (5%) need at least 45 min. The bio-Pd materials maintain a high reduction during five cycles. Microorganisms play an important role in the whole process, which can fully disperse palladium nanoparticles, completely reduce Cr(VI), and effectively adsorb Cr(III). This work expands our understanding and provides a reference for the design and development of efficient and green bio-Pd catalysts for environmental pollution control under simple and mild conditions.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Qiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
7
|
Wang L, Zhao J, Cui L, Li YF, Li B, Chen C. Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics 2021; 13:6189688. [PMID: 33770173 DOI: 10.1093/mtomcs/mfab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022]
Abstract
Nanosafety evaluation is paramount since it is necessary not only for human health protection and environmental integrity but also as a cornerstone for industrial and regulatory bodies. The current nanometallomics did not cover non-metallic nanomaterials, which is an important part of nanomaterials. In this critical review, the concept of nanometallomics was expanded to incorporate all nanomaterials. The impacts on metal(loid) and metallo-biomolecular homeostasis by nanomaterials will be focused upon in nanometallomics study. Besides, the impacts on elemental and biomolecular homeostasis by metallo-nanomaterials are also considered as the research subjects of nanometallomics. Based on the new concept of nanometallomics, comparative nanometallomics was proposed as a new tool for nanosafety evaluation, which is high throughput and will be precise considering the nature of machine learning techniques. The perspectives of nanometallomics like metallo-wide association study and non-target nanometallomics were put forward.
Collapse
Affiliation(s)
- Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
8
|
Pem B, Toma M, Vrček V, Vinković Vrček I. Combined NMR and Computational Study of Cysteine Oxidation during Nucleation of Metallic Clusters in Biological Systems. Inorg Chem 2021; 60:4144-4161. [PMID: 33657797 DOI: 10.1021/acs.inorgchem.1c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread biomedical applications of silver and gold nanoparticles (AgNPs and AuNPs, respectively) prompt the need for mechanistic evaluation of their interaction with biomolecules. In biological media, metallic NPs are known to transform by various pathways, especially in the presence of thiols. The interplay between metallic NPs and thiols may lead to unpredictable consequences for the health status of an organism. This study explored the potential events occurring during biotransformation, dissolution, and reformation of NPs in the thiol-rich biological media. The study employed a model system evaluating the interaction of cysteine with small-sized AgNPs and AuNPs. The interplay of cysteine on transformation and reformation pathways of these NPs was experimentally investigated by nuclear magnetic resonance (NMR) spectroscopy and supported by light scattering techniques and transmission electron microscopy (TEM). As the main outcome, Ag- or Au-catalyzed oxidation of cysteine to cystine was found to occur through generation of reactive oxygen species (ROS). Computational simulations confirmed this mechanism and the role of ROS in the oxidative dimerization of biothiol during NPs reformation. The obtained results represent valuable mechanistic data about the complex events during the transport of metallic NPs in thiol-rich biological systems that should be considered for the future biomedical applications of metal-based nanomaterials.
Collapse
Affiliation(s)
- Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Mateja Toma
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Li M, Zhang C. Are silver nanoparticles better than triclosan as a daily antimicrobial? Answers from the perspectives of gut microbiome disruption and pathogenicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143983. [PMID: 33302073 DOI: 10.1016/j.scitotenv.2020.143983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 05/23/2023]
Abstract
As an alternative to triclosan (TCS), the widespread use of silver nanoparticles (AgNPs) in daily products shows genuine potential. However, information regarding whether AgNPs are substantially better than TCS in their potential disruption of the gut microbiome and health effects is lacking. Using a simulator of the human intestinal microbial ecosystem (SHIME), we systemically compared the effects of TCS and AgNPs (at 1 μg/L and 30 μg/L) on the human gut microbiome in terms of changes in gut homeostasis, microbial community structure, antibiotic resistance profiles and abundances of opportunistic pathogens. Generally, TCS exerted more severe effects than AgNPs on gut disturbances (i.e., decreased production of short-chain fatty acids, increased contents of ammonium and total bile acids, and increased β-glucosidase activities) in a dose-dependent manner, whereas no clear dose effect was observed for the AgNP treatment because of potential nanoparticle transformation. The more serious effect of TCS than AgNPs on the microbiota composition was indicated by the dynamic increase in the Firmicutes/Bacteroidetes ratio determined using 16S rDNA sequencing. Metagenomic analyses revealed a more pronounced effect of TCS than AgNPs on the selection and dissemination of multiple resistance genes to antibiotics, TCS, and even Ag via the enrichment of genes encoding efflux pumps and mobile genetic elements. Consequently, the overgrowth of opportunistic pathogens was observed upon TCS exposure due to an imbalanced microbiome, in contrast to a slight increase in the abundance of some beneficial bacteria (i.e., Bifidobacterium) induced by the AgNP treatment. In conclusion, from the perspective of effects on gut health, AgNPs may prevail over TCS to some extent. However, the stress and potential selection of Ag resistance indicates the need for targeted surveillance of AgNP commercialization for daily use.
Collapse
Affiliation(s)
- Mingzhu Li
- School of Environment, Beijing Normal University, Beijing 100875, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Riaz Rajoka MS, Mehwish HM, Xiong Y, Song X, Hussain N, Zhu Q, He Z. Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Cui X, Bao L, Wang X, Chen C. The Nano-Intestine Interaction: Understanding the Location-Oriented Effects of Engineered Nanomaterials in the Intestine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907665. [PMID: 32347646 DOI: 10.1002/smll.201907665] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanomaterials (ENMs) are used in food additives, food packages, and therapeutic purposes owing to their useful properties, Therefore, human beings are orally exposed to exogenous nanomaterials frequently, which means the intestine is one of the primary targets of nanomaterials. Consequently, it is of great importance to understand the interaction between nanomaterials and the intestine. When nanomaterials enter into gut lumen, they inevitably interact with various components and thereby display different effects on the intestine based on their locations; these are known as location-oriented effects (LOE). The intestinal LOE confer a new biological-effect profile for nanomaterials, which is dependent on the involvement of the following biological processes: nano-mucus interaction, nano-intestinal epithelial cells (IECs) interaction, nano-immune interaction, and nano-microbiota interaction. A deep understanding of NM-induced LOE will facilitate the design of safer NMs and the development of more efficient nanomedicine for intestine-related diseases. Herein, recent progress in this field is reviewed in order to better understand the LOE of nanomaterials. The distant effects of nanomaterials coupling with microbiota are also highlighted. Investigation of the interaction of nanomaterials with the intestine will stimulate other new research areas beyond intestinal nanotoxicity.
Collapse
Affiliation(s)
- Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| |
Collapse
|
12
|
Bi Y, Marcus AK, Robert H, Krajmalnik-Brown R, Rittmann BE, Westerhoff P, Ropers MH, Mercier-Bonin M. The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:69-89. [PMID: 31920169 DOI: 10.1080/10937404.2019.1710914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from "real" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on in vitro and in vivo rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.
Collapse
Affiliation(s)
- Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Hervé Robert
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | | | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|