1
|
Porous analcime composite synthesized from solid waste: A cost-effective and superb adsorbent for efficient removal of Cu(II) and cationic dye. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
2
|
Chen H, Yan H, Cao P, He Y, Song P, Wang R. Synthesis of semicoke-based geopolymers as delivery vehicles for slow release of herbicides. NEW J CHEM 2022. [DOI: 10.1039/d2nj02431d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel carrier of semicoke-based geopolymer was prepared and applied for site-specific targeted release and recycling of herbicides.
Collapse
Affiliation(s)
- Hongxia Chen
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haiyan Yan
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Peiyu Cao
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yufeng He
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Song
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongmin Wang
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
3
|
Electrospun nanofibers enhance trehalose synthesis by regulating gene expression for Micrococcus luteus fermentation. Colloids Surf B Biointerfaces 2021; 202:111714. [PMID: 33765627 DOI: 10.1016/j.colsurfb.2021.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022]
Abstract
In this study, mesoporous polyacrylonitrile (PAN)/thermoplastic polyurethane (TPU) blended nanofibers were prepared to immobilize Micrococcus luteus for enhancing the conversion of trehalose. The images of SEM showed the cells were adsorbed on the surface and pores due to the unique pore structure. The results of contact angle, Zeta potential and water holding ratio exhibited the good hydrophilicity and stability of PAN/TPU-P2. Besides, it was indicated that the biomass and immobilization efficiency were increased to 0.633 g/L and 0.153 g/g, respectively. It was the most noteworthy that the trehalose yield could reach 23.46 g/L, which was 71.62 % higher than that of the control in the multi-batch fermentation. Moreover, the reactive oxygen species (ROS) level was decreased to 12.8 % while the enzyme concentration was increased to 11.176 mg/mL. Meanwhile, it was also found that PAN/TPU-P2 immobilization substantially increased the expression of target gene MtreY by 3.500 times. In other words, the mechanism by which immobilized cells increased trehalose yield was that PAN/TPU-P regulated gene expression of MtreY. Therefore, this research provided theoretical foundation for the metabolic regulation of sufficient trehalose production by immobilized cells.
Collapse
|
4
|
Guo Y, Chen Z, Zhang S. Methane-fueled microbial fuel cells with the formate-acclimating electroactive culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142186. [PMID: 33254943 DOI: 10.1016/j.scitotenv.2020.142186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Methane gas is widespread in natural environments and anaerobic wastewater treatment sites, bringing the risk of the greenhouse effect and energy loss if left unmanaged. A methane-fueled microbial fuel cell (MFC) can convert methane to electricity under mild condition, but faced difficulties in startup. In this study, the new startup strategy and operation performance for methane-fueled MFCs were investigated. After the pre-cultivation of formate-acclimating electroactive culture, the methane-fueled MFC was successfully started up in a short time of 53 d. Increasing concentrations of molybdenum and tungsten in medium facilitated both methane consumption and electricity generation. Under the optimal condition (batch duration of 11 h, 30 °C, pH 7 buffered by phosphate buffer solution), the methane-fueled MFC achieved the maximum power density of 166 mW/m3, a coulomb production of 6.58 ± 0.07C/batch, a CE of 27.4 ± 0.4% and a methane consumption of 31.2 ± 0.3 μmol/batch. This work explored a suitable inoculum (formate-acclimating electroactive culture) for methane-fueled MFCs.
Collapse
Affiliation(s)
- Yanli Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhuang Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Lartey-Young G, Ma L. Remediation with Semicoke-Preparation, Characterization, and Adsorption Application. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4334. [PMID: 33003433 PMCID: PMC7579581 DOI: 10.3390/ma13194334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/02/2022]
Abstract
Development of low-cost contaminant sorbents from industrial waste is now an essential aspect of the circular economy since their disposal continues to threaten ecological integrity. Semicoke (SC), a by-product generated in large quantities and described as solid waste from gasification of low-rank coal (LRC), is gaining popularity in line with its reuse capacity in the energy industry but is less explored as a contaminant adsorbent despite its physical and elemental carbon properties. This paper summarizes recent information on SC, sources and production, adsorption mechanism of polluting contaminants, and summarizes regeneration methods capable of yielding sustainability for the material reuse.
Collapse
Affiliation(s)
- George Lartey-Young
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China;
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Sun MT, Zhao YZ, Yang ZM, Shi XS, Wang L, Dai M, Wang F, Guo RB. Methane Elimination Using Biofiltration Packed With Fly Ash Ceramsite as Support Material. Front Bioeng Biotechnol 2020; 8:351. [PMID: 32391347 PMCID: PMC7188830 DOI: 10.3389/fbioe.2020.00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Methane is a greenhouse gas and significantly contributes to global warming. Methane biofiltration with immobilized methane-oxidizing bacteria (MOB) is an efficient and eco-friendly approach for methane elimination. To achieve high methane elimination capacity (EC), it is necessary to use an exceptional support material to immobilize MOB. The MOB consortium was inoculated in biofilters to continuusly eliminate 1% (v/v) of methane. Results showed that the immobilized MOB cells outperformed than the suspended MOB cells. The biofilter packed with fly ash ceramsite (FAC) held the highest average methane EC of 4.628 g h–1 m–3, which was 33.4% higher than that of the biofilter with the suspended MOB cells. The qPCR revealed that FAC surface presented the highest pmoA gene abundance, which inferred that FAC surface immobilized the most MOB biomass. The XPS and contact angle measurement indicated that the desirable surface elemental composition and stronger surface hydrophilicity of FAC might favor MOB immobilization and accordingly improve methane elimination.
Collapse
Affiliation(s)
- Meng-Ting Sun
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, China
| | - Yu-Zhong Zhao
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-Man Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Shuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, China
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Dalian National Laboratory for Clean Energy, Dalian, China
| |
Collapse
|