1
|
Brugia M, Benedet M, Rizzi GA, Gasparotto A, Barreca D, Lebedev OI, Maccato C. Graphitic Carbon Nitride as a Promising Visible-Light-Activated Support Boosting Platinum Nanoparticle Activity in Ethanol Electrooxidation. CHEMSUSCHEM 2024; 17:e202401041. [PMID: 38979895 DOI: 10.1002/cssc.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Indexed: 07/10/2024]
Abstract
In the present work, exfoliated graphitic carbon nitride (g-CN) is immobilized on carbon paper substrates by a simple electrophoretic route, and subsequently decorated with ultra-low amounts (≈μg/cm2) of Pt nanoparticles (NPs) by cold plasma sputtering. Optimization of preparative conditions allowed a fine tuning of Pt NPs size, loading and distribution and thus a controlled tailoring of g-CN/Pt interfacial interactions. Modulation of such features yielded g-CN-Pt-based anode materials with appealing activity and stability towards the ethanol oxidation reaction (EOR) in alkaline aqueous solutions, as revealed by electrochemical tests both in the dark and under irradiation. The present results provide new insights on the design of nano-engineered heterocomposites featuring improved performances thanks to Pt coupling with g-CN, a low-cost and environmentally friendly visible light-active semiconductor. Overall, this work might open attractive avenues for the generation of green hydrogen via aqueous ethanol electrolysis and the photo-promoted alcohol electrooxidation in fuel cells.
Collapse
Affiliation(s)
- Mattia Brugia
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
| | - Mattia Benedet
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| | - Alberto Gasparotto
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| | - Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| | - Oleg I Lebedev
- Laboratoire CRISMAT, UMR 6508 Normandie Université CNRS, ENSICAEN, UNICAEN, 6, Boulevard Marechal Juin, 14050, Caen, Cedex 4, France
| | - Chiara Maccato
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
2
|
Li P, Zhou X, Yang H, He Y, Kan Y, Zhang Y, Shang Y, Zhang Y, Cao X, Leung MKH. Approaches for Enhancing Wastewater Treatment of Photocatalytic Fuel Cells: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2139. [PMID: 38730945 PMCID: PMC11085887 DOI: 10.3390/ma17092139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Environmental pollution and energy crises have garnered global attention. The substantial discharge of organic waste into water bodies has led to profound environmental contamination. Photocatalytic fuel cells (PFCs) enabling the simultaneous removal of refractory contaminants and recovery of the chemical energy contained in organic pollutants provides a potential strategy to solve environmental issues and the energy crisis. This review will discuss the fundamentals, working principle, and configuration development of PFCs and photocatalytic microbial fuel cells (PMFCs). We particularly focus on the strategies for improving the wastewater treatment performance of PFCs/PMFCs in terms of coupled advanced oxidation processes, the rational design of high-efficiency electrodes, and the strengthening of the mass transfer process. The significant potential of PFCs/PMFCs in various fields is further discussed in detail. This review is intended to provide some guidance for the better implementation and widespread adoption of PFC wastewater treatment technologies.
Collapse
Affiliation(s)
- Penghui Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China (Y.K.); (Y.Z.)
| | - Xiaohan Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China (Y.K.); (Y.Z.)
| | - Haoyi Yang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China (Y.K.); (Y.Z.)
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430024, China
| | - Yujiao Kan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China (Y.K.); (Y.Z.)
| | - Yang Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China (Y.K.); (Y.Z.)
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China (Y.K.); (Y.Z.)
| | - Yizhen Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China (Y.K.); (Y.Z.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou 256500, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China (Y.K.); (Y.Z.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Michael K. H. Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China;
| |
Collapse
|
3
|
Alvi NUH, Sandberg M. Sustainable and Low-Cost Electrodes for Photocatalytic Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:636. [PMID: 38607170 PMCID: PMC11013446 DOI: 10.3390/nano14070636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Water pollutants harm ecosystems and degrade water quality. At the same time, many pollutants carry potentially valuable chemical energy, measured by chemical oxygen demand (COD). This study highlights the potential for energy harvesting during remediation using photocatalytic fuel cells (PCFCs), stressing the importance of economically viable and sustainable materials. To achieve this, this research explores alternatives to platinum cathodes in photocathodes and aims to develop durable, cost-effective photoanode materials. Here, zinc oxide nanorods of high density are fabricated on carbon fiber surfaces using a low-temperature aqueous chemical growth method that is simple, cost-efficient, and readily scalable. Alternatives to the Pt cathodes frequently used in PCFC research are explored in comparison with screen-printed PEDOT:PSS cathodes. The fabricated ZnO/carbon anode (1.5 × 2 cm2) is used to remove the model pollutant used here and salicylic acid from water (30 mL, 70 μM) is placed under simulated sunlight (0.225 Sun). It was observed that salicylic acid was degraded by 23 ±0.46% at open voltage (OV) and 43.2 ± 0.86% at 1 V with Pt as the counter electrode, degradation was 18.5 ± 0.37% at open voltage (OV) and 44.1 ± 0.88% at 1 V, while PEDOT:PSS was used as the counter electrode over 120 min. This shows that the PEDOT:PSS exhibits an excellent performance with the full potential to provide low-environmental-impact electrodes for PCFCs.
Collapse
Affiliation(s)
- Naveed ul Hassan Alvi
- RISE Research Institutes of Sweden, Smart Hardware, Bio- and Organic Electronics, Södra Grytsgatan 4, 602 33 Norrköping, Sweden;
| | | |
Collapse
|
4
|
Roy S, Darabdhara J, Ahmaruzzaman M. Sustainable degradation of pollutants, generation of electricity and hydrogen evolution via photocatalytic fuel cells: An Inclusive Review. ENVIRONMENTAL RESEARCH 2023; 236:116702. [PMID: 37490976 DOI: 10.1016/j.envres.2023.116702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Environmental pollution and energy crisis have recently become one of the major global concerns. Insincere discharge of massive amount of organic and inorganic wastes into the aqueous bodies causes serious impact on our environment. However, these organic substances are significant sources of carbon and energy that could be sustainably utilized rather than being discarded. Photocatalytic fuel cell (PFC) is a smart and novel energy conversion device that has the ability to achieve dual benefits: degrading the organic contaminants and simultaneously generating electricity, thereby helping in environmental remediation. This article presents a detailed study of the recent advancements in the development of PFC systems and focuses on the fundamental working principles of PFCs. The degradation of various common organic and inorganic contaminants including dyes and antibiotics with simultaneous power generation and hydrogen evolution has been outlined. The impact of various operational factors on the PFC activity has also been briefly discussed. Moreover, it provides an overview of the design guidelines of the different PFC systems that has been developed recently. It also includes a mention of the materials employed for the construction of the photo electrodes and highlights the major limitations and relevant research scopes that are anticipated to be of interest in the days to come. The review is intended to serve as a handy resource for researchers and budding scientists opting to work in this area of PFC devices.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
5
|
Berehe BA, Assen AH, Kumar ASK, Ulla H, Duma AD, Chang JY, Gedda G, Girma WM. Highly efficient visible light active ZnO/Cu-DPA composite photocatalysts for the treatment of wastewater contaminated with organic dye. Sci Rep 2023; 13:16454. [PMID: 37777622 PMCID: PMC10542347 DOI: 10.1038/s41598-023-43842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
Industrial effluents are a leading major threat for water contamination, subsequently which results in severe health associated risks. Hence, purifying wastewater before releasing into the water resources is essential to avoid contamination. In this study, ZnO/Cu-DPA nano-composites were prepared by altering the percentage of Cu-DPA (20%, 30%, 40%, and 50% which are denoted to be ZnO/20%Cu-DPA, ZnO/30%Cu-DPA, ZnO/40%Cu-DPA and ZnO/50%Cu-DPA) using a simple mechanical grinding process. Several spectroscopic studies were employed such as electron paramagnetic analysis (EPR), powdered X-ray diffractometer (PXRD), UV-Vis absorbance spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope to characterize these nano-composites. The photo-catalytic activities of the prepared nano-composites were studied by degrading MB under visible light irradiation. ZnO, ZnO/20%Cu-DPA, ZnO/30%Cu-DPA, ZnO/40%Cu-DPA and ZnO/50%Cu-DPA degradation efficiencies were determined to be 71.8, 78.5, 77.1, and 66.1%, respectively. Among the composite catalysts, the ZnO/20%Cu-DPA coupled system are demonstrated the best efficiency (87%) for photo-degradation of MB within 80 min when exposed to visible light. The ZnO/Cu-DPA nano-composites had a greater MB photodegradation efficiency than pristine ZnO owing to p-n heterojunction in the linked system. Under visible light irradiation, the ZnO/20%Cu-DPA catalysed the conversion of dissolved O2 to hydroxyl radicals (OH·), triggering the reduction of MB. This suggests that ·OH is the primary specific active radical involved in the photo-catalytic decomposition of MB. Furthermore, EPR analysis indicates the existence of ·OH in the photo-catalytic system. The proposed nano-composites (ZnO/20%Cu-DPA) reusability was investigated across three cycles as the most efficient photo-catalyst. The results show that, the ZnO/Cu-DPA nano-catalyst is a potential candidate for the remediation of dirty water.
Collapse
Affiliation(s)
- Biniyam Abdu Berehe
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Ayalew H Assen
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-Hai Road, Gushan District, Kaohsiung, 80424, Taiwan
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Hidayath Ulla
- Department of Physics, School of Engineering, Presidency University, Bangalore, 560064, India
| | - Alemayehu Dubale Duma
- Bio and Emerging Technology Institute (BETin), Nanotechnology Directorate, P.O. Box 5954, Addis Ababa, Ethiopia
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Gangaraju Gedda
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to Be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| | - Wubshet Mekonnen Girma
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
6
|
Wei J, Ding J, Hu Q, Tian X, Bai M, Qian J, Wang K. Internal reference self-powered aptasensor for on-site detection of MC-RR used sunlight as light source and CoMoS 4 hollow nanospheres as photocathode. Anal Chim Acta 2023; 1262:341239. [PMID: 37179056 DOI: 10.1016/j.aca.2023.341239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
As a liver toxin, long-term exposure of microcystin-arginine-arginine (MC-RR) is harmful to the ecological environment and human health, so it is necessary to realize on-site detection of MC-RR. The self-powered sensor has enormous potential for on-site detection in battery-free devices. However, due to the low photoelectric conversion efficiency and poor anti-interference ability to environmental fluctuation, the field detection of self-powered sensor is limited. Herein, we tackled above problems according to the following two aspects. For one hand, CoMoS4 hollow nanospheres modified internal reference electrode was arranged in the self-powered sensor, which effectively avoided the influence of unstable sunlight caused by different space, time, weather and other factors. For the other hand, dual-photoelectrode could absorb and convert sunlight, so as to improve the solar capture and energy utilization, and realized the sunlight instead of traditional external light source (Xenon lamp or LED, etc.). This method effectively simplified the sensing device and solved the interference of environment in on-site detection. In addition, multimeter was used to measure the output voltage instead of electrochemical workstation, achieving the purpose of portability. This work established a sunlight-driven internal reference self-powered sensor with miniaturization, portability and anti-interference to realize MC-RR on-site monitoring in lake water.
Collapse
Affiliation(s)
- Jie Wei
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Junfeng Ding
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qinqin Hu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xuyan Tian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Meixiu Bai
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
7
|
Xu C, Sun S, Li Y, Gao Y, Zhang W, Tian L, Li T, Du Q, Cai J, Zhou L. Methane emission reduction oriented extracellular electron transfer and bioremediation of sediment microbial fuel cell: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162508. [PMID: 36863582 DOI: 10.1016/j.scitotenv.2023.162508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Sediment is the internal and external source of water environment pollution, so sediment remediation is the premise of water body purification. Sediment microbial fuel cell (SMFC) can remove the organic pollutants in sediment by electroactive microorganisms, compete with methanogens for electrons, and realize resource recycling, methane emission inhibiting and energy recovering. Due to these characteristics, SMFC have attracted wide attention for sediment remediation. In this paper, we comprehensively summarized the recent advances of SMFC in the following areas: (1) The advantages and disadvantages of current applied sediment remediation technologies; (2) The basic principles and influencing factors of SMFC; (3) The application of SMFC for pollutant removal, phosphorus transformation and remote monitoring and power supply; (4) Enhancement strategies for SMFC in sediments remediation such as SMFC coupled with constructed wetland, aquatic plant and iron-based reaction. Finally, we have summarized the drawback of SMFC and discuss the future development directions of applying SMFC for sediment bioremediation.
Collapse
Affiliation(s)
- Chong Xu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yifu Li
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yang Gao
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Liu Tian
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang 413000, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Qing Du
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jingju Cai
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
8
|
Farhan A, Zulfiqar M, Samiah, Rashid EU, Nawaz S, Iqbal HM, Jesionowski T, Bilal M, Zdarta J. Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. CURRENT POLLUTION REPORTS 2023; 9:338-358. [DOI: 10.1007/s40726-023-00253-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/17/2024]
Abstract
Abstract
Purpose of Review
Heavy and toxic metals are becoming more prevalent in the water sources of the globe, which has detrimental repercussions for both human health and the health of ecosystems. The summary of recent findings on treatment possibilities of toxic metal species by nanomaterials should facilitate the development of more advanced techniques of their removal.
Recent Findings
The high concentrations of chromium, mercury, and arsenic identified in wastewater cause a hazard to human health. There is a wide variety of nanoadsorbents and nanophotocatalysts used for heavy/hazardous metal removal. Recent research has resulted in the production of advanced nanostructures that exhibit extraordinary heavy/hazardous metal adsorption effectiveness and photocatalytic diminution of metal ions. These nanostructures have physically and chemically tunable features.
Summary
In this review article, the use of carbon-based nanomaterials, polymer-based nanomaterials, and semiconductor-based nanomaterials are extensively discussed to remove mercury, chromium, and arsenic ions from wastewater by the adsorption process. Advanced nanomaterials involved in photocatalytic reduction are also comprehensively discussed.
Collapse
|
9
|
Thor SH, Ho LN, Ong SA, Abidin CZA, Heah CY, Yap KL. Disclosing the mutual influence of photocatalytic fuel cell and photoelectro-Fenton process in the fabrication of a sustainable hybrid system for efficient Amaranth dye removal and simultaneous electricity production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34363-34377. [PMID: 36512276 DOI: 10.1007/s11356-022-24647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic fuel cell (PFC) was employed to provide renewable power sources to photoelectro-Fenton (PEF) process to fabricate a double-chambered hybrid system for the treatment of azo dye, Amaranth. The PFC-PEF hybrid system was interconnected by a circuit attached to the electrodes in PFC and PEF. Circuit connection is the principal channel for the electron transfer and mobility between PFC and PEF. Thus, different circuit connections were evaluated in the hybrid system for their influences on the Amaranth dye degradation. The PFC-PEF system under the complete circuit connection condition attained the highest decolourization efficiency of Amaranth (PFC: 98.85%; PEF: 95.69%), which indicated that the complete circuit connection was crucial for in-situ formation of reactive species in dye degradation. Besides, the pivotal role of ultraviolet (UV) light irradiation in the PFC-PEF system for both dye degradation and electricity generation was revealed through various UV light-illuminating conditions applied for PFC and PEF. A remarkable influence of UV light irradiation on the production of hydrogen peroxide and generation and regeneration of Fe2+ in PEF was demonstrated. This study provided a comprehensive mechanistic insight into the dye degradation and electricity generation by the PFC-PEF system.
Collapse
Affiliation(s)
- Shen-Hui Thor
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Li-Ngee Ho
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Che Zulzikrami Azner Abidin
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Cheng-Yong Heah
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Kea-Lee Yap
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
10
|
Tiwari S, Yadav P, Ganguli AK. Enhancing the activity and stability of Cu 2O nanorods via coupling with a NaNbO 3/SnS 2 heterostructure for photoelectrochemical water-splitting. NEW J CHEM 2023. [DOI: 10.1039/d3nj00684k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
We synthesized a stable copper-based heterostructure catalyst, NaNbO3/SnS2/Cu2O for photoelectrochemical water-splitting applications with improved activity, stability, and inhibited photocorrosion in Cu2O.
Collapse
Affiliation(s)
- Shalini Tiwari
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Priyanka Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok K. Ganguli
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
11
|
John S, Nogala W, Gupta B, Singh S. Synergy of photocatalysis and fuel cells: A chronological review on efficient designs, potential materials and emerging applications. Front Chem 2022; 10:1038221. [DOI: 10.3389/fchem.2022.1038221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The rising demand of energy and lack of clean water are two major concerns of modern world. Renewable energy sources are the only way out in order to provide energy in a sustainable manner for the ever-increasing demands of the society. A renewable energy source which can also provide clean water will be of immense interest and that is where Photocatalytic Fuel Cells (PFCs) exactly fit in. PFCs hold the ability to produce electric power with simultaneous photocatalytic degradation of pollutants on exposure to light. Different strategies, including conventional Photoelectrochemical cell design, have been technically upgraded to exploit the advantage of PFCs and to widen their applicability. Parallel to the research on design, researchers have put an immense effort into developing materials/composites for electrodes and their unique properties. The efficient strategies and potential materials have opened up a new horizon of applications for PFCs. Recent research reports reveal this persistently broadening arena which includes hydrogen and hydrogen peroxide generation, carbon dioxide and heavy metal reduction and even sensor applications. The review reported here consolidates all the aspects of various design strategies, materials and applications of PFCs. The review provides an overall understanding of PFC systems, which possess the potential to be a marvellous renewable source of energy with a handful of simultaneous applications. The review is a read to the scientific community and early researchers interested in working on PFC systems.
Collapse
|
12
|
Unassisted photocatalytic hydrogen peroxide fuel cell based on dual photoelectrodes with high performance and stability. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Yong ZJ, Lam SM, Sin JC, Zeng H, Mohamed AR, Jaffari ZH. Boosting sunlight-powered photocatalytic fuel cell with S-scheme Bi2WO6/ZnO nanorod array composite photoanode. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Pouramini Z, Ayati B, Babapoor A. Enhancing PFC ability to dye removal and power generation simultaneously via conductive spheres in the anodic chamber. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Tong Y, Wei J, Mo R, Ma H, Ai F. Photocatalytic Microbial Fuel Cells and Performance Applications: A Review. Front Chem 2022; 10:953434. [PMID: 35844644 PMCID: PMC9280278 DOI: 10.3389/fchem.2022.953434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, photocatalytic microbial fuel cells have gradually become a hot research topic in pollutant treatment, using either in situ or indirectly the oxidation of organic pollutants by catalytic materials under light and the biodegradation and mineralization of various components in wastewater by microorganisms, or through the generation of electricity by the microbial fuel cell (MFC) system to promote the photogeneration and separation of electrons and holes by the catalytic materials of the photocatalytic cell (PC) system. This study aims to provide new ideas for the development of environmentally friendly wastewater treatment technologies by investigating the use of photocatalytic cells for the efficient degradation and resource utilization of target pollutants. This study aims to raise awareness of the use of photocatalytic microbial fuel cells for pollutant degradation by providing an overview of the practical status of photocatalytic microbial fuel cells. This is achieved by reviewing the key cathode development, production capacity, and progress in the degradation of pollutants in photocatalytic microbial fuel cells. The issues facing future developments are also discussed in terms of how photocatalytic microbial fuel cells work and how they degrade pollutants. This study shows that photocatalytic microbial fuel cells are beneficial for achieving renewable energy (bioenergy, photovoltaic, etc.) capacity and dealing with environmental pollution and that this is a novel technology that deserves to be promoted to achieve the current dual carbon targets.
Collapse
Affiliation(s)
- Yao Tong
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China
| | - Julong Wei
- School of Mechanical Engineering, Shandong University, Jinan, China
| | - Rick Mo
- Hong Kong Productivity Council(HKPC), Hong Kong, China
| | - Hailing Ma
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China
- *Correspondence: Hailing Ma, ; Fujin Ai,
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- *Correspondence: Hailing Ma, ; Fujin Ai,
| |
Collapse
|
16
|
Li B, He Y, Xiao M, Zhang Y, Wang Z, Qin Z, Chai B, Yan J, Li J, Li J, Cao Z. A solar-light driven photocatalytic fuel cell for efficient electricity generation and organic wastewater degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Photocatalytic Fuel Cells for Simultaneous Wastewater Treatment and Power Generation: Mechanisms, Challenges, and Future Prospects. ENERGIES 2022. [DOI: 10.3390/en15093216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Technological advancement is accompanied by excessive consumption of fossil fuels and affluent uses of chemical substances in many sectors, including transportation and manufacturing companies, and so on. Being an exhaustible resource, the excessive use of fossil fuels and of chemical substances may lead to a serious energy crisis in the long run, and it may additionally impose environmental pollution. Attempts have been made in the solution of such serious issues from every nook and corner. Nonetheless, no method has been found to be a panacea in waste water treatment and subsequent beneficiaries. One of the attempts in the solution to such issues is the application of photocatalytic technology, which could serve as a dual function in environmental remediation and clean energy production. A photocatalytic fuel cell is a tool developed for the recovery of energy from organic wastes. A rational cell construction needs the fabrication of photoelectrodes, the design of a photoanode and a photocathode chamber, in addition to an ion-transport membrane for pollution treatment and electricity generation. In this review, comprehensive fundamental assessments and recent developments in the design of photocatalytic fuel cells, their applications, future prospects, and challenges are covered.
Collapse
|
18
|
Photocatalytic fuel cell for simultaneous antibiotic wastewater treatment and electricity production by anatase TiO2 nanoparticles anchored on Ni foam. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Bahamonde Soria R, Chinchin BD, Arboleda D, Zhao Y, Bonilla P, Van der Bruggen B, Luis P. Effect of the bio-inspired modification of low-cost membranes with TiO 2:ZnO as microbial fuel cell membranes. CHEMOSPHERE 2022; 291:132840. [PMID: 34780732 DOI: 10.1016/j.chemosphere.2021.132840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are a novel technique for converting biodegradable materials into electricity. In this study, the efficiency of mixed crystal (TiO2:ZnO) as a membrane modifier of a low-cost, antifouling and self-cleaning cation exchange membrane for MFCs was studied. The modification was prepared using polydopamine (PDA) as the bio-inspired glue, followed by gravity deposition of a mixture of catalyst nanoparticles (TiO2:ZnO 0.03%, 1:1 ratio) as anti-biofouling agents. The effects of the membrane modification were evaluated in terms of power density, open circuit potential, coulombic efficiency, anti-biofouling properties and also color and COD removal efficiency. The results showed that the use of the PDA-modified membrane and a mixture of catalysts facilitated the transfer of cations released during the oxidation process in the anodic compartment of the MFC, which increased the power generation in the MFC by 2.5 times and 5.7 times the current compared to pristine and PDA pristine membranes, decreased the MFC operating cycle time from 5 to 3 days, doubled the lifetime of the membranes and demonstrated higher COD removal efficiency and color removal. Finally, SEM and AFM analysis showed that the modification significantly minimized surface fouling. The modified membranes in this study proved to be a potential alternative to the expensive membranes currently used in MFCs, furthermore, this modification could be an interesting alternative modification for other potential membranes for use in MFCs, due to the fact that the catalyst activation was only performed with visible light (artificial and solar), which could decrease operating costs.
Collapse
Affiliation(s)
- Raúl Bahamonde Soria
- Renewable Energy Laboratory, Chemical Sciences Faculty, Universidad Central Del Ecuador, Ecuador; Materials & Process Engineering (IMAP), UCLouvain, Place Sainte Barbe 2, 1348, Louvain-la-Neuve, Belgium.
| | - Billy Daniel Chinchin
- Renewable Energy Laboratory, Chemical Sciences Faculty, Universidad Central Del Ecuador, Ecuador
| | - Daniel Arboleda
- Renewable Energy Laboratory, Chemical Sciences Faculty, Universidad Central Del Ecuador, Ecuador
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Pablo Bonilla
- Nanotechnology Laboratory, Chemical Sciences Faculty, Universidad Central Del, Ecuador
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Patricia Luis
- Materials & Process Engineering (IMAP), UCLouvain, Place Sainte Barbe 2, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Li S, Liu C, Liu H, Lv W, Liu G. Effective stabilization of atomic hydrogen by Pd nanoparticles for rapid hexavalent chromium reduction and synchronous bisphenol A oxidation during the photoelectrocatalytic process. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126974. [PMID: 34449332 DOI: 10.1016/j.jhazmat.2021.126974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Atomic hydrogen (H*) plays a vital role in the synchronous redox of metallic ions and organic molecules. However, H* is extremely unstable as it is easily converted to hydrogen. Herein, we designed a novel strategy for the effective stabilization of H* to enhance its utility. The synthesized Pd nanoparticles grown on the defective MoS2 (DMS) of TiO2 nanowire arrays (TNA) (TNA/DMS/Pd) photocathode exhibited rapid Cr(VI) reduction (~95% in 10 min) and bisphenol A (BPA) oxidation (~97% in 30 min), with the kinetic constants almost 24- and 6-fold higher than those of the TNA photocathode, respectively. This superior performances could be attributed to: (i) the generated interface heterojunctions between TNA and DMS boosted the separation efficiencies of photogenerated electrons, thereby supplying abundant valance electrons to lower the overpotential to create a suitable microenvironment for H* generation; (ii) the stabilization of H* by Pd nanoparticles resulted in a significant increase in the yield of hydroxyl radical (•OH). This research provides a new strategy for the effective utilization of H* toward rapid reduction of heavy metals and synchronous oxidation of the refractory organics.
Collapse
Affiliation(s)
- Shanpeng Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunlei Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
21
|
Cerrato E, Chiesa M, Giamello E, Livraghi S, Salvadori E, Paganini MC. Zinc oxide hollow spheres decorated with cerium dioxide. The role of morphology in the photoactivity of semiconducting oxides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:134001. [PMID: 34942602 DOI: 10.1088/1361-648x/ac4629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The photochemical activity of the recently proposed CeO2-ZnO photocatalytic material active under visible light has been improved by means of significant modifications of its morphology. A polymeric templating agent (Pluronic) has been used in the synthesis obtaining a particle morphology based on hollow spheres that is better defined in the case of high template concentration. The charge separation ability and the light-induced surface electron transfer under irradiation with visible polychromatic light in various ranges of wavelengths has been investigated by electron paramagnetic resonance. The reactivity of the photogenerated holes has been monitored by the spin trapping technique in the presence of DMPO. The hollow spheres morphology achieved through the synthesis here reported leads to systems with a higher photoactivity under visible irradiation than the same system displaying the classic platelets morphology. A parallel increase of the photocatalytic activity of this novel system in pollution remediation reactions is therefore predictable.
Collapse
Affiliation(s)
- Erik Cerrato
- Dipartimento di Chimica, via Giuria 7, 10125 Torino, Italy
| | - Mario Chiesa
- Dipartimento di Chimica, via Giuria 7, 10125 Torino, Italy
| | - Elio Giamello
- Dipartimento di Chimica, via Giuria 7, 10125 Torino, Italy
| | | | | | | |
Collapse
|
22
|
Ibrahim OA, Navarro-Segarra M, Sadeghi P, Sabaté N, Esquivel JP, Kjeang E. Microfluidics for Electrochemical Energy Conversion. Chem Rev 2022; 122:7236-7266. [PMID: 34995463 DOI: 10.1021/acs.chemrev.1c00499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical energy conversion is an important supplement for storage and on-demand use of renewable energy. In this regard, microfluidics offers prospects to raise the efficiency and rate of electrochemical energy conversion through enhanced mass transport, flexible cell design, and ability to eliminate the physical ion-exchange membrane, an essential yet costly element in conventional electrochemical cells. Since the 2002 invention of the microfluidic fuel cell, the research field of microfluidics for electrochemical energy conversion has expanded into a great variety of cell designs, fabrication techniques, and device functions with a wide range of utility and applications. The present review aims to comprehensively synthesize the best practices in this field over the past 20 years. The underlying fundamentals and research methods are first summarized, followed by a complete assessment of all research contributions wherein microfluidics was proactively utilized to facilitate energy conversion in conjunction with electrochemical cells, such as fuel cells, flow batteries, electrolysis cells, hybrid cells, and photoelectrochemical cells. Moreover, emerging technologies and analytical tools enabled by microfluidics are also discussed. Lastly, opportunities for future research directions and technology advances are proposed.
Collapse
Affiliation(s)
- Omar A Ibrahim
- Fuel Cell Research Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, V3T 0A3 Surrey, British Columbia Canada.,Fuelium S.L., Edifici Eureka, Av. Can Domènech S/N, 08193 Bellaterra, Barcelona Spain
| | - Marina Navarro-Segarra
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Til·lers sn, Campus UAB, 08193 Bellaterra Barcelona Spain
| | - Pardis Sadeghi
- Fuel Cell Research Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, V3T 0A3 Surrey, British Columbia Canada
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Til·lers sn, Campus UAB, 08193 Bellaterra Barcelona Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Til·lers sn, Campus UAB, 08193 Bellaterra Barcelona Spain.,BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Erik Kjeang
- Fuel Cell Research Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, V3T 0A3 Surrey, British Columbia Canada
| |
Collapse
|
23
|
Cerium-, Europium- and Erbium-Modified ZnO and ZrO2 for Photocatalytic Water Treatment Applications: A Review. Catalysts 2021. [DOI: 10.3390/catal11121520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the last decades photocatalysis has become one of the most employed technologies for the implementation of the so-called Advanced Oxidation Processes (AOPs) for the removal of harmful pollutants from wastewaters. The materials identified as the best photocatalysts are transition metal oxides, in which the band structure allows charge carrier separation upon solar irradiation. The photoinduced charge carrier can thus cause oxidative and reductive redox reactions at the surface, inducing the formation of the radical species able to initiate the AOPs. Despite the great advantages of this process (non-toxic, cheap and environmentally clean), the main drawback lies in the fact that the most efficient semiconductors are only able to absorb UV irradiation, which accounts for only 5% of the total solar irradiation at the Earth’s surface and not enough to generate the required amount of electron-hole pairs. On the other hand, many efforts have been devoted to the sensitization of wide band gap transition metal oxides to visible light, which represents a higher percentage (almost 45%) in the solar electromagnetic spectrum. Among all the strategies to sensitize transition metal oxides to visible irradiation, doping with lanthanides has been less explored. In this regard, lanthanides offer a unique electronic configuration, consisting in 4f orbitals shielded by a 5s5p external shell. This occurrence, coupled with the different occupation of the localized 4f orbitals would provide an astounding opportunity to tune these materials’ properties. In this review we will focus in depth on the modification of two promising photocatalytic transition metal oxides, namely ZnO and ZrO2, with cerium, europium and erbium atoms. The aim of the work is to provide a comprehensive overview of the influence of lanthanides on the structural, optical and electronic properties of the modified materials, emphasizing the effect of the different 4f orbital occupation in the three considered doping atoms. Moreover, a large portion of the discussion will be devoted to the structural-properties relationships evidencing the improved light absorption working mechanism of each system and the resulting enhanced photocatalytic performance in the abatement of contaminants in aqueous environments.
Collapse
|
24
|
Discovering the roles of electrode distance and configuration in dye degradation and electricity generation in photocatalytic fuel cell integrated electro-Fenton process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
ZIF-67-derived Co@N-PC anchored on tracheid skeleton from sawdust with micro/nano composite structures for boosted methylene blue degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Chen X, Yao J, Dong H, Hong M, Gao N, Zhang Z, Jiang W. Enhanced bezafibrate degradation and power generation via the simultaneous PMS activation in visible light photocatalytic fuel cell. WATER RESEARCH 2021; 207:117800. [PMID: 34741902 DOI: 10.1016/j.watres.2021.117800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
A collaborative system including peroxymonosulfate (PMS) activation in a photocatalytic fuel cell (PFC) with an BiOI/TiO2 nanotube arrays p-n type heterojunction as photoanode under visible light (PFC(BiOI/TNA)/PMS/vis system) was established. Xenon lamp was used as the light source of visible light. A 4.6 times higher pseudo-first-order bezafibrate (BZF) degradation rate constant was achieved in this system compared with the single PFC(BiOI/TNA)/vis system. The radical quenching experiments revealed that the contribution of reactive oxidative species (ROS) followed the order of 1O2 ≈ h+ >> •OH > SO4•- >>O2•-. The EPR tests demonstrated that PMS addition enlarged the formation of 1O2, •OH and SO4•-, but suppressed O2•- yield. Interestingly, 1O2 was further proved to dominantly originated from the priority reaction between positive photoinduced holes (h+) and negatively charged PMS. Besides, N2-purging tests and density functional theory calculation indicated that PMS probably reacted with residual photoinduced electron (e-) on the more negative conduction band (CB) of BiOI to form •OH and SO4•-, but competed with dissolved oxygen. Other e- transferred to the less negative CB of TNA through p-n junction will efficiently move to cathode through the external circuit. The greatly promoted power generation of PFC system was observed after PMS addition due to extra h+ consumption and efficient e- separation and transfer. Besides, three possible pathways for BZF degradation were proposed including hydroxylation, fibrate chain substituent and amino bond fracture. This study can provide new insights into the mechanisms of PMS assisted photocatalysis and accompanying energy recovery.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Hongsen Dong
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Mingjian Hong
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Naiyun Gao
- State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wenchao Jiang
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
27
|
Patel A, Arkatkar A, Singh S, Rabbani A, Solorza Medina JD, Ong ES, Habashy MM, Jadhav DA, Rene ER, Mungray AA, Mungray AK. Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. CHEMOSPHERE 2021; 282:130881. [PMID: 34087557 DOI: 10.1016/j.chemosphere.2021.130881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
An increase in urbanization and industrialization has not only contributed to an improvement in the lifestyle of people, but it has also contributed to a surge in the generation of wastewater. To date, conventional physico-chemical and biological treatment methods are widely used for the treatment of wastewater. However, the efficient operation of these systems require substantial operation and maintenance costs, and the application of novel technologies for the treatment and disposal of sludge/residues. This review paper focuses on the application of different treatment options such as chemical, catalyst-based, thermochemical and biological processes for wastewater or sludge treatment and membrane-based technologies (i.e. pressure-driven and non-pressure driven) for the separation of the recovered products from wastewater and its residues. As evident from the literature, a wide variety of treatment and resource recovery options are possible, both from wastewater and its residues; however, the lack of planning and selecting the most appropriate design (treatment train) to scale up from pilot to the field scale has limited its practical application. The economic feasibility of the selected technologies was critically analyzed and the future research prospects of resource recovery from wastewater have been outlined in this review.
Collapse
Affiliation(s)
- Asfak Patel
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Ambika Arkatkar
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Srishti Singh
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Alija Rabbani
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Juan David Solorza Medina
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Ee Shen Ong
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Dipak A Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad 431010, Maharashtra, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Alka A Mungray
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| |
Collapse
|
28
|
Navidpour AH, Hosseinzadeh A, Zhou JL, Huang Z. Progress in the application of surface engineering methods in immobilizing TiO 2 and ZnO coatings for environmental photocatalysis. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1983066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amir H. Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - John L. Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - Zhenguo Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
29
|
Savino U, Sacco A. Tandem devices for simultaneous CO2 reduction at the cathode and added-value products formation at the anode. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Guan Y, Liu Y, Lv Q, Wu J. Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126280. [PMID: 34102357 DOI: 10.1016/j.jhazmat.2021.126280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic oxidation method is a promising technology for solving flue gas mercury (Hg) pollution from industrial plants. Semiconductor photocatalysts have been widely applied in energy conversion and environmental remediation. However, key issues such as low light absorption capacity, wide energy band gap, and poor physicochemical stability severely limit the application of photocatalysts in practical industrial plants. In recent years, bismuth-based (Bi-based) photocatalysts, including bismuth oxide halide BiOX (X = Cl, Br or I), bismuth salt oxymetal BiVO4, and BiOIO3 etc., have increasingly aroused scientists' attention due to their peculiar crystalline geometric structures, tunable electronic structure and high photocatalytic performance. In present review, we firstly review the photocatalytic reaction mechanism and main photocatalytic oxidation mechanism of mercury. Secondly, the synthetic methods of Bi-based photocatalysts are summarized. Then, according to the mechanism of mercury removal, the experimental modifying approaches including heterojunction making, external atoms doping, defect creating, and crystal face regulating to promote the photocatalytic oxidation of mercury removal are summarized, as well as the determination of the band gap and electronic density of states (DOS) of Bi-based photocatalysts to elucidate the photocatalytic oxidation mechanism via density functional theory (DFT) calculation. Furthermore, constructing electronic transmission channels is an efficient way to improve the photocatalytic activity. Finally, challenges and perspectives of Bi-based photocatalyst for photocatalytic oxidation of mercury removal are presented. In addition, the excellent performance photocatalysts and efficient pollution removal equipment for mercury removal in industrial plants are still required in-depth study.
Collapse
Affiliation(s)
- Yu Guan
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yinhe Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiang Lv
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiang Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
31
|
Construction of NiO and Ti3+ self-doped TNTs thin film as a high quantum yield p-n type heterojunction via a novel photoelectrodeposition-assisted anodization method. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Chen Y, Chen H, Song J, Zhao Y, Rao L, Zhou G, Nötzel R. One-Compartment InGaN Nanowire Fuel Cell in the Light and Dark Operating Modes. ACS OMEGA 2021; 6:17464-17471. [PMID: 34278132 PMCID: PMC8280697 DOI: 10.1021/acsomega.1c01844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
A one-compartment H2O2 photofuel cell (PFC) with a photoanode based on InGaN nanowires (NWs) is introduced for the first time. The electrocatalytic and photoelectrocatalytic properties of the InGaN NWs are studied in detail by cyclic voltammetry, current versus time measurements, photovoltage measurements, and electrochemical impedance spectroscopy. In parallel, IrO x (OH) y as the co-catalyst on the InGaN NWs is evaluated to boost the catalytic activity in the dark and light. For the PFC, Ag is the best as the cathode among Ag, Pt, and glassy carbon. The PFC operates in the dark as a conventional fuel cell (FC) and under illumination with 25% increased electrical power generation at room temperature. Such dual operation is unique, combining FC and PFC technologies for the most flexible use.
Collapse
Affiliation(s)
- Yongjie Chen
- Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology,
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Hedong Chen
- Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology,
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Jiaxun Song
- Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology,
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Yingzhi Zhao
- Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology,
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Lujia Rao
- Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology,
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Guofu Zhou
- Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology,
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
- National
Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
- Academy
of Shenzhen Guohua Optoelectronics, Shenzhen 518110, People’s
Republic of China
| | - Richard Nötzel
- Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology,
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
- National
Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
33
|
Vinayak V, Khan MJ, Varjani S, Saratale GD, Saratale RG, Bhatia SK. Microbial fuel cells for remediation of environmental pollutants and value addition: Special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J Biotechnol 2021; 338:5-19. [PMID: 34245783 DOI: 10.1016/j.jbiotec.2021.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
With the advent of global industrialisation and adaptation of smart life there is rise in anthropogenic pollution especially in water. Remediation of the pollutants (such as metals, and dyes) present in industrial effluents is possible via microbes and algae present in the environment. Microbes are used in a microbial fuel cell (MFC) for remediation of various organic and inorganic pollutants. However, for industrial scale application coupling the MFCs with photocatalytic and photoelectric fuel cell has a potential in improving the output of power. It can also be used for remediation of pollutants more expeditiously, conserving fossil fuels, cleaning environment, hence making the coupled hybrid fuel cell to run economically. Furthermore, such MFC inbuilt with algae in living or powder form give additional value addition products like biofuel, polysaccharides, biopolymers, and polyhydroxy alkanoates etc. This review provides bird's eye view on the removal of environmental pollutants by different biological sources like bacteria and algae. The article is focussed on diatoms as potential algae since they are rich source of crude oil and high value added products in a hybrid photocatalytic MFC. It also covers bottle necks, challenges and future in this field of research.
Collapse
Affiliation(s)
- Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
34
|
Zeng Q, Chang S, Wang M, Li M, Deng Q, Xiong Z, Zhou B, Liu Y. Highly-active, metal-free, carbon-based ORR cathode for efficient organics removal and electricity generation in a PFC system. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Hao N, Dai Z, Xiong M, Han X, Zuo Y, Qian J, Wang K. Rapid Potentiometric Detection of Chemical Oxygen Demand Using a Portable Self-Powered Sensor Chip. Anal Chem 2021; 93:8393-8398. [PMID: 34101434 DOI: 10.1021/acs.analchem.1c01863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chemical oxygen demand (COD) is an important indicator of organic pollutants in water bodies. Most of the present testing methods have the disadvantages of having complicated steps, being time-consuming, and using toxic and hazardous substances. In this work, rapid potentiometric detection of chemical oxygen demand (COD) using a portable self-powered sensor chip was successfully developed. The indium tin oxide (ITO) electrode was etched by laser, and the photocatalytic materials TiO2/CuS and Pt were modified onto the photoanode and the cathode to prepare the sensor chip. Based on the principle of photocatalytic degradation, organic pollutants can be oxidized by TiO2/CuS, and the concentration will affect the generated voltage. The quantitative detection of COD in the range of 0.05-50 mg/L can be rapidly achieved within 5 min by a miniature device. Besides good portability and sensitivity, the proposed sensor also has the advantages of environmental friendliness and ease of use, which is an ideal choice for the on-site detection of water pollution.
Collapse
Affiliation(s)
- Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhen Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Xu Han
- Science and Technology on Space Physics Laboratory, Beijing 10076, PR China
| | - Yanli Zuo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
36
|
Selvinsimpson S, Eva Gnana Dhana Rani S, Ganesh Kumar A, Rajaram R, Sharmila Lydia I, Chen Y. Photocatalytic activity of SnO 2/Fe 3O 4 nanocomposites and the toxicity assessment of Vigna radiata, Artemia salina and Danio rerio in the photodegraded solution. ENVIRONMENTAL RESEARCH 2021; 195:110787. [PMID: 33508257 DOI: 10.1016/j.envres.2021.110787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The study was undertaken to design SnO2/Fe3O4 nanocomposite by sonochemical method and to assess the photodegradation of organic dye. Textural, composition and structural features of the bare SnO2 and SnO2/Fe3O4 samples were characterized using scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The X-ray diffraction of as-synthesized SnO2/Fe3O4 nanocomposites confirms the presence of tetragonal and cubic structure. The results disclose that the incorporation of Fe3O4 in SnO2 decrease the crystallite size and increase the surface area compared with bare SnO2 nanoparticle. The as-prepared photocatalyst shows higher efficiency than the bare SnO2 under sunlight irradiation. Vigna radiata seeds (VR), Artemia salina (AS) and Zebra fish (Danio rerio (DR) were used to check the toxicity level of the treated and untreated Rhodamine B (RhB) dye solution. These models displayed good consistency for examining the harmfulness of the solutions. The results suggests SnO2/Fe3O4 nanocomposite exhibited a good efficacy in the dye wastewater treatment. Further, the degradation efficiency was confirmed by the toxicity examination.
Collapse
Affiliation(s)
| | - S Eva Gnana Dhana Rani
- PG and Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - A Ganesh Kumar
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - R Rajaram
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - I Sharmila Lydia
- PG and Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
New photoactive mesoporous Ce-modified TiO2 for simultaneous wastewater treatment and electric power generation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Roy P, Pramanik A, Sarkar P. Graphitic Carbon Nitride Sheet Supported Single-Atom Metal-Free Photocatalyst for Oxygen Reduction Reaction: A First-Principles Analysis. J Phys Chem Lett 2021; 12:2788-2795. [PMID: 33710885 DOI: 10.1021/acs.jpclett.1c00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing metal-free photocatalysts for oxygen reduction reaction (ORR) is an important step toward the development of sustainable and alternative energy resources because ORR plays a key role in fuel cell reactions. An efficient photocatalyst for ORR must possess suitable band positions with respect to electrochemical potentials of ORR, minimize energy losses due to charge transport and electron-hole recombination, and have kinetically suitable electron transfer properties. Using first-principles theoretical studies, we herein demonstrate that a single Si atom doped on the alternative pores of the porous graphitic carbon nitride (g-C6N6) surface has satisfied the above criteria and has the potential to be an efficient photocatalyst for ORR. Our study reveals that molecular oxygen, chemisorbed on the dopant atom of the doped surface via an end-on fashion, is activated and readily reduced with a very low onset potential (-0.07 V) via a four-electron transfer pathway. Thus, the doped system can act as an efficient metal-free photocathode in fuel cells.
Collapse
Affiliation(s)
- Prodyut Roy
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia 723104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
39
|
Zakaria Z, Kamarudin SK, Wahid KAA. Fuel cells as an advanced alternative energy source for the residential sector applications in Malaysia. INTERNATIONAL JOURNAL OF ENERGY RESEARCH 2021; 45:5032-5057. [DOI: 10.1002/er.6252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/13/2020] [Indexed: 09/02/2023]
Affiliation(s)
| | - Siti Kartom Kamarudin
- Fuel Cell Institute Universiti Kebangsaan Malaysia Bangi Malaysia
- Research Center for Sustainable Process Technology, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Khairul Anuar Abd Wahid
- Mechanical Engineering Section, Malaysia France Institute Universiti Kuala Lumpur Bandar Baru Bangi Malaysia
| |
Collapse
|
40
|
Chen Y, Gao J, Yao X, Yan K, Zhang J. A portable signal-on self-powered aptasensor for ultrasensitive detection of sulfadimethoxine based on dual amplification of a capacitor and biphotoelectrodes. Chem Commun (Camb) 2021; 57:3700-3703. [PMID: 33729270 DOI: 10.1039/d1cc00730k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-compartment photofuel cell with two photoelectrodes was combined with a capacitor to develop a portable self-powered sensor for sulfadimethoxine (SDM) detection. The developed sensor was applied to the assay of SDM in veterinary drug samples with desirable accuracy and precision.
Collapse
Affiliation(s)
- Yingxu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2020.100070] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
42
|
Liu Y, Xu Y, Zhong D, Yao H, Zeng Y, Zhong N, Luo H. BiVO4@PDA/TiO2/Ti photoanode with polydopamine as electron transfer mediator for efficient visible-light driven photocatalytic fuel cell. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Rabaia MKH, Abdelkareem MA, Sayed ET, Elsaid K, Chae KJ, Wilberforce T, Olabi AG. Environmental impacts of solar energy systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141989. [PMID: 32920388 DOI: 10.1016/j.scitotenv.2020.141989] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The annual increases in global energy consumption, along with its environmental issues and concerns, are playing significant roles in the massive sustainable and renewable global transmission of energy. Solar energy systems have been grabbing most attention among all the other renewable energy systems throughout the last decade. However, even renewable energies can have some adverse environmental repercussions; therefore, further attention and proper precautional procedures should be given. This paper discusses in detail the environmental impacts of several commercial and emerging solar energy systems at both small- and utility-scales. The study expands to some of the related advances, as well as some of the essential elements in their systems. The approach follows all the stages, starting with the designs, then throughout their manufacturing, materials, construction or installation phases, and over operation lifetime and decommissioning. Specific solutions for most systems such as waste minimization and recycling are discussed, alongside with some technically and ecologically favorable recommendations for mitigating the impacts.
Collapse
Affiliation(s)
- Malek Kamal Hussien Rabaia
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt.
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt
| | - Khaled Elsaid
- Chemical Engineering Department, Texas A&M University, College Station, TX 77843-3122, USA
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Tabbi Wilberforce
- Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK
| | - A G Olabi
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
44
|
Visible-light photocatalytic fuel cell with BiVO4/UiO-66/TiO2/Ti photoanode efficient degradation of Rhodamine B and stable generation of electricity. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Solar Energy Conversion and Storage Using a Photocatalytic Fuel Cell Combined with a Supercapacitor. ELECTRONICS 2021. [DOI: 10.3390/electronics10030273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work studies the production of electricity by a photocatalytic fuel cell and its storage in a supercapacitor. We propose a simple construction, where a third electrode bearing activated carbon is added to the device to form a supercapacitor electrode in combination with the supporting electrolyte of the cell. The photocatalytic fuel cell is based on a CdS-sensitized mesoporous TiO2 photoanode and an air cathode bearing only nanoparticulate carbon as an oxygen reduction electrocatalyst.
Collapse
|
46
|
Sena IC, Sales DDO, Andrade TS, Rodriguez M, da Silva AC, Nogueira FGE, Rodrigues JL, de Mesquita JP, Pereira MC. Photoassisted chemical energy conversion into electricity using a sulfite‑iron photocatalytic fuel cell. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Guima KE, Gomes LE, Alves Fernandes J, Wender H, Martins CA. Harvesting Energy from an Organic Pollutant Model Using a New 3D-Printed Microfluidic Photo Fuel Cell. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54563-54572. [PMID: 33252214 DOI: 10.1021/acsami.0c14464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of a fuel cell and photocatalysis in the same device, called a photo fuel cell, is the next generation of energy converters. These systems aim to convert organic pollutants and oxidants into energy using solar energy as the driving force. However, they are mostly designed in conventional stationary batch systems, generating low power besides being barely applicable. In this context, membraneless microfluidics allows the use of flow, porous electrodes, and mixed media, improving reactant utilization and output power accordingly. Here, we report an unprecedented reusable three-dimensional (3D) printed microfluidic photo fuel cell (μpFC) assembled with low-content PtOx/Pt dispersed on a BiVO4 photoanode and a Pt/C dark cathode, both immobilized on carbon paper. We use fused deposition modeling for additive manufacturing a US$ 2.5 μpFC with a polylactic acid filament. The system shows stable colaminar flow and a short time light distance. As a proof-of-concept, we used the pollutant-model rhodamine B as fuel, and O2 in an acidic medium at the cathode side. The mixed-media 3D printed μpFC with porous electrodes produces remarkable 0.48 mW cm-2 and 4.09 mA cm-2 as maximum power and current densities, respectively. The system operates continuously for more than 5 h and converts 73.6% rhodamine by photoelectrochemical processes. The 3D printed μpFC developed here shows promising potential for pollutant mitigation concomitantly to power generation, besides being a potential platform of tests for new (photo)electrocatalysts.
Collapse
Affiliation(s)
- Katia-Emiko Guima
- Institute of Physics, Universidade Federal do Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
- Institute of Chemistry, Universidade Federal do Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Luiz Eduardo Gomes
- Institute of Physics, Universidade Federal do Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
- Institute of Chemistry, Universidade Federal do Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | | | - Heberton Wender
- Institute of Physics, Universidade Federal do Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Cauê A Martins
- Institute of Physics, Universidade Federal do Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
48
|
Unmediated photoelectrochemical charging of a Zn-air battery: The realization of the photoelectrochemical battery. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
49
|
Olajire A. Recent advances on the treatment technology of oil and gas produced water for sustainable energy industry-mechanistic aspects and process chemistry perspectives. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Tang L, Liu L, Chen Q, Yang F, Quan X. The construction and performance of photocatalytic-fuel-cell with Fe-MoS2/reduced graphene oxide@carbon fiber cloth and ZnFe2O4/Ag/Ag3VO4@carbon felt as photo electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|