1
|
Ahmad A, Senaidi AS, Reddy SS. Electrochemical process for petroleum refinery wastewater treatment to produce power and hydrogen using microbial electrolysis cell. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:485-496. [PMID: 37869594 PMCID: PMC10584772 DOI: 10.1007/s40201-023-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/09/2023] [Indexed: 10/24/2023]
Abstract
This research aims to assess the microbial electrolysis cell (MEC) fed with petroleum refinery wastewater (PRW) to produce power density and bio-electrochemical hydrogen. The MEC produces a maximum bio-electricity of 21.4 mA and a power density of 1200123.90 W/m2 with a loading of chemical oxygen demand (COD) of 17000 mg/L. Due to catalyzed oxidation of complex compounds in PRW with a maintained microbial biofilm growth was observed after 90 d of operation of MEC. Results showed that the oxidation of organic substances in PRW enhanced the size in the growth of microbial film which further increased the generation of electrons leading to current density of 5890 mA/m2. The COD removal efficiency of MEC was found to be 89.9%. The bio-electricity and hydrogen production of the MEC was estimated to be 24.5 mA and 19.2 L respectively when loaded with PRW having a COD of 17500 mg/L after 130 d. Present experiments demonstrate the efficiency of MEC technology efficiency in treating petroleum wastewater with the help of microbial biofilm.
Collapse
Affiliation(s)
- Anwar Ahmad
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, Nizwa City, 616 Oman
| | - Alaya Said Senaidi
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, Nizwa City, 616 Oman
| | - Sajjala Sreedhar Reddy
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, Nizwa City, 616 Oman
| |
Collapse
|
2
|
Kieu TQH, Nguyen TY, Do CL. Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell. Molecules 2023; 28:6197. [PMID: 37687026 PMCID: PMC10488401 DOI: 10.3390/molecules28176197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
A wastewater treatment system has been established based on sulfate-reducing and sulfide-oxidizing processes for treating organic wastewater containing high sulfate/sulfide. The influence of COD/SO42- ratio and hydraulic retention time (HRT) on removal efficiencies of sulfate, COD, sulfide and electricity generation was investigated. The continuous operation of the treatment system was carried out for 63 days with the optimum COD/SO42- ratio and HRT. The result showed that the COD and sulfate removal efficiencies were stable, reaching 94.8 ± 0.6 and 93.0 ± 1.3% during the operation. A power density level of 18.0 ± 1.6 mW/m2 was obtained with a sulfide removal efficiency of 93.0 ± 1.2%. However, the sulfide removal efficiency and power density decreased gradually after 45 days. The results from scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) show that sulfur accumulated on the anode, which could explain the decline in sulfide oxidation and electricity generation. This study provides a promising treatment system to scale up for its actual applications in this type of wastewater.
Collapse
Affiliation(s)
- Thi Quynh Hoa Kieu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Thi Yen Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Chi Linh Do
- Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Wang N, Xue L, Ding G, Han Y, Feng Y, Liu J, Li N, He W. High concentration of ammonia sensitizes the response of microbial electrolysis cells to tetracycline. WATER RESEARCH 2022; 225:119064. [PMID: 36130438 DOI: 10.1016/j.watres.2022.119064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising technology for effective energy conversion of wastewater organics to biogas. Yet, in swine wastewater treatment, the complex contaminants including antibiotics may affect MEC performance, while the high ammonia concentration might increase this risk by increasing cell membrane permeability. In this work, the responses of MECs on tetracycline (TC) with low and high ammonia loadings (80 and 1000 mg L-1) were fully investigated. The TC of 0 to 1 mg L-1 slightly improved MEC performance in current production and electrochemical characteristics with low ammonia loading, while TC ≥ 4 mg L-1 started to show negative effects. Generally, the high ammonia loading sensitized MECs to TC concentration, inducing the current and COD removal of MECs to sharply decline with TC ≥ 0.5 mg L-1. The positive effect of high ammonia loading on MEC due to conductivity increase was counteracted with TC ≥ 1 mg L-1. The co-contamination of TC and ammonia significantly decreased the bioactivity and biomass of anode biofilm. Although the high concentration of co-existing TC and ammonia inhibited MEC performance, the reactors still obtained positive energy feedback. The network analyses indicated that the effluent suspension contributed much to antibiotic resistance gene (ARG) transmission, while the microplastics (MPs) in wastewater greatly raised the risks of ARGs spreading. This work systematically examined the synergetic effects of TC and ammonia and the transmission of ARGs in MEC operation, which is conducive to expediting the application of MECs in swine wastewater treatment.
Collapse
Affiliation(s)
- Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Guofang Ding
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huang he Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
4
|
Hoang AT, Nižetić S, Ng KH, Papadopoulos AM, Le AT, Kumar S, Hadiyanto H, Pham VV. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. CHEMOSPHERE 2022; 287:132285. [PMID: 34563769 DOI: 10.1016/j.chemosphere.2021.132285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) is lauded for its potentials to solve both energy crisis and environmental pollution. Technologically, it offers the capability to harness electricity from the chemical energy stored in the organic substrate with no intermediate steps, thereby minimizes the entropic loss due to the inter-conversion of energy. The sciences underneath such MFCs include the electron and proton generation from the metabolic decomposition of the substrate by microbes at the anode, followed by the shuttling of these charges to cathode for electricity generation. While its promising prospects were mutually evinced in the past investigations, the upscaling of MFC in sustaining global energy demands and waste treatments is yet to be put into practice. In this context, the current review summarizes the important knowledge and applications of MFCs, concurrently identifies the technological bottlenecks that restricted its vast implementation. In addition, economic analysis was also performed to provide multiangle perspectives to readers. Succinctly, MFCs are mainly hindered by the slow metabolic kinetics, sluggish transfer of charged particles, and low economic competitiveness when compared to conventional technologies. From these hindering factors, insightful strategies for improved practicality of MFCs were formulated, with potential future research direction being identified too. With proper planning, we are delighted to see the industrialization of MFCs in the near future, which would benefit the entire human race with cleaner energy and the environment.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Agis M Papadopoulos
- Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Postal Address: GR-54124, Thessaloniki, Greece
| | - Anh Tuan Le
- School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Sunil Kumar
- Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020, India
| | - H Hadiyanto
- Center of Biomass and Renewable Energy (CBIORE), Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang, 50271, Indonesia; School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo, SH Semarang, 50241, Indonesia.
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Hussain A, Lee J, Xiong Z, Wang Y, Lee HS. Butyrate production and purification by combining dry fermentation of food waste with a microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113827. [PMID: 34649320 DOI: 10.1016/j.jenvman.2021.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
This study developed and evaluated a high-purity butyrate producing bioprocess from food waste by combining dry fermentation (DF) with a microbial fuel cell (MFC). Acclimatization of a DF reactor with an enrichment culture resulted in high food waste degradation (VS removed, %) and butyrate production. A high VS degradation of 81%, butyrate concentration of up to 24 gCODbutyrate/L and butyrate yields of 497 gCODbutyrate/kg VSadded was obtained in the DF reactor. As a result, butyrate comprised 83% of all short chain fatty acids (SCFA) in the DF broth. Acetate (10%) and propionate (7%) comprised the rest of the SCFA. The butyrate composition was further purified by feeding the DF broth to a multi-electrode MFC enriched with anode respiring bacteria (ARB) such as Geobacter sp. (>55%). The ARB in the MFC removed acetate and propionate while purified butyrate was recovered in the MFC effluent. Butyrate purity in the MFC effluent reached as high as 99% at hydraulic retention time of 72 h. Along with butyrate purification, the MFC produced electric power in a range of 0.1-0.6 Wh/gCODbutyraterecovered (or 0.01-7.85 kWh/ton of food waste), demonstrating that MFCs can be an energy-positive butyrate purification bioprocess.
Collapse
Affiliation(s)
- Abid Hussain
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By. Drive, Ottawa, K1S 5B6, Canada; Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jangho Lee
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By. Drive, Ottawa, K1S 5B6, Canada
| | - Ziyi Xiong
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yifei Wang
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
6
|
Hyun Chung T, Ranjan Dhar B. A multi-perspective review on microbial electrochemical technologies for food waste valorization. BIORESOURCE TECHNOLOGY 2021; 342:125950. [PMID: 34852436 DOI: 10.1016/j.biortech.2021.125950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The worldwide generation of food waste (FW) has been increasing enormously due to the growing food industry and population. However, FW contains a large amount of biodegradable organics that can be converted to clean energy, which can potentially minimize the utilization of fossil fuels. Conventional biowaste valorization technologies, such as anaerobic digestion and composting, have been adopted for FW management for recovering useful biogas and compost. However, they are often limited by high capital and operation costs, low recovery efficiency, slow process kinetics, and system instability. On the other hand, microbial electrochemical technologies (METs) have been highly promising for efficiently harvesting bioenergy and high value-added products from FW. Hence, this article critically reviews up-to-date studies on applying various METs regarding their value-added products recovery efficiencies from FW. Moreover, this review lists existing challenges, ways to optimize the system performance and provides perspectives on future research needs.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
7
|
She Y, Wei W, Ai X, Hong J, Xin X. Synergistic pretreatment of CaO and freezing/thawing to enhance volatile fatty acids recycling and dewaterability of waste activated sludge via anaerobic fermentation. CHEMOSPHERE 2021; 280:130939. [PMID: 34162110 DOI: 10.1016/j.chemosphere.2021.130939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
To avoid the generally deteriorated dewaterability of sludge in waste activated sludge (WAS) anaerobic acidogenesis, the combination of varied calcium oxide (CaO) dosage (i.e., 0.01-0.07 g/g TS) and freezing/thawing pretreatment (5 F/T cycles) was investigated for concurrently improving the production of volatile fatty acids (VFAs) and dewatering performance of sludge. The highest release of soluble chemical oxygen demand (SCOD) (1836 ± 96 mg/L) and accumulation of VFAs (448.0 mg COD/g VS) were reached through the co-pretreatment of CaO (0.07 g/g TS) and F/T (50 h at -24 °C) (i.e., 0.07 CaO-F/T). Meanwhile, optimal dewaterability of sludge was also achieved in 0.07 CaO-F/T co-pretreated WAS fermentation, which was reflected by large particle size (98.32 μm), low capillary suction time (41.6 s), decreased specific resistance to filtration (SRF, reduced 47.5% against blank) and high zeta potential (-9.59 mV). Co-pretreatment of CaO and F/T reduced the species number of total microbial population, but improved the abundance of acid-producing bacteria. Increased abundance of Bacteroides, Macellibacteroides, Petrimonas, Prevotella, Clostridium, and Megasphaera was positively relevant to the high yields of VFAs. The economic analysis indicated that CaO-F/T was economically acceptable with considerable estimated net profits, which provided a feasible and efficient alternative for further WAS treatment at large scale.
Collapse
Affiliation(s)
- Yuecheng She
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Wenxuan Wei
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Xiaohuan Ai
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China.
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China.
| |
Collapse
|
8
|
Xin X, Qiu W. Linking microbial mechanism with bioelectricity production in sludge matrix-fed microbial fuel cells: Freezing/thawing liquid versus fermentation liquor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141907. [PMID: 32890820 DOI: 10.1016/j.scitotenv.2020.141907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
This first-attempt study elucidated the microbial mechanism associated with bioelectricity output in microbial fuel cells (MFCs) fed with sludge matrices of freezing/thawing (F/T) liquid versus fermentation liquor, while a novel schematic elucidation for exploring cooperative interactions in anodic microbial consortia of MFCs supplied with such two feeds toward electrogenesis was put forward. Moreover, the F/T liquid cultivated main genera of Azospira, Povalibacter, Thauera, Terrimonas, Alicycliphilus, Dokdonella and Simplicispira for dual organics degradation and electrogenesis with power density of 0.152 mW/m2 and electrogenesis efficiency of 1.152 kWh/kg COD, while the fermentation liquor fostered higher diversity and medium evenness with the enrichment of Phenylobacterium, Cellulomonas, Edaphobacter, Burkholderia, Clostridium, Sphingomonas, Leifsonia and Microbacterium in anodic biofilm and causing larger power density of 0.182 mW/m2 and 1.418 kWh/kg COD-electrogenesis efficiency. Comparative analysis results indicated that the anodic fermentative bacteria exert considerable influence on concurrent organics degradation and electricity production through the synergistic interactions with exoelectrogens toward stable running of MFCs. Besides, the higher anodic microbial diversity, relatively middling community evenness and larger abundance of functional genes associated with electrogenesis together played contributive roles on more power generation through MFCs for treating WAS matrix. This study was conducive to bring about some new microbial mechanism understanding on maximizing bioenergy recovery via MFCs in future sludge management.
Collapse
Affiliation(s)
- Xiaodong Xin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China; Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China.
| |
Collapse
|
9
|
Budihardjo MA, Effendi AJ, Hidayat S, Purnawan C, Lantasi AID, Muhammad FI, Ramadan BS. Waste valorization using solid-phase microbial fuel cells (SMFCs): Recent trends and status. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111417. [PMID: 33027734 DOI: 10.1016/j.jenvman.2020.111417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
This review article discusses the use of solid waste processed in solid-phase microbial fuel cells (SMFCs) as a source of electrical energy. Microbial Fuel Cells (MFCs) are typically operated in the liquid phase because the ion transfer process is efficient in liquid media. Nevertheless, some researchers have considered the potential for MFCs in solid phases (particularly for treating solid waste). This has promise if several important factors are optimized, such as the type and amount of substrate, microorganism community, system configuration, and type and number of electrodes, which increases the amount of electricity generated. The critical factor that affects the SMFC performance is the efficiency of electron and proton transfer through solid media. However, this limitation may be overcome by electrode system enhancements and regular substrate mixing. The integration of SMFCs with other conventional solid waste treatments could be used to produce sustainable green energy. Although SMFCs produce relatively small amounts of energy compared with other waste-to-energy treatments, SMFCs are still promising to achieve zero-emission treatment. Therefore, this article addresses the challenges and fills the gaps in SMFC research and development.
Collapse
Affiliation(s)
- Mochamad Arief Budihardjo
- Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, 50277, Indonesia.
| | - Agus Jatnika Effendi
- Department of Environmental Engineering, Faculty of Environmental and Civil Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | - Syarif Hidayat
- Department of Environmental Engineering, Faculty of Environmental and Civil Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | - Candra Purnawan
- Department of Chemical Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, 57126, Indonesia.
| | - Ayudya Izzati Dyah Lantasi
- Master of Environmental Sciences, School of Postgraduate Studies, Universitas Diponegoro, Semarang, 50241, Indonesia.
| | - Fadel Iqbal Muhammad
- Master of Environmental Sciences, Wageningen University and Research, Wageningen, 6708, GA, the Netherlands.
| | - Bimastyaji Surya Ramadan
- Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, 50277, Indonesia.
| |
Collapse
|
10
|
Xin X, She Y, Hong J. Insights into microbial interaction profiles contributing to volatile fatty acids production via acidogenic fermentation of waste activated sludge assisted by calcium oxide pretreatment. BIORESOURCE TECHNOLOGY 2021; 320:124287. [PMID: 33120057 DOI: 10.1016/j.biortech.2020.124287] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 05/16/2023]
Abstract
This first-attempted study illustrated the calcium oxide (CaO) agentia-pretreatment for prompting waste activated sludge (WAS) solubilization and enhancing volatile fatty acids (VFAs) bio-production through acidogenic fermentation. The 15-h CaO pretreatment was capable to produce a soluble chemical oxygen demand (SCOD) yield of ca. 153.17 mg COD/g VS and VFAs generation efficiency of 327.8 mg COD/g VS with adding dosage of 0.07 g/g TS. The relative frequencies corresponded to metabolic functions profiling were promoted obviously by CaO pretreatment and contributed to biosolid decomposition/VFAs production in sludge fermentation. Main genera of Azonexus, Arcobacter, Acinetobacter, Thauera, Petrimonas, Clostrium and Macellibacteroides cooperated synergically toward triggering concurrent VFAs generation/biosolid biodegradation. Finally, the CaO-pretreatment displayed positive merits in terms of sludge biosolid decomposition/recoverable resource harvest as compared with other alkali pretreatments. This study might shed lights on enriching intensification strategy for WAS management toward high-efficiency of recoverable resource harvest with lower cost.
Collapse
Affiliation(s)
- Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, PR China
| | - Yuecheng She
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, PR China
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, PR China.
| |
Collapse
|
11
|
Xin X, Pang H, She Y, Hong J. Insights into redox mediators-resource harvest/application with power production from waste activated sludge through freezing/thawing-assisted anaerobic acidogenesis coupling microbial fuel cells. BIORESOURCE TECHNOLOGY 2020; 311:123469. [PMID: 32408194 DOI: 10.1016/j.biortech.2020.123469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
This first-attempted study demonstrated endogenous redox-mediators harvest/application from waste activated sludge (WAS) through freezing/thawing (F/T) pretreatment-enhanced anaerobic acidogenesis coupled with microbial fuel cells (MFCs). A total of 2.57 kWh electricity was produced from per kg soluble chemical oxygen demand (SCOD) via MFCs just in 2 d with about 90% organics removal, which contained 1.152 kWh/kg COD from F/T liquid together with 1.418 kWh/kg COD from fermentation liquid. The fermentation liquor-MFCs fostered higher anodic biodiversity and more power output as compared with the F/T liquid-MFCs. Essentially, the completely endogenous redox mediators-like substances with relatively high redox activities could be retained after MFC electrogenesis from F/T liquid and played electron shuttle-roles sufficiently in enlarging bio-energy production of MFCs, which seemed to be an effective option for harvesting endogenous redox mediators from sludge. This study might inspire progressive thinking toward aims of high-efficiency of resource recycle/bioenergy production from WAS.
Collapse
Affiliation(s)
- Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, PR China
| | - Heliang Pang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Yuecheng She
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, PR China
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, PR China.
| |
Collapse
|
12
|
She Y, Hong J, Zhang Q, Chen BY, Wei W, Xin X. Revealing microbial mechanism associated with volatile fatty acids production in anaerobic acidogenesis of waste activated sludge enhanced by freezing/thawing pretreatment. BIORESOURCE TECHNOLOGY 2020; 302:122869. [PMID: 32006928 DOI: 10.1016/j.biortech.2020.122869] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the association of volatile fatty acid (VFA) production with microbial mechanism in waste activated sludge (WAS) anaerobic acidogenesis enhanced by freezing/thawing (F/T) pretreatment. WAS solubilization was enhanced with 955.4 ± 10.0 mg/L soluble chemical oxygen demand (SCOD) release by a 50-h F/T pretreatment at -24 °C. The highest level of VFAs (4852 ± 156 mg COD/L) was obtained after a 12-day fermentation. Moreover, phyla of Proteobacteria, Bacteroidetes, Firmicutes, and Ignavibacteriae played vital roles in VFA generation, while high genera abundance of Clostridium, Macellibacteroides, Prevotella, and Megasphaera were positively associated with high yields of short-chain (C2-C5) fatty acids. A schematic diagram was drawn to illustrate the microbial mechanism of enhanced VFA generation by F/T pretreatment during WAS fermentation. This study provides an in-depth exploration of promoting bio-resource recycling from WAS with a low-cost approach (specially in high latitudes) and bring about some new thinking on future WAS management.
Collapse
Affiliation(s)
- Yuecheng She
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| | - Qian Zhang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Bor-Yann Chen
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Department of Chemical and Materials Engineering, National I-Lan University, 26047, Taiwan
| | - Wenxuan Wei
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| |
Collapse
|
13
|
Zakaria BS, Lin L, Dhar BR. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:691-699. [PMID: 31280150 DOI: 10.1016/j.scitotenv.2019.06.519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
This study, for the first time, documented microbial community shifts in response to the changes in anode potential in a microbial electrolysis cell (MEC) operated with primary sludge. At an anode potential of -0.4 V vs. Ag/AgCl, the MEC showed COD and VSS removal efficiencies of 73 ± 1% and 75 ± 2%, respectively. The volumetric current density and specific hydrogen production rate were 23 ± 1.2 A/m3, and 145 ± 4.1 L/m3-d, respectively. The anodic microbial community was consisted of various fermentative/hydrolytic bacteria (e.g., Bacteroides and Dysgonomonas) and anode-respiring bacteria (Geobacter), while different hydrolytic/fermentative bacteria were abundant in suspension. The MEC showed substantially inferior performance along with a higher accumulation of various volatile fatty acids when the anode potential was switched to more positive values (0 V and +0.4 V). Both biofilms and suspended communities were also shifted when the anode potential was changed. Notably, at +0.4 V, Geobacter genus entirely disappeared from the biofilms, while Paludibacter species (known fermentative bacteria) were selectively enriched in biofilms. Also, the relative abundance of genus Bacteroides (known hydrolytic bacteria) substantially decreased in both biofilms and suspension, which was correlated with the inferior hydrolysis of VSS. Quantitative comparison of biofilms and suspended microbial communities at different anode potentials revealed a sharp decrease in bacterial cell numbers in anode biofilms after changing anode potential from -0.4 V to +0.4 V. By contrast, bacterial cell numbers in suspension were slightly decreased. Collectively, these results provide new insights into the role of anode potential in shaping key microbial players associated with hydrolysis/fermentation and anodic respiration processes when MECs are operated with real biowastes.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Long Lin
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
14
|
Xin X, Chen BY, Hong J. Unraveling interactive characteristics of microbial community associated with bioelectric energy production in sludge fermentation fluid-fed microbial fuel cells. BIORESOURCE TECHNOLOGY 2019; 289:121652. [PMID: 31252317 DOI: 10.1016/j.biortech.2019.121652] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
This first-attempt study deciphered the interactive characteristics of anodophilic microbial community-associated bioelectricity production in waste activated sludge (WAS) fermentation fluid-fed microbial fuel cells (MFCs). A novel schematic elucidation for illustrating synergistic interactions in anodic microbial consortia towards electrogenesis was proposed. Moreover, the specific genera of Pseudomonas, Desulfovibrio, Phyllobacterium, Desulfuromonas, Chelatococcus and Aminivibrio were dominant in anodic biofilms, leading to an electrogenesis efficiency of 1.254 kWh/kg COD and peak power density of 0.182 W/m2 (at feeding level of 1.20 g COD/L). It was apparently higher than those MFCs fed with glucose/acetate. The fermentative species contributed positively in reorganizing microbial community structure in anodic biofilms, positively relating to electrogenesis via interactions with exoeletrogens in MFCs. Finally, a more electrogenesis was positively associated to larger anodic microbial diversity, relatively medium anodic community evenness, together with higher abundance of functional genes related to electrogenesis in functional species in MFCs fed with WAS fermentation fluid.
Collapse
Affiliation(s)
- Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Bor-Yann Chen
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|