1
|
Cui M, Zheng G, Wu X, Zhang J, Wang Z, Pang Z, Wang S, Hu R, Xu D. Microplastics' vector effect on Co-bioaccumulation of it and polychlorinated biphenyls in Crassostrea hongkongensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117119. [PMID: 39342754 DOI: 10.1016/j.ecoenv.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) are known with high persistence and toxicity, posing urgent threats to food safety and human health. However, little is known about the synergistic effect of MPs on PCBs bioaccumulation on Crassostrea hongkongensis. In the present study, diverse types of MPs were analyzed on sea water and C. hongkongensis sampled from three distinct estuary sites, and film-shaped MPs were discovered to be preferentially ingested by the oysters. Interestingly, the content of MPs and PCBs showed negative correlation (R2 = 0.452, p< 0.001) in the oysters sampled from site 2. Upon MPs and PCBs co-treatment, the in vivo accumulation of PCBs in C. hongkongensis was inhibited by 25.90 % when compared to the group treated with PCBs solely. PCBs stresses significantly induced the expression of genes of CYP2C31, GST, SOD and HSP70 in C. hongkongensis, while, the elevated state was compromised when co-treated with PCBs. The present research alleviates concerns about the potential effects of MPs on promoting PCBs bioaccumulation and provide a better understanding of the combined impact of MPs and PCBs on C. hongkongensis.
Collapse
Affiliation(s)
- Miao Cui
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Gaojun Zheng
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Xin Wu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Jiaying Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zibin Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhicong Pang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Shixu Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Ren Hu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Choi JI, Song WS, Koh DH, Kim EY. In Silico and In Vitro multiple analysis approach for screening naturally derived ligands for red seabream aryl hydrocarbon receptor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116262. [PMID: 38569320 DOI: 10.1016/j.ecoenv.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a key ligand-dependent transcription factor that mediates the toxic effects of compounds such as dioxin. Recently, natural ligands of AHR, including flavonoids, have been attracting physiological and toxicological attention as they have been reported to regulate major biological functions such as inflammation and anti-cancer by reducing the toxic effects of dioxin. Additionally, it is known that natural AHR ligands can accumulate in wildlife tissues, such as fish. However, studies in fish have investigated only a few ligands in experimental fish species, and the AHR response of marine fish to natural AHR ligands of various other structures has not been thoroughly investigated. To explore various natural AHR ligands in marine fish, which make up the most fish, it is necessary to develop new screening methods that consider the specificity of marine fish. In this study, we investigated the response of natural ligands by constructing in vitro and in silico experimental systems using red seabream as a model species. We attempted to develop a new predictive model to screen potential ligands that can induce transcriptional activation of red seabream AHR1 and AHR2 (rsAHR1 and rsAHR2). This was achieved through multiple analyses using in silico/ in vitro data and Tox21 big data. First, we constructed an in vitro reporter gene assay of rsAHR1 and rsAHR2 and measured the response of 10 representatives natural AHR ligands in COS-7 cells. The results showed that FICZ, Genistein, Daidzein, I3C, DIM, Quercetin and Baicalin induced the transcriptional activity of rsAHR1 and rsAHR2, while Resveratrol and Retinol did not induce the transcriptional activity of rsAHR isoforms. Comparing the EC50 values of the respective compounds in rsAHR1 and rsAHR2, FICZ, Genistein, and Daidzein exhibited similar isoform responses, but I3C, Baicalin, DIM and Quercetin show the isoform-specific responses. These results suggest that natural AHR ligands have specific profiling and transcriptional activity for each rsAHR isoform. In silico analysis, we constructed homology models of the ligand binding domains (LBDs) of rsAHR1 and rsAHR2 and calculated the docking energies (U_dock values) of natural ligands with measured in vitro transcriptional activity and dioxins reported in previous studies. The results showed a significant correlation (R2=0.74(rsAHR1), R2=0.83(rsAHR2)) between docking energy and transcriptional activity (EC50) value, suggesting that the homology model of rsAHR1 and rsAHR2 can be utilized to predict the potential transactivation of ligands. To broaden the applicability of the homology model to diverse compound structures and validate the correlation with transcriptional activity, we conducted additional analyses utilizing Tox21 big data. We calculated the docking energy values for 1860 chemicals in both rsAHR1 and rsAHR2, which were tested for transcriptional activation in Tox21 data against human AHR. By comparing the U_dock energy values between 775 active compounds and 1085 inactive compounds, a significant difference (p<0.001) was observed between the U_dock energy values in the two groups, suggesting that the U_dock value can be applied to distinguish the activation of compounds. Furthermore, we observed a significant correlation (R2=0.45) between the AC50 of Tox21 database and U_dock values of human AHR model. In conclusion, we calculated equations to translate the results of an in silico prediction model for ligand screening of rsAHR1 and rsAHR2 transactivation. This ligand screening model can be a powerful tool to quantitatively estimate AHR transactivation of major marine agents to which red seabream may be exposed. The study introduces a new screening approach for potential natural AHR ligands in marine fish, based on homology model-docking energy values of rsAHR1 and rsAHR2, with implications for future agonist development and applications bridging in silico and in vitro data.
Collapse
Affiliation(s)
- Jong-In Choi
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Woo-Seon Song
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Hee Koh
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Young Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Liu S, Liu J, Wu Y, Tan L, Luo Y, Ding C, Tang Z, Shi X, Fan W, Song S. Genistein upregulates AHR to protect against environmental toxin-induced NASH by inhibiting NLRP3 inflammasome activation and reconstructing antioxidant defense mechanisms. J Nutr Biochem 2023; 121:109436. [PMID: 37666477 DOI: 10.1016/j.jnutbio.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1β, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
4
|
Xia Y, Li S, Wang X, Zhao B, Chen S, Jiang Q, Xu S, Li S. Astilbin targeted Sirt1 to inhibit acetylation of Nrf2 to alleviate grass carp hepatocyte apoptosis caused by PCB126-induced mitochondrial kinetic and metabolism dysfunctions. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109000. [PMID: 37597642 DOI: 10.1016/j.fsi.2023.109000] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) is extensively utilized in electronic products, lubricant, and insecticide due to its excellent chemical stability and insulation prosperity, resulting in its frequent detection in environment. In addition, atmospheric deposition, as well as industrial and urban wastewater discharge can also lead to PCB126 contamination in marine environment, triggering damages to the tissues of aquatic organisms through oxidative stress. Astilbin is a type of flavonoid compound found in plants that plays a crucial role in providing powerful antioxidant and anti-inflammatory properties. In this study, we aimed to investigate the specific mechanism of PCB126-induced damage and the potential protective effect of Astilbin. To achieve this, we treated grass carp hepatocytes (L8824) with 75 μM PCB126 and/or 0.5 mM Astilbin for 24 h and used experimental methods such as Flow cytometry, molecular docking, PPI analysis, detection of commercial kits (ATP concentration and ATPnase activity) and measurement of mitochondrial membrane potential (ΔΨm). Our findings revealed that PCB126 exposure resulted in a decrease in expression levels of Sirt1, factors related to mitochondrial fusion (Opa1, Mfn1, and Mfn2), antioxidant (CAT, SOD1, and SOD2), energy metabolism (PKM2, IDH, and SDH) and anti-apoptosis (Bcl-2), and an increase in expression levels of Nrf2 acetylation, mitochondrial fission (Drp1), factors that promote apoptosis (Cytc, Bax, Cas9, and Cas3) in L8824 cells. Furthermore, our findings revealed a decrease in ΔΨm, ATP concentration and ATPnase activity and apoptosis levels in L8824 cells. Noteworthy, treatment with Astilbin reversed these results. Molecular docking provides solid evidence for the interaction between Astilbin and Sirt1. In summary, our findings suggested that Astilbin promoted the deacetylation of Nrf2 by interacting with Sirt1, thereby alleviating PCB126-induced mitochondrial apoptosis mediated by mitochondrial dynamics imbalance and energy metabolism disorder through the inhibition of oxidative stress in L8824 cells. Our research has initially revealed the correlation between acetylation and apoptosis induced by PCB126, which provided a foundation for a better comprehension of PCB126 toxicity. Additionally, it expanded the potential application value of Astilbin.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanshan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xixi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shasha Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Shen C, Tang C, Zhu K, He C, Yang C, Zuo Z. Toxicity and ecological risk assessment for two AhR agonistic pesticides mepanipyrim and cyprodinil and their metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58944-58955. [PMID: 37002518 DOI: 10.1007/s11356-023-26735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Mepanipyrim and cyprodinil are widely used to control and/or prevent fungal diseases in fruit culture. They are frequently detected in the aquatic environment and some food commodities. Different from TCDD, mepanipyrim and cyprodinil are more easily metabolised in the environments. However, the risk of their metabolites to the ecological environment is unclear and needs to be further confirmed. In this study, we investigated the temporal pattern of mepanipyrim- and cyprodinil-induced CYP1A and AhR2 expression and EROD enzyme activity at different time frames during zebrafish embryonic and larval development. Then, we assessed the ecological risk of mepanipyrim, cyprodinil, and their metabolites to aquatic organisms. Our results showed that mepanipyrim and cyprodinil exposure could increase the expression level of cyp1a and ahr2 genes and EROD activity by a dynamic pattern in different developmental stages of zebrafish. Besides, their several metabolites showed strong AhR agonistic activity. Importantly, these metabolites could cause potential ecological risks to aquatic organisms and should be paid more attention to. Our results would provide an important reference value for environmental pollution control and the use management of mepanipyrim and cyprodinil.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
6
|
Tang C, Zhu Y, Yang C, He C, Zuo Z. Reproductive toxicity of long-term exposure to environmental relevant concentrations of cyprodinil in female zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157504. [PMID: 35870602 DOI: 10.1016/j.scitotenv.2022.157504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the widespread use of the pesticide cyprodinil has attracted attention due to its harmful effects on aquatic organisms. The purpose of this study was to evaluate the adverse effects of long-term exposure to cyprodinil on the reproductive system of female zebrafish. After the embryos had been treated with 0.1, 1 and 10 μg/L cyprodinil for 180 days, we observed that female fish treated with 1 and 10 μg/L cyprodinil showed decreased sexual attractiveness, a decreased proportion of primordial follicles in the ovary, an increased proportion of mature follicles, and increased egg production. Moreover, exposed females that mated with normal males produced offspring with increased rates of mortality and deformity (the F1 generation). In addition, the levels of gonadotropin and testosterone (T) were increased in females after cyprodinil exposure, especially in the 10 μg/L treated group. After cyprodinil treatment, some key genes in the hypothalamic-pituitary-gonad axis underwent significant changes. For example, gene expression of brain gonadotropin-releasing hormone receptors (gnrhr1, gnrhr2 and gnrhr4) was significantly downregulated after cyprodinil treatment. The study found that expression of the aromatase (cytochrome P450 family 19 subfamily A polypeptide 1a, cyp19a1a) responsible for converting T into estradiol was significantly downregulated after cyprodinil treatment, consistent with elevated T levels in the ovaries and muscles. In summary, these data provide a more comprehensive understanding of the toxicity of cyprodinil and may inform evaluation of the ecotoxicity of cyprodinil to female reproduction at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Dowlath MJH, Karuppannan SK, Sinha P, Dowlath NS, Arunachalam KD, Ravindran B, Chang SW, Nguyen-Tri P, Nguyen DD. Effects of radiation and role of plants in radioprotection: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146431. [PMID: 34030282 DOI: 10.1016/j.scitotenv.2021.146431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
Radiation can be lethal at high doses, whereas controlled doses are useful in medical applications. Other applications include power generation, agriculture sterilization, nuclear weapons, and archeology. Radiation damages genetic material, which is reflected in genotoxicity and can cause hereditary damage. In the medical field, it is essential to avoid the harmful effects of radiation. Radiation countermeasures and the need for radioprotective agents have been explored in recent years. Considering plants that evolve in radiative conditions, their ability to protect organisms against radiation has been studied and demonstrated. Crude extracts, fractioned extracts, isolated phytocompounds, and plant polysaccharides from various plants have been used in radioprotection studies, and their efficiency has been proven in various in vitro and in vivo experimental models. It is important to identify the mechanism of action to develop a potent plant-based radioprotective agent. To identify this protective mechanism, it is necessary to understand the damage caused by radiation in biological systems. This review intends to discuss the effects of ionizing radiation on biological systems and evaluate plant-based radioprotectants that have tested thus far as well as their mechanism of action in protecting against the toxic effects of radiation. From the review, the mechanism of radioprotection exhibited by the plant-based products could be understood. Meanwhile, we strongly suggest that the potential products identified so far should undergo clinical trials for critically evaluating their effects and for developing an ideal and compatible radioprotectant with no side-effects.
Collapse
Affiliation(s)
- Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Pamela Sinha
- Project Management, Bioneeds India Pvt. Ltd, Peenya Industrial Area, Bengaluru 560058, India
| | - Nihala Sultana Dowlath
- Department of Biochemistry, Ethiraj College for Women, Chennai, Tamil Nadu 600008, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - B Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| | - S Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Phuong Nguyen-Tri
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| |
Collapse
|
8
|
Cardoso PG, Resende-de-Oliveira R, Rocha E. Combined effects of increased temperature and levonorgestrel exposure on zebrafish female liver, using stereology and immunohistochemistry against catalase, CYP1A, HSP90 and vitellogenin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1059-1067. [PMID: 31252103 DOI: 10.1016/j.envpol.2019.06.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Climate change and pharmaceuticals contamination constitute two of the most relevant stressors on the aquatic ecosystems, however, there is a huge lack of information regarding the interactive effects of both stressors. For that, a mesocosm experiment was implemented where adult zebrafish were exposed to combined temperature and the progestin levonorgestrel (LNG) for 21 days. Considering that the liver is one of the organs where there is a greater metabolization and accumulation of toxicants, the main objective of this work was to assess the effects of both stressors on the female zebrafish hepatocytes morphology and functioning, through stereological and immunohistochemical techniques. Our results revealed an increase of coefficient of variation of the number distribution of hepatocytes volume (CVN(υ)) for individuals exposed to LNG, which denotes an increase of the hepatocytes size variability and is suggestive of functional impacts. This was corroborated by the signs of increased glycogen content with the exposure to increased LNG concentrations and temperature, indicating modified hepatocyte glycogen metabolism. Such disturbances can be considered indicators that the fish had to deal with impacts caused by the stress factors. Regarding the immunoreactivity, from the four proteins selected (catalase, CYP1A, HSP90 and Vtg), just in two of them (catalase and Vtg) were observed some responses to both stressors. For catalase there was a hormetic response, in which exposure to lower LNG concentrations caused a significant higher positive immunostaining than under higher LNG concentrations. While, for Vtg, significant effects of temperature and LNG existed, in which a decline in Vtg immunostaining was observed with exposure to higher temperature and lower LNG concentrations. These results should be seen as a warning sign about fine impacts of multiple stressors, such as temperature and progestogens, on the structure and functioning of zebrafish liver and potentially in other aquatic organisms, and on their health implications.
Collapse
Affiliation(s)
- P G Cardoso
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.
| | - R Resende-de-Oliveira
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - E Rocha
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|