1
|
Xue J, Wang Y, Jing Y, Li X, Chen S, Xu Y, Song RB. Recent advances in microbial fuel cell-based self-powered biosensors: a comprehensive exploration of sensing strategies in both anode and cathode modes. Anal Bioanal Chem 2024; 416:4649-4662. [PMID: 38457006 DOI: 10.1007/s00216-024-05230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
With the rapid development of society, it is of paramount importance to expeditiously assess environmental pollution and provide early warning of toxicity risks. Microbial fuel cell-based self-powered biosensors (MFC-SPBs) have emerged as a pivotal technology, obviating the necessity for external power sources and aligning with the prevailing trends toward miniaturization and simplification in biosensor development. In this case, vigorous advancements in MFC-SPBs have been acquired in past years, irrespective of whether the target identification event transpires at the anode or cathode. The present article undertakes a comprehensive review of developed MFC-SPBs, categorizing them into substrate effect and microbial activity effect based on the nature of the target identification event. Furthermore, various enhancement strategies to improve the analytical performance like accuracy and sensitivity are also outlined, along with a discussion of future research trends and application prospects of MFC-SPBs for their better developments.
Collapse
Affiliation(s)
- Junjun Xue
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Yuxin Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jing
- Henan Joint International Research Laboratory of Intelligent Water Treatment System, Qingshuiyuan Technology Co., Ltd., Jiyuan, China
| | - Xiaoxuan Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Suping Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Ying Xu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| | - Rong-Bin Song
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Abate R, Oon YS, Oon YL, Bi Y. Microalgae-bacteria nexus for environmental remediation and renewable energy resources: Advances, mechanisms and biotechnological applications. Heliyon 2024; 10:e31170. [PMID: 38813150 PMCID: PMC11133723 DOI: 10.1016/j.heliyon.2024.e31170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
Microalgae and bacteria, known for their resilience, rapid growth, and proximate ecological partnerships, play fundamental roles in environmental and biotechnological advancements. This comprehensive review explores the synergistic interactions between microalgae and bacteria as an innovative approach to address some of the most pressing environmental issues and the demands of clean and renewable freshwater and energy sources. Studies indicated that microalgae-bacteria consortia can considerably enhance the output of biotechnological applications; for instance, various reports showed during wastewater treatment the COD removal efficiency increased by 40%-90.5 % due to microalgae-bacteria consortia, suggesting its great potential amenability in biotechnology. This review critically synthesizes research works on the microalgae and bacteria nexus applied in the advancements of renewable energy generation, with a special focus on biohydrogen, reclamation of wastewater and desalination processes. The mechanisms of underlying interactions, the environmental factors influencing consortia performance, and the challenges and benefits of employing these bio-complexes over traditional methods are also discussed in detail. This paper also evaluates the biotechnological applications of these microorganism consortia for the augmentation of biomass production and the synthesis of valuable biochemicals. Furthermore, the review sheds light on the integration of microalgae-bacteria systems in microbial fuel cells for concurrent energy production, waste treatment, and resource recovery. This review postulates microalgae-bacteria consortia as a sustainable and efficient solution for clean water and energy, providing insights into future research directions and the potential for industrial-scale applications.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
3
|
Carducci NGG, Dey S, Hickey DP. Recent Developments and Applications of Microbial Electrochemical Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:149-183. [PMID: 38273205 DOI: 10.1007/10_2023_236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
This chapter provides a comprehensive overview of microbial electrochemical biosensors, which are a unique class of biosensors that utilize the metabolic activity of microorganisms to convert chemical signals into electrical signals. The principles and mechanisms of these biosensors are discussed, including the different types of microorganisms that can be used. The various applications of microbial electrochemical biosensors in fields such as environmental monitoring, medical diagnostics, and food safety are also explored. The chapter concludes with a discussion of future research directions and potential advancements in the field of microbial electrochemical biosensors.
Collapse
Affiliation(s)
- Nunzio Giorgio G Carducci
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sunanda Dey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R, Saeed T, Martínez F, Yadav AK. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162757. [PMID: 36931518 DOI: 10.1016/j.scitotenv.2023.162757] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Collapse
Affiliation(s)
- Supriya Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Yamini Mittal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore- 453552, India
| | - Rupobrata Panja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain.
| |
Collapse
|
5
|
Sharma A, Chhabra M. The versatility of microbial fuel cells as tools for organic matter monitoring. BIORESOURCE TECHNOLOGY 2023; 377:128949. [PMID: 36963695 DOI: 10.1016/j.biortech.2023.128949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Water monitoring and remediation require robust, low-cost, and reliable test systems that can couple with prompt treatment interventions. Organic matter (BOD, COD), toxicants, heavy metals, and other pollutants in water need to be regularly inspected. Microbial fuel cells (MFCs) have already gained popularity as BOD biomonitoring systems as these don't need an external transducer or power source. Moreover, these systems are cost-effective, compact, biodegradable, reusable, portable, and applicable for on-site measurements. MFCs truly stands out as online BOD measurement devices as they provide wide detection range (0-25 g/L), low response time (2-4 min) and longer stability in continuous operations (2-5 years) in a cost-effective approach. This review examines the benefits, kinds, performance metrics, and signal optimization of the current state-of-the-art of the BOD measurement, with detailed focus on MFC-based BOD biomonitoring systems. This review covers the important technological breakthroughs in practical applications with associated bottlenecks to develop reliable sensing systems.
Collapse
Affiliation(s)
- Arti Sharma
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur 342030, Rajasthan, India
| | - Meenu Chhabra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur 342030, Rajasthan, India.
| |
Collapse
|
6
|
Li D, Sun Y, Shi Y, Wang Z, Okeke S, Yang L, Zhang W, Xiao L. Structure evolution of air cathodes and their application in electrochemical sensor development and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161689. [PMID: 36682546 DOI: 10.1016/j.scitotenv.2023.161689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Cathode structure and material are the most important factors to determine the performance and cost of single chamber air-cathode microbial fuel cell (MFC), which is the most promising type of MFC technology. Since the first air cathode was invented in 2004, five major structures (1-layer, 2-layer, 3-layer, 4-layer and separator-support) have been invented and modified to fit new material, improve power performance and lower MFC cost. This paper reviewed the structure evolution of air cathodes in past 18 years. The benefits and drawbacks of these structures, in terms of power generation, material cost, fabrication procedure and modification process are analyzed. The practical application cases (e.g., sensor development and wastewater treatment) employed with different cathode structures were also summarized and analyzed. Based on practical performance and long-term cost analysis, the 2-layer cathode demonstrated much greater potential over other structures. Compared with traditional activated-sludge technology, the cost of an MFC-based system is becoming competitive when employing with 2-layer structure. This review not only provides a detailed development history of air cathode but also reveals the advantages/disadvantages of air cathode with different structures, which will promote the research and application of air-cathode MFC technology.
Collapse
Affiliation(s)
- Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Saviour Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
7
|
Microbial Fuel Cell-Based Biosensors and Applications. Appl Biochem Biotechnol 2023; 195:3508-3531. [PMID: 36877442 DOI: 10.1007/s12010-023-04397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/07/2023]
Abstract
The sustainable development of human society in today's high-tech world depends on some form of eco-friendly energy source because existing technologies cannot keep up with the rapid population expansion and the vast amounts of wastewater that result from human activity. A green technology called a microbial fuel cell (MFC) focuses on using biodegradable trash as a substrate to harness the power of bacteria to produce bioenergy. Production of bioenergy and wastewater treatment are the two main uses of MFC. MFCs have also been used in biosensors, water desalination, polluted soil remediation, and the manufacture of chemicals like methane and formate. MFC-based biosensors have gained a lot of attention in the last few decades due to their straightforward operating principle and long-term viability, with a wide range of applications including bioenergy production, treatment of industrial and domestic wastewater, biological oxygen demand, toxicity detection, microbial activity detection, and air quality monitoring, etc. This review focuses on several MFC types and their functions, including the detection of microbial activity.
Collapse
|
8
|
Recalde C, López D, Aguay D, García VJ. Environmental Sensing in High-Altitude Mountain Ecosystems Powered by Sedimentary Microbial Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2023; 23:2101. [PMID: 36850696 PMCID: PMC9963341 DOI: 10.3390/s23042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The increasing need for fresh water in a climate change scenario requires remote monitoring of water bodies in high-altitude mountain areas. This study aimed to explore the feasibility of SMFC operation in the presence of low dissolved oxygen concentrations for remote, on-site monitoring of physical environmental parameters in high-altitude mountainous areas. The implemented power management system (PMS) uses a reference SMFC (SMFCRef) to implement a quasi-maximum power point tracking (quasi-MPPT) algorithm to harvest energy stably. As a result, while transmitting in a point-to-point wireless sensor network topology, the system achieves an overall efficiency of 59.6%. Furthermore, the control mechanisms prevent energy waste and maintain a stable voltage despite the microbial fuel cell (MFC)'s high impedance, low time response, and low energy production. Moreover, our system enables a fundamental understanding of environmental systems and their resilience of adaptation strategies by being a low-cost, ecological, and environmentally friendly alternative to power-distributed and dynamic environmental sensing networks in high-altitude mountain ecosystems with anoxic environmental conditions.
Collapse
Affiliation(s)
- Celso Recalde
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo, Riobamba EC060155, Ecuador
| | - Denys López
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo, Riobamba EC060155, Ecuador
| | - Diana Aguay
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo, Riobamba EC060155, Ecuador
| | - Víctor J. García
- Facultad de Ingeniería, Carrera de Ingeniería Civil, Universidad Nacional de Chimborazo, Riobamba EC060108, Ecuador
| |
Collapse
|
9
|
Wang Z, Li D, Shi Y, Sun Y, Okeke SI, Yang L, Zhang W, Zhang Z, Shi Y, Xiao L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:641. [PMID: 36679438 PMCID: PMC9866333 DOI: 10.3390/s23020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Hydrogel materials have been used extensively in microbial electrochemical technology (MET) and sensor development due to their high biocompatibility and low toxicity. With an increasing demand for sensors across different sectors, it is crucial to understand the current state within the sectors of hydrogel METs and sensors. Surprisingly, a systematic review examining the application of hydrogel-based METs to sensor technologies has not yet been conducted. This review aimed to identify the current research progress surrounding the incorporation of hydrogels within METs and sensors development, with a specific focus on microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). The manufacturing process/cost, operational performance, analysis accuracy and stability of typical hydrogel materials in METs and sensors were summarised and analysed. The current challenges facing the technology as well as potential direction for future research were also discussed. This review will substantially promote the understanding of hydrogel materials used in METs and benefit the development of electrochemical biosensors using hydrogel-based METs.
Collapse
Affiliation(s)
- Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Saviour I. Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Zihan Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yanqi Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- TrinityHaus, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
10
|
A low-cost microbial fuel cell based sensor for in-situ monitoring of dissolved oxygen for over half a year. Biosens Bioelectron 2022; 220:114888. [DOI: 10.1016/j.bios.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
11
|
Abbas SZ, Wang JY, Wang H, Wang JX, Wang YT, Yong YC. Recent advances in soil microbial fuel cells based self-powered biosensor. CHEMOSPHERE 2022; 303:135036. [PMID: 35609665 DOI: 10.1016/j.chemosphere.2022.135036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The soil microbial fuel cell (SMFC) is a new device that was originally designed to generate electricity from organic matter in soil using microorganisms. Currently, SMFC based biosensors are emerging as a new and promising research direction for real-time and rapid monitoring of soil quality or soil pollution. Compared to conventional biosensors, SMFC based biosensors exhibit advantages such as low-cost, simple design, in-situ, and long-term self-powering monitoring, which makes it become attractive devices for in-situ long-term soil quality or soil pollution monitoring. Thus, this review aims to provide a comprehensive overview of SMFC based biosensors. In this review, different prototypes of SMFC based biosensors developed in recent years are introduced, the biosensing mechanisms and the roles of SMFC are highlighted, and the emerging applications of these SMFC based biosensors are discussed. Since the SMFC based biosensors are applied in open-air conditions, the effects of different environmental factors on the biosensing response are also summarized. Finally, to further expand the understanding and boost the practical application of the SMFC based biosensors, future perspectives including fundamental mechanism exploration and investigation of the full-scale application are proposed.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jia-Yi Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Hongcheng Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jing-Xian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yi-Ting Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
12
|
Chen M, Zhang YQ, Krumholz LR, Zhao LY, Yan ZS, Yang YJ, Li ZH, Hayat F, Chen HB, Huang R. Black blooms-induced adaptive responses of sulfate reduction bacteria in a shallow freshwater lake. ENVIRONMENTAL RESEARCH 2022; 209:112732. [PMID: 35077715 DOI: 10.1016/j.envres.2022.112732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Decomposing cyanobacterial bloom-induced black blooms been seen as an issue in the management of freshwater ecosystems, but its effect on sulfate-reducing bacteria (SRB) in shallow freshwater lakes is not clear. The objective of this study is to present an in-depth investigation of black bloom effects on the activities and composition of SRB, as well as the interactions between SRB and other bacteria. Water and surface sediments samples were collected from a shallow freshwater lake during black and non-black blooms. Sulfate reduction rates (SRRs) in the water column were determined from the linear regression of sulfate depletion with time. Quantitative real-time polymerase chain reactions (qPCRs), targeting the dsrA gene and Illumina sequencing of 16S rDNA, were used to estimate the SRB population and SRB community structures, respectively. Our data indicate that although a higher abundance of SRB was responsible for the higher SRR in the bottom water (34.09 ± 2.37 nmol mL-1 day-1) than in the surface water (14.57 ± 2.91 nmol mL-1 day-1) during black blooms, cell-specific sulfate reduction rates (csSRRs) in the distinct water layers were not significantly different (P = 0.95), with the value of approximately 0.017 fmol cell-1 day-1. Additionally, Desulfomicrobium and Desulfovibrio were the two main genera of SRB in the water column during black bloom season, while Desulfobulbus, Desulfobacca and Desulfatiglans genera were identified in the sediments of both the black and non-black blooms in genera pools. Each SRB genus preferentially associated with bacteria for specific functions in the bacterial co-occurrence network, regardless of whether black booms occurred or not. These results extend our knowledge on the importance of SRB during black blooms and the adaptation of SRB to environmental changes in freshwater lakes.
Collapse
Affiliation(s)
- Mo Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China.
| | - Ya-Qing Zhang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| | - Lee R Krumholz
- Department of Botany & Microbiology, University of Oklahoma, Norman, OK, USA
| | - Li-Ya Zhao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Zai-Sheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yu-Jing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Zhao-Hua Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Faisal Hayat
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| | - Hong-Bing Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Ran Huang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
13
|
Bacterial Competition for the Anode Colonization under Different External Resistances in Microbial Fuel Cells. Catalysts 2022. [DOI: 10.3390/catal12020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study investigated the effect of external resistance (Rext) on the dynamic evolution of microbial communities in anodic biofilms of single-chamber microbial fuel cells fueled with acetate and inoculated with municipal wastewater. Anodic biofilms developed under different Rext (0, 330 and 1000 ohms, and open circuit condition) were characterized as a function of time during two weeks of growth using 16S rRNA gene sequencing, cyclic voltammetry (CV) and fluorescence microscopy. The results showed a drastic difference in power output of MFCs operated with an open circuit and those operated with Rext from 0 to 1000 ohms. Two steps during the bacterial community development of the anodic biofilms were identified. During the first four days, nonspecific electroactive bacteria (non-specific EAB), dominated by Pseudomonas, Acinetobacter, and Comamonas, grew fast whatever the value of Rext. During the second step, specific EAB, dominated by Geobacter and Desulfuromonas, took over and increased over time, except in open circuit MFCs. The relative abundance of specific EAB decreased with increasing Rext. In addition, the richness and diversity of the microbial community in the anodic biofilms decreased with decreasing Rext. These results help one to understand the bacterial competition during biofilm formation and suggest that an inhibition of the attachment of non-specific electroactive bacteria to the anode surface during the first step of biofilm formation should improve electricity production.
Collapse
|
14
|
Al-Sahari M, Al-Gheethi A, Radin Mohamed RMS, Noman E, Naushad M, Rizuan MB, Vo DVN, Ismail N. Green approach and strategies for wastewater treatment using bioelectrochemical systems: A critical review of fundamental concepts, applications, mechanism, and future trends. CHEMOSPHERE 2021; 285:131373. [PMID: 34265718 DOI: 10.1016/j.chemosphere.2021.131373] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/26/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Millions of litters of multifarious wastewater are directly disposed into the environment annually to reduce the processing costs leading to eutrophication and destroying the clean water sources. The bioelectrochemical systems (BESs) have recently received significant attention from researchers due to their ability to convert waste into energy and their high efficiency of wastewater treatment. However, most of the performed researches of the BESs have focused on energy generation, which created a literature gap on the utilization of BESs for wastewater treatment. The review highlights this gap from various aspects, including the BESs trends, fundamentals, applications, and mechanisms. A different review approach has followed in the present work using a bibliometric review (BR) which defined the literature gap of BESs publications in the degradation process section and linked the systematic review (SR) with it to prove and review the finding systematically. The degradation mechanisms of the BESs have been illustrated comprehensively in the current work, and various suggestions have been provided for supporting future studies and cooperation.
Collapse
Affiliation(s)
- Mohammed Al-Sahari
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Efaq Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, Taiz, 00967, Yemen; Faculty of Applied Sciences and Technology, University Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, Panchor, 84000, Johor, Malaysia.
| | - M Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea
| | - Mohd Baharudin Rizuan
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Norli Ismail
- School of Industrial Technology, Universiti Sains Malaysia (USM), 11800, Peneng, Malaysia
| |
Collapse
|
15
|
Dai Z, Yu R, Zha X, Xu Z, Zhu G, Lu X. On-line monitoring of minor oil spills in natural waters using sediment microbial fuel cell sensors equipped with vertical floating cathodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146549. [PMID: 33839652 DOI: 10.1016/j.scitotenv.2021.146549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/02/2021] [Accepted: 03/13/2021] [Indexed: 05/22/2023]
Abstract
Oil spills near natural water bodies pose considerable threats to aquatic ecosystem and drinking water system. Various detection techniques have been developed to identify the oil pollution in natural waters. These techniques mainly focus on large and major oil spills involving significant changes in environmental characteristics. However, monitoring of minor oil spills (from seepage and dripping) in waters remains a bottleneck, allowing inconspicuous and persistent oil contamination. To overcome this drawback, a sediment microbial fuel cell (SMFC) sensor equipped with a vertical floating cathode is developed for on-line and in-situ monitoring of minor oil spills in natural waters. The vertical floating cathode was intended for recognizing oil on water surface. Oil on the cathode will trigger current drop. Two kinds of natural sediments were adopted in two sensors (SMFC1 from a lake and SMFC2 from an urban stream) for comparison. Both showed linear relationship between net steady-state current decrease and oil dose (30.78 and 27.29 μA/mL of sensitivity, respectively). The current change process was fitted well to a pseudo-first order kinetic equation. A one-point/two-point dynamic identification methods were derived from the kinetic equation. Therefore, the detection time was shortened from 10 h to 10/30 min. The triggered current decrease was mainly attributed to the increase in internal resistance related to charge and mass transfer. Despite the power loss after oil contamination, results implied SMFC sensor could still achieve self-sustainability. This study shows that the SMFC sensor with vertical floating cathodes is applicable to monitoring the unnoticeable minor oil pollutions in natural waters.
Collapse
Affiliation(s)
- Zheqin Dai
- School of Energy and Environment, Southeast University, No.2 Sipailou Road, Nanjing 210096, PR China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, PR China
| | - Ran Yu
- School of Energy and Environment, Southeast University, No.2 Sipailou Road, Nanjing 210096, PR China
| | - Xiao Zha
- School of Energy and Environment, Southeast University, No.2 Sipailou Road, Nanjing 210096, PR China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, PR China
| | - Zhiheng Xu
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, No.2 Sipailou Road, Nanjing 210096, PR China
| | - Xiwu Lu
- School of Energy and Environment, Southeast University, No.2 Sipailou Road, Nanjing 210096, PR China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, PR China.
| |
Collapse
|
16
|
Carvalho A, Costa R, Neves S, Oliveira CM, Bettencourt da Silva RJ. Determination of dissolved oxygen in water by the Winkler method: Performance modelling and optimisation for environmental analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Christwardana M, Yoshi LA, Setyonadi I, Maulana MR, Fudholi A. A novel application of simple submersible yeast-based microbial fuel cells as dissolved oxygen sensors in environmental waters. Enzyme Microb Technol 2021; 149:109831. [PMID: 34311895 DOI: 10.1016/j.enzmictec.2021.109831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/14/2023]
Abstract
In this study, yeast microbial fuel cells (MFCs) were established as biosensors for in-situ monitoring of dissolved oxygen (DO) levels in environmental waters, with yeast and glucose substrates acting as biocatalyst and fuel, respectively. Diverse environmental factors, such as temperature, pH and conductivity, were considered. The sensor performance was first tested with distilled water with different DO levels ranging from 0 mg/L to 8 mg/L and an external resistance of 1000 Ω. The relationship between DO and current density was non-linear (exponential). This MFC capability was further explored under different environmental conditions (pH, temperature and conductivity), and the current density produced was within the range of 0.14-34.88 mA/m2, which increased with elevated DO concentration. The resulting regression was y = 1.3051e0.3548x, with a regression coefficient (R2) = 0.71, indicating that the MFC-based DO meter was susceptible to interference. When used in environmental water samples, DO measurements using MFC resulted in errors ranging from 6.25 % to 15.15 % when compared with commercial DO meters. The simple yeast-based MFC sensors demonstrate promising prospects for future monitoring in a variety of areas, including developing countries and remote locations.
Collapse
Affiliation(s)
- Marcelinus Christwardana
- Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang, Banten, 15320, Indonesia.
| | - Linda Aliffia Yoshi
- Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang, Banten, 15320, Indonesia
| | - Indraprasta Setyonadi
- Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang, Banten, 15320, Indonesia
| | - Mohammad Rizqi Maulana
- Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang, Banten, 15320, Indonesia
| | - Ahmad Fudholi
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (LIPI), Bandung, Indonesia.
| |
Collapse
|
18
|
Olias LG, Di Lorenzo M. Microbial fuel cells for in-field water quality monitoring. RSC Adv 2021; 11:16307-16317. [PMID: 35479166 PMCID: PMC9031575 DOI: 10.1039/d1ra01138c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The need for water security pushes for the development of sensing technologies that allow online and real-time assessments and are capable of autonomous and stable long-term operation in the field. In this context, Microbial Fuel Cell (MFC) based biosensors have shown great potential due to cost-effectiveness, simplicity of operation, robustness and the possibility of self-powered applications. This review focuses on the progress of the technology in real scenarios and in-field applications and discusses the technological bottlenecks that must be overcome for its success. An overview of the most relevant findings and challenges of MFC sensors for practical implementation is provided. First, performance indicators for in-field applications, which may diverge from lab-based only studies, are defined. Progress on MFC designs for off-grid monitoring of water quality is then presented with a focus on solutions that enhance robustness and long-term stability. Finally, calibration methods and detection algorithms for applications in real scenarios are discussed.
Collapse
Affiliation(s)
- Lola Gonzalez Olias
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Chemical Engineering, University of Bath Bath BA2 7AY UK
- Water Innovation Research Centre (WIRC), University of Bath Bath BA2 7AY UK
| | - Mirella Di Lorenzo
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Chemical Engineering, University of Bath Bath BA2 7AY UK
| |
Collapse
|
19
|
Colares GS, Dell'Osbel N, Barbosa CV, Lutterbeck C, Oliveira GA, Rodrigues LR, Bergmann CP, Lopez DR, Rodriguez AL, Vymazal J, Machado EL. Floating treatment wetlands integrated with microbial fuel cell for the treatment of urban wastewaters and bioenergy generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142474. [PMID: 33071144 PMCID: PMC7513814 DOI: 10.1016/j.scitotenv.2020.142474] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 04/14/2023]
Abstract
The objective of the present study was to develop a combined system composed of anaerobic biofilter (AF) and floating treatment wetlands (FTW) coupled with microbial fuel cells (MFC) in the buoyant support for treating wastewater from a university campus and generate bioelectricity. The raw wastewater was pumped to a 1450 L tank, operated in batch flow and filled with plastic conduits. The second treatment stage was composed of a 1000 L FTW box with a 200 L plastic drum inside (acting as settler in the entrance) and vegetated with mixed ornamental plants species floating in a polyurethane support fed once a week with 700 L of wastewater. In the plant roots, graphite rods were placed to act as cathodes, while on the bottom of the box 40 graphite sticks inside a plastic hose with a stainless-steel cable acting as the anode chamber. Open circuit voltages were daily measured for 6 weeks, and later as closed circuit with the connection of 1000 Ω resistors. Plant harvestings were conducted, in which biomass production and plant uptake from each of the species were measured. On average, system was efficient in reducing BOD5 (55.1%), COD (71.4%), turbidity (90.9%) and total coliforms (99.9%), but presented low efficiencies regarding total N (8.4%) and total P (11.4%). Concerning bioenergy generation, voltage peaks and maximum power density were observed on the feeding day, reaching 225 mV and 0.93 mW/m2, respectively, and in general decaying over the 7 days. In addition, plant species with larger root development presented higher voltage values than plants with the smaller root systems, possible because of oxygen release. Therefore, the combined system presented potential of treating wastewater and generating energy by integrating FTW and MFC, but further studies should investigate the FTW-MFC combination in order to improve its treatment performance and maximize energy generation.
Collapse
Affiliation(s)
- Gustavo Stolzenberg Colares
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil.
| | - Naira Dell'Osbel
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Carolina V Barbosa
- Environmental Engineering Program, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Carlos Lutterbeck
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Gislayne A Oliveira
- Postgraduate Program in Water Resources and Environmental Sanitation, Federal University of Rio Grande do Sul, Av, Bento Gonçalves, 91501-970 Porto Alegre, RS, Brazil
| | - Lucia R Rodrigues
- Postgraduate Program in Water Resources and Environmental Sanitation, Federal University of Rio Grande do Sul, Av, Bento Gonçalves, 91501-970 Porto Alegre, RS, Brazil
| | - Carlos P Bergmann
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering, Federal University of Rio Grande do Sul, Av, Bento Gonçalves, 91501-970 Porto Alegre, RS, Brazil
| | - Diosnel Rodriguez Lopez
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Adriane Lawisch Rodriguez
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Jan Vymazal
- Faculty of Environmental Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Enio L Machado
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| |
Collapse
|
20
|
|
21
|
Lu H, Yu Y, Xi H, Zhou Y, Wang C. A quick start method for microbial fuel cells. CHEMOSPHERE 2020; 259:127323. [PMID: 32593813 DOI: 10.1016/j.chemosphere.2020.127323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Microbial fuel cells (MFCs) have great potential to detect toxicity early. Study of toxicity sensors based on MFCs requires a large number of stable MFCs. However, the start-up time of MFCs is generally long, which limits research progress. In this study, a first-stage preculture based on H-type MFCs (first culture) and a second-stage preculture based on multistage MFC reactor series culture (second culture) were used in combination with preculture MFCs. The goal of obtaining an MFC with stable performance in only one day was achieved. The obtained MFC could be stable for 33 h and rapidly regenerated with replacement of the anode substrate. The start-up time was shortened because after the first culture and the secondary culture, the protein content attached to the electrode reached 1.2864 ± 0.0174 mg/cm2 and 2.22 ± 0.12 mg/cm2, respectively. Bacteria that generate electricity, such as Geobacter, were effectively enriched. This study may improve the development efficiency of MFC toxicity sensors.
Collapse
Affiliation(s)
- Hongbin Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| |
Collapse
|
22
|
Heydorn RL, Engel C, Krull R, Dohnt K. Strategies for the Targeted Improvement of Anodic Electron Transfer in Microbial Fuel Cells. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Raymond Leopold Heydorn
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Christina Engel
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Rainer Krull
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Katrin Dohnt
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| |
Collapse
|
23
|
Contrasting Effects of Sediment Microbial Fuel Cells (SMFCs) on the Degradation of Macrophyte Litter in Sediments from Different Areas of a Shallow Eutrophic Lake. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eutrophication is one of the major ecological problems of our era. It accelerates the growth of aquatic plant and algae, eventually leading to ecological deterioration. Based on a 700-day lab experiment, this paper investigated the contrasting effects of sediment microbial fuel cells (SMFCs) on the removal of macrophyte litter in a macrophyte-dominated area and an algae-dominated area from two bay areas of a shallow eutrophic lake. The results revealed that the removal efficiencies of total organic carbon increased by 14.4% in the macrophyte-dominated area and 7.8% in the algae-dominated area. Moreover, it was found that sediment samples from the macrophyte-dominated area became more humified and had a higher electricity generation compared to the sediment samples from the algae-dominated area. Pyrosequencing analysis further determined that SMFC promoted more aromatic compound-degrading bacteria growth in sediments from the macrophyte-dominated area than from the algae-dominated area. Our study demonstrated that SMFC could enhance organic matter degradation, especially plant litter degradation, but this influence showed different from sediment sources. Thus, SMFC is capable of providing a useful strategy for delaying the terrestrialization of lakes areas suffering from eutrophication.
Collapse
|
24
|
Guo F, Shi Z, Yang K, Wu Y, Liu H. Enhancing the power performance of sediment microbial fuel cells by novel strategies: Overlying water flow and hydraulic-driven cathode rotating. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:533-542. [PMID: 31078843 DOI: 10.1016/j.scitotenv.2019.04.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Sediment microbial fuel cells (SMFCs) are promising power sources for environmental monitoring in remote areas and environment-friendly solutions to river sediment contamination. However, cathodic limitations will significantly decrease power performance and limit its practical application. In this work, the control SMFC (SMFC-C) with cathode horizontally and fully submerged below the overlying water, and the hydraulic-driven rotating cathode SMFC (SMFC-R) was constructed. Overlying water flow and hydraulic-driven cathode rotating as novel strategies for SMFCs towards field applications were proposed. Results demonstrated that better power performance under static condition was obtained in SMFC-R than in SMFC-C, that the overlying water flow could significantly increase the maximum power density (MPD) in SMFC-C over the static condition, and that the cathode rotating further improved MPD in SMFC-R. The MPD obtained under static condition were 26.5 mW/m2 and 45.1 mW/m2 in SMFC-C and SMFC-R, which increased to 38.8 mW/m2 and 47.3 mW/m2 under water flow and cathode rotating condition, respectively. Analyses on cathode potential, overlying water pH and dissolved oxygen suggested severe cathodic limitations in SMFC-C under static condition which could be diminished by overlying water flow. However, almost no such limitations were observed in SMFC-R even under static condition, which is probably due to the fact that the cathodic oxygen reaction in SMFC-R mainly occurred on the cathode exposed to the air rather than on that submerged below the water. Identical anode performance was obtained in both SMFCs under different conditions, which were not an influencing factor leading to different power performance.
Collapse
Affiliation(s)
- Fei Guo
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zongyang Shi
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Kaiming Yang
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Yan Wu
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
25
|
Abstract
The microbial fuel cell (MFC) is a promising environmental biotechnology that has been proposed mainly for power production and wastewater treatment. Though small power output constrains its application for directly operating most electrical devices, great progress in its chemical, electrochemical, and microbiological aspects has expanded the applications of MFCs into other areas such as the generation of chemicals (e.g., formate or methane), bioremediation of contaminated soils, water desalination, and biosensors. In recent decades, MFC-based biosensors have drawn increasing attention because of their simplicity and sustainability, with applications ranging from the monitoring of water quality (e.g., biochemical oxygen demand (BOD), toxicants) to the detection of air quality (e.g., carbon monoxide, formaldehyde). In this review, we summarize the status quo of MFC-based biosensors, putting emphasis on BOD and toxicity detection. Furthermore, this review covers other applications of MFC-based biosensors, such as DO and microbial activity. Further, challenges and prospects of MFC-based biosensors are briefly discussed.
Collapse
|
26
|
Cui Y, Lai B, Tang X. Microbial Fuel Cell-Based Biosensors. BIOSENSORS-BASEL 2019; 9:bios9030092. [PMID: 31340591 PMCID: PMC6784372 DOI: 10.3390/bios9030092] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
The microbial fuel cell (MFC) is a promising environmental biotechnology that has been proposed mainly for power production and wastewater treatment. Though small power output constrains its application for directly operating most electrical devices, great progress in its chemical, electrochemical, and microbiological aspects has expanded the applications of MFCs into other areas such as the generation of chemicals (e.g., formate or methane), bioremediation of contaminated soils, water desalination, and biosensors. In recent decades, MFC-based biosensors have drawn increasing attention because of their simplicity and sustainability, with applications ranging from the monitoring of water quality (e.g., biochemical oxygen demand (BOD), toxicants) to the detection of air quality (e.g., carbon monoxide, formaldehyde). In this review, we summarize the status quo of MFC-based biosensors, putting emphasis on BOD and toxicity detection. Furthermore, this review covers other applications of MFC-based biosensors, such as DO and microbial activity. Further, challenges and prospects of MFC-based biosensors are briefly discussed.
Collapse
Affiliation(s)
- Yang Cui
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Bin Lai
- Systems Biotechnology Group, Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
| | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|