1
|
Feinberg A, Selin NE, Braban CF, Chang KL, Custódio D, Jaffe DA, Kyllönen K, Landis MS, Leeson SR, Luke W, Molepo KM, Murovec M, Nerentorp Mastromonaco MG, Aspmo Pfaffhuber K, Rüdiger J, Sheu GR, St. Louis VL. Unexpected anthropogenic emission decreases explain recent atmospheric mercury concentration declines. Proc Natl Acad Sci U S A 2024; 121:e2401950121. [PMID: 39378086 PMCID: PMC11494326 DOI: 10.1073/pnas.2401950121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Anthropogenic activities emit ~2,000 Mg y-1 of the toxic pollutant mercury (Hg) into the atmosphere, leading to long-range transport and deposition to remote ecosystems. Global anthropogenic emission inventories report increases in Northern Hemispheric (NH) Hg emissions during the last three decades, in contradiction with the observed decline in atmospheric Hg concentrations at NH measurement stations. Many factors can obscure the link between anthropogenic emissions and atmospheric Hg concentrations, including trends in the reemissions of previously released anthropogenic ("legacy") Hg, atmospheric sink variability, and spatial heterogeneity of monitoring data. Here, we assess the observed trends in gaseous elemental mercury (Hg0) in the NH and apply biogeochemical box modeling and chemical transport modeling to understand the trend drivers. Using linear mixed effects modeling of observational data from 51 stations, we find negative Hg0 trends in most NH regions, with an overall trend for 2005 to 2020 of -0.011 ± 0.006 ng m-3 y-1 (±2 SD). In contrast to existing emission inventories, our modeling analysis suggests that annual NH anthropogenic emissions must have declined by at least 140 Mg between the years 2005 and 2020 to be consistent with observed trends. Faster declines in 95th percentile Hg0 values than median values in Europe, North America, and East Asian measurement stations corroborate that the likely cause is a decline in nearby anthropogenic emissions rather than background legacy reemissions. Our results are relevant for evaluating the effectiveness of the Minamata Convention on Mercury, demonstrating that existing emission inventories are incompatible with the observed Hg0 declines.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Noelle E. Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christine F. Braban
- United Kingdom Centre for Ecology and Hydrology, Penicuik, MidlothianEH26 0QB, United Kingdom
| | - Kai-Lan Chang
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
- National Oceanic and Atmospheric Administration Chemical Sciences Laboratory, Boulder, CO80305
| | | | - Daniel A. Jaffe
- School of Science, Technology, Engineering & Mathematics, Physical Sciences Division, University of Washington Bothell, Bothell, WA98011
- Department of Atmospheric Sciences, University of Washington Seattle, Seattle, WA98195
| | - Katriina Kyllönen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki00560, Finland
| | - Matthew S. Landis
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC27711
| | - Sarah R. Leeson
- United Kingdom Centre for Ecology and Hydrology, Penicuik, MidlothianEH26 0QB, United Kingdom
| | - Winston Luke
- National Oceanic and Atmospheric Administration/Air Resources Laboratory, College Park, MD20740
| | - Koketso M. Molepo
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Geesthacht21502, Germany
| | - Marijana Murovec
- Slovenian Environment Agency, Environment and Nature protection Office, Air Quality Division, Ljubljana1000, Slovenia
| | | | | | - Julian Rüdiger
- Air Monitoring Network, German Environment Agency, Langen63225, Germany
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Taoyuan320, Taiwan
| | - Vincent L. St. Louis
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| |
Collapse
|
2
|
Yamakawa A, Luke W, Kelley P, Ren X, Iaukea-Lum M. Unraveling atmospheric mercury dynamics at Mauna Loa through the isotopic analysis of total gaseous mercury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116993. [PMID: 39260217 DOI: 10.1016/j.ecoenv.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Our investigation seeks to uncover the intricate nature of mercury dynamics in the free troposphere through analysis of the isotopic composition of total gaseous elemental mercury (TGM) at the high altitude Mauna Loa Observatory (MLO, 3397 m) in Hawaii, USA. By focusing on this unique site, we aim to provide essential insights into the behavior and cycling of mercury, contributing valuable data to a deeper understanding of its global distribution and environmental impacts. Forty-eight hours of TGM sampling from January to September 2022 revealed significant variations in δ202Hg (-1.86 % to -0.32 %; mean = -1.17 ± 0.65 %, 2 SD, n = 34) and small variations in Δ199Hg (-0.27 % to 0.04 %; mean = -0.13 ± 0.14 %, 2 SD, n = 34) and Δ200Hg (-0.20 % to 0.06 %; mean = -0.05 ± 0.13 %, 2 SD, n = 34). During the sampling period, GEM was negatively correlated with gaseous oxidized mercury (GOM). However, the GOM/GEM ratio was not -1, suggesting that GEM oxidation and subsequent scavenging occurred previously. The δ202Hg isotopic compositions of TGM at MLO were different from those of reported values of high-altitude mountains; the δ202Hg of TGM at MLO was lower than the isotopic ratios that were obtained from other mountain regions. The unique atmospheric conditions at Mauna Loa, with (upslope winds during the day and downslope winds at night, likely result in the) possibly mixing of GEMs from terrestrial (and possibly oceanic GEM emission) sources with and tropospheric sources, influencing and affect the isotopic composition. During the late summer to early fall (September 14-28), negative correlations were found between relative humidity and GOM and between particle number concentrations and Δ199Hg, indicating the gas-to-particle partitioning of the atmospheric mercury during this period. This study will improve our understanding on mercury dynamics of marine origin and high altitudes and shed light on its complex interactions with environmental factors.
Collapse
Affiliation(s)
- Akane Yamakawa
- National Institute for Environmental Studies, 16-2 Tsukuba, Ibaraki 305-8506, Japan.
| | - Winston Luke
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Paul Kelley
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Xinrong Ren
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Michealene Iaukea-Lum
- Mauna Loa Observatory, CIRES/NOAA Global Monitoring Division, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
3
|
Feng X, Fu X, Zhang H, Wang X, Jia L, Zhang L, Lin CJ, Huang JH, Liu K, Wang S. Combating air pollution significantly reduced air mercury concentrations in China. Natl Sci Rev 2024; 11:nwae264. [PMID: 39220549 PMCID: PMC11362986 DOI: 10.1093/nsr/nwae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 09/04/2024] Open
Abstract
In the past decade, China has motivated proactive emission control measures that have successfully reduced emissions of many air pollutants. For atmospheric mercury, which is a globally transported neurotoxin, much less is known about the long-term changes in its concentrations and anthropogenic emissions in China. In this study, over a decade of continuous observations at four Chinese sites show that gaseous elemental mercury (GEM) concentrations continuously increased until the early 2010s, followed by significant declines at rates of 1.8%-6.1% yr-1 until 2022. The GEM decline from 2013 to 2022 (by 38.6% ± 12.7%) coincided with the decreasing concentrations of criteria air pollutants in China and were larger than those observed elsewhere in the northern hemisphere (5.7%-14.2%). The co-benefits of emission control measures contributed to the reduced anthropogenic Hg emissions and led to the GEM decline in China. We estimated that anthropogenic GEM emissions in China were reduced by 38%-50% (116-151 tons) from 2013 to 2022 using the machine-learning and relationship models.
Collapse
Affiliation(s)
- Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Nguyen LSP, Hien TT. Long-Range Atmospheric Mercury Transport from Across East Asia to a Suburban Coastal Area in Southern Vietnam. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 112:14. [PMID: 38114799 DOI: 10.1007/s00128-023-03842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Exports of atmospheric mercury (Hg) from continental East Asia, a major Hg emitter in the globe, have been reported by several studies in neighboring countries such as Japan and Korea. Nonetheless, studies concerning this topic in Southeast Asia (SEA) countries are still limited. Accordingly, gaseous elemental mercury (GEM) has been measured from Can Thanh High School (CTHS), a suburban coastal site in southern Vietnam to study its characterization and discover the evidence of Hg trans-boundary transport from regional sources (e.g., East Asia). Data collected in July, August, and October 2022 were used in this study, and the overall GEM concentration was 1.61 ± 0.32 ng m-3. The GEM levels were higher in October than in July and August, potentially due to the discrepancy in air mass transport patterns induced by tropical monsoon and source origins of Hg. MERRA-2, backward trajectories, and CALIPSO images revealed the trans-boundary air pollution from continental East Asia to southern Vietnam, evidenced by significantly elevated (> 30%) atmospheric Hg concentrations as well as other air pollutants when the plume arrived at CTHS. Furthermore, our results also imply that atmospheric Hg exported from East Asia could influence large areas in SEA, suggesting the need for more studies in various SEA countries in the upcoming future. This study illustrated the influence of regional Hg emissions on local atmospheric Hg pollution and provided data to improve knowledge of the Hg biogeochemical cycle in SEA.
Collapse
Affiliation(s)
- Ly Sy Phu Nguyen
- Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| | - To Thi Hien
- Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Luo Q, Ren Y, Sun Z, Li Y, Li B, Yang S, Zhang W, Wania F, Hu Y, Cheng H. Characterization of atmospheric mercury from mercury-added product manufacturing using passive air samplers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122519. [PMID: 37690466 DOI: 10.1016/j.envpol.2023.122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Although alternatives to mercury (Hg) are available in most products and industrial activities, Hg continues to be an ingredient in some products, including fluorescent lamps and electrical and electronic equipment (EEE). In this work, low-cost passive air samplers (PASs) were used to investigate the atmospheric Hg pollution in Zhongshan, a large industrial city and major hub of mercury-added product manufacturing in South China. The GEM concentrations in the atmosphere were measured for two weeks during the summer of 2019 at a total of 144 sites across Zhongshan. Comparison with the results of active sampling confirmed that the PASs yielded accurate and reliable gaseous elemental mercury (GEM) concentrations and were thus well-suited for multi-site field monitoring. The mean GEM concentrations in the areas with mercury-added product manufacturing activities (5.1 ± 0.4 ng m-3) were significantly higher than those in other parts of Zhongshan (1.5 ± 0.4 ng m-3), indicating that local releases, rather than regional transport, were responsible for the atmospheric Hg pollution. Elevated GEM concentrations (up to 11.4 ng m-3) were found in the vicinity of fluorescent lamp and EEE factories and workshops, indicating significant Hg vapor emissions, presumably from the outdated production technologies and non-standard operation by under-trained workers. The Hg emissions from mercury-added product manufacturing were estimated to be 0.06 and 7.8 t yr-1 for Zhongshan and China, respectively, based on the scales of fluorescent lamp and EEE production. The non-carcinogenic health risk of Zhongshan residents from inhalation and ingestion was judged acceptable, whereby the inhalation exposure in Hg-polluted areas exceeded that of dietary ingestion. These findings demonstrate that mercury-added product manufacturing still contributes notably to anthropogenic gaseous Hg releases in the industrial areas with intense mercury-added product manufacturing activities.
Collapse
Affiliation(s)
- Qing Luo
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yuxuan Ren
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zehang Sun
- School of Land and Tourism, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Yu Li
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bing Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Sen Yang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Wanpeng Zhang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Chen C, Qin X, Li H, Li H, Liu C, Fu M, Wang X, Huo J, Duan Y, Fu Q, Huang K, Deng C. Atmospheric mercury in a developed region of eastern China: Interannual variation and gas-particle partitioning. Heliyon 2023; 9:e19786. [PMID: 37771526 PMCID: PMC10522948 DOI: 10.1016/j.heliyon.2023.e19786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Atmospheric mercury plays a crucial role in the biogeochemical cycle of mercury. This study conducted an intensive measurement of atmospheric mercury from 2015 to 2018 at a regional site in eastern China. During this period, the concentration of particle-bound mercury (PBM) decreased by 13%, which was much lower than those of gaseous elemenral mercury (GEM, 30%) and reactive gaseous mercury (GOM, 62%). The gradual decrease in the correlation between PBM and CO, K, and Pb indicates that the influence of primary emissions on PBM concentration was weakening. Moreover, the value of the partitioning coefficient (Kp) increased gradually from 0.05 ± 0.076 m3/μg in 2015 to 0.16 ± 0.37 m3/μg in 2018, indicating that GOM was increasingly inclined to adsorb onto particulate matter. Excluding the influence of meteorological conditions and the primary emissions, the change in aerosol composition is designated as the main trigger factor for the increasing gas-particle partitioning of reactive mercury (RM). The increasing ratio of Cl-, NO3-, and organics (Org) in the chemical composition of particle matters (PM2.5), as well as the decrease in the proportion of SO42-, NH4+, and K+, are conducive to the adsorption of GOM onto particles, forming PBM, which led to an increase of Kp and a lag of PBM reduction compared to GEM and GOM under the continuous control measures of anthropogenic mercury emissions. The evolution of aerosol compositions in recent years affects the migration and transformation of atmospheric mercury, which in turn can affect the biogeochemical cycle of mercury.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaofei Qin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Hao Li
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Haiyan Li
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Chengfeng Liu
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Mengxin Fu
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaohao Wang
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
| | - Juntao Huo
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
| | - Yusen Duan
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
| | - Qingyan Fu
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
| | - Kan Huang
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Congrui Deng
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200433, China
- Institute of Eco-Chongming (IEC), Shanghai, 202162, China
| |
Collapse
|
7
|
Kalinchuk VV. Gaseous elemental mercury and its evasion fluxes in the marine boundary layer of the marginal seas of the northwestern Pacific: Results from two cruises in September-December 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159711. [PMID: 36302426 DOI: 10.1016/j.scitotenv.2022.159711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
There are many questions regarding the behavior of mercury in the sea-atmosphere system of the northwestern Pacific. Continuous underway measurements of atmospheric gaseous elemental mercury (GEM) and measurements of sea-air GEM evasion fluxes were carried out in the marginal seas of northwestern Pacific from the South China Sea to the Sea of Okhotsk in fall-winter 2019. The median GEM concentration (1.1 ng/m3) was lower than both the background value and the averages previously observed in these areas. A latitudinal gradient of atmospheric GEM and GEM evasion fluxes with maximum values at southern latitudes was found. The following areas have been identified as potential source areas: the Kurill area of the Pacific Ocean Northeast China, Korean Peninsula, and the territory from the southwest coast of the Yellow Sea to the south of Indochina. Seasonal variations were observed in the Sea of Japan and East China Sea with higher GEM concentrations in winter than in fall. Our data and analysis of published data showed significant relationships between GEM evasion fluxes, latitude and sea surface temperature (SST). It seems that on a global scale, along with the GEM gradient between water and atmosphere, SST is the most significant parameter for sea-air GEM evasion fluxes.
Collapse
Affiliation(s)
- Viktor V Kalinchuk
- V.I.Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
8
|
Nguyen LSP, Hien TT, Truong MT, Chi NDT, Sheu GR. Atmospheric particulate-bound mercury (PBM 10) in a Southeast Asia megacity: Sources and health risk assessment. CHEMOSPHERE 2022; 307:135707. [PMID: 35842046 DOI: 10.1016/j.chemosphere.2022.135707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Particulate-bound mercury (PBM) is a global environmental concern owing to its large dry deposition velocities and scavenging coefficients, both of which drive Hg into terrestrial and marine ecosystems. PBM observation studies have been widely conducted over East Asia, but comparable studies in Peninsular Southeast Asia (PSEA) remain scarce. This is the first study reporting PBM concentrations for Ho Chi Minh City (HCMC), the biggest metropolitan area in Vietnam. A total of 222 samples were collected in 2018 and contained an average PBM10 (particulate matter - PM with diameter ≤10 μm) concentration and Hg mass fraction (i.e. PBM/PM) of 67.3 ± 45.9 pg m-3 and 1.18 ± 1.12 μg g-1, respectively. Although PBM concentration was lower than those reported in Chinese megacities, the Hg mass fraction was similar to those in China, suggesting strong enrichment from anthropogenic Hg emissions in HCMC. Traffic-induced particulate emission and deposition processes were major factors governing PBM temporal variation at our site. In addition, the prevailing southwest monsoon winds brought air masses that passed through industrial areas and were associated with a higher Hg mass fraction. Statistically significant positive correlations (R2 = 0.11-0.52, p < 0.01) were observed for PBM with PM and the Hg mass fraction, indicating similar PM and Hg sources or oxidized Hg adsorption onto PM via gas-particle partitioning. Moreover, PCA results revealed a higher contribution of primary sources than secondary sources to PBM concentration variability in HCMC. A health risk assessment indicated that the PBM concentrations at HCMC posed minimal non-carcinogenic risks (HI < 1) for children and adults, but dermal contact may act as an important exposure route since lightweight clothing is common among residents. This PBM dataset over PSEA, a region with high atmospheric Hg emissions, provides a valuable resource for the Hg scientific community to improve our understanding of Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Ly Sy Phu Nguyen
- Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam.
| | - To Thi Hien
- Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh Tri Truong
- Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Doan Thien Chi
- Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan; Center for Environmental Monitoring and Technology, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Liu K, Wu Q, Wang S, Chang X, Tang Y, Wang L, Liu T, Zhang L, Zhao Y, Wang Q, Chen J. Improved atmospheric mercury simulation using updated gas-particle partition and organic aerosol concentrations. J Environ Sci (China) 2022; 119:106-118. [PMID: 35934455 DOI: 10.1016/j.jes.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The gaseous or particulate forms of divalent mercury (HgII) significantly impact the spatial distribution of atmospheric mercury concentration and deposition flux (FLX). In the new nested-grid GEOS-Chem model, we try to modify the HgII gas-particle partitioning relationship with synchronous and hourly observations at four sites in China. Observations of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and PM2.5 were used to derive an empirical gas-particle partitioning coefficient as a function of temperature (T) and organic aerosol (OA) concentrations under different relative humidity (RH). Results showed that with increasing RH, the dominant process of HgII gas-particle partitioning changed from physical adsorption to chemical desorption. And the dominant factor of HgII gas-particle partitioning changed from T to OA concentrations. We thus improved the simulated OA concentration field by introducing intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emission inventory into the model framework and refining the volatile distributions of I/SVOCs according to new filed tests in the recent literatures. Finally, normalized mean biases (NMBs) of monthly gaseous element mercury (GEM), GOM, PBM, WFLX were reduced from -33%-29%, 95%-300%, 64%-261%, 117%-122% to -13%-0%, -20%-80%, -31%-50%, -17%-23%. The improved model explains 69%-98% of the observed atmospheric Hg decrease during 2013-2020 and can serve as a useful tool to evaluate the effectiveness of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| | - Xing Chang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yi Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Long Wang
- Institute of Atmospheric Environment, Guangdong provincial academy of environmental science, Guangzhou 510045, China
| | - Tonghao Liu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Lei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qin'geng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmos. Environ., Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
10
|
Feng X, Li P, Fu X, Wang X, Zhang H, Lin CJ. Mercury pollution in China: implications on the implementation of the Minamata Convention. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:634-648. [PMID: 35485580 DOI: 10.1039/d2em00039c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a toxic metal released into the environment through human activities and natural processes. Human activities have profoundly increased the amount of Hg in the atmosphere and altered its global cycling since the Industrial Revolution. Gaseous elemental Hg is the predominant form of Hg in the atmosphere, which can undergo long-range transport and atmospheric deposition into the aquatic systems. Hg deposition elevates the methylmercury (MeHg) level in fish through bioaccumulation and biomagnification, which poses a serious human health risk. Acute poisoning of MeHg can result in Minamata disease, while low-level long-term exposure in pregnant women can reduce the intelligence quotient of infants. After five sessions of intergovernmental negotiation, the Minamata Convention on mercury entered into force in August 2017 to protect human health and the environment from Hg pollution. Currently China contributes the largest quantity of Hg production, consumption, and emission globally. However, the status of Hg pollution in the environment in China and its associated health risk remains relatively unknown, which hinders the development of implementation plans of the Minamata Convention. In this paper, we provide a comprehensive review on the atmospheric release of Hg, distribution of air Hg concentration, human exposure to MeHg and health impacts caused by Hg pollution in China. Ongoing improvement of air pollution control measures is expected to further decrease anthropogenic Hg emissions in China. Air Hg concentrations in China are higher than the background values in the Northern Hemisphere, with spatial distribution largely influenced by anthropogenic emissions. Long-term observations of GEM in China show a decline in recent years. The net Hg transport outflow from China in 2013 is estimated to be 511 t year-1, and ∼60% of such outflow is caused by natural surface Hg emissions. Hg concentrations in fish and rice in China are relatively low and therefore the associated risks of human Hg exposure are low. Future research needs and recommendations for the implementation of the Minamata Convention are also discussed in this paper.
Collapse
Affiliation(s)
- Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, USA
| |
Collapse
|
11
|
Nguyen LSP, Nguyen KT, Griffith SM, Sheu GR, Yen MC, Chang SC, Lin NH. Multiscale Temporal Variations of Atmospheric Mercury Distinguished by the Hilbert-Huang Transform Analysis Reveals Multiple El Niño-Southern Oscillation Links. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1423-1432. [PMID: 34961321 DOI: 10.1021/acs.est.1c03819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atmospheric mercury (Hg) cycling is sensitive to climate-driven changes, but links with various teleconnections remain unestablished. Here, we revealed the El Niño-Southern Oscillation (ENSO) influence on gaseous elemental mercury (GEM) concentrations recorded at a background station in East Asia using the Hilbert-Huang transform (HHT). The timing and magnitude of GEM intrinsic variations were clearly distinguished by ensemble empirical mode decomposition (EEMD), revealing the amplitude of the GEM concentration interannual variability (IAV) is greater than that for diurnal and seasonal variability. We show that changes in the annual cycle of GEM were modulated by significant IAVs at time scales of 2-7 years, highlighted by a robust GEM IAV-ENSO relationship of the associated intrinsic mode functions. With confirmation that ENSO modulates the GEM annual cycle, we then found that weaker GEM annual cycles may have resulted from El Niño-accelerated Hg evasion from the ocean. Furthermore, the relationship between ENSO and GEM is sensitive to extreme events (i.e., 2015-2016 El Niño), resulting in perturbation of the long-term trend and atmospheric Hg cycling. Future climate change will likely increase the number of extreme El Niño events and, hence, could alter atmospheric Hg cycling and influence the effectiveness evaluation of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Ly Sy Phu Nguyen
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
- Faculty of Environment, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Kien Trong Nguyen
- Faculty of Electronics Engineering, Posts and Telecommunications Institute of Technology, Ho Chi Minh City 700000, Vietnam
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
- Center for Environmental Monitoring and Technology, National Central University, Jhongli 320, Taiwan
| | - Ming-Cheng Yen
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
| | | | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
- Center for Environmental Monitoring and Technology, National Central University, Jhongli 320, Taiwan
| |
Collapse
|
12
|
Luo Q, Ren Y, Sun Z, Li Y, Li B, Yang S, Zhang W, Hu Y, Cheng H. Atmospheric mercury pollution caused by fluorescent lamp manufacturing and the associated human health risk in a large industrial and commercial city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116146. [PMID: 33316504 DOI: 10.1016/j.envpol.2020.116146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Although already eliminated in most industrial processes, mercury, as an essential ingredient in all energy-efficient lighting technologies, is still used in fluorescent lamp manufacturing. This study was conducted to investigate the atmospheric pollution caused by fluorescent lamp production and assess the associated public health risk in a large industrial and commercial city of south China, Zhongshan, which is a major production hub of lighting products. Concentrations of total gaseous mercury (TGM) in the atmosphere were measured over a total of 342 sites in the industrial, commercial, and residential areas. The average levels of TGM in the industrial, commercial, and residential areas prior to the landing of a typhoon were 12 ± 11, 3.6 ± 2.1, and 2.7 ± 1.3 ng⋅m-3, respectively. TGM concentrations in the industrial areas exhibited significant diurnal variation, with levels in the working hours being much higher than those in the non-working hours, which indicates that the high atmospheric mercury concentrations were contributed by local emissions, instead of regional transport. Most fluorescent lamp manufacturing activities in the city were shut down during a typhoon event, which resulted in a significant reduction in the average TGM level (down to 1.6 ± 1.8 ng⋅m-3) and rendered the difference in the average TGM levels in the industrial areas no longer significant between the working and non-working hours. Elevated TGM levels (up to 49 ng⋅m-3) were found near clusters of small-scale fluorescent lamp workshops in both industrial and commercial areas, which is indicative of significant emissions of mercury vapor resulting from obsolete equipment and production technologies. No significant non-carcinogenic risk was found for the general residents in the sampling area over the study period, while the risk for the workers in the fluorescent lamp manufacturing facilities and workshops could be higher. These findings indicate that fluorescent lamp manufacturing in the developing countries is a major source of atmospheric mercury.
Collapse
Affiliation(s)
- Qing Luo
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yuxuan Ren
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zehang Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yu Li
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bing Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Sen Yang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Wanpeng Zhang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Sheu GR, Gay DA, Schmeltz D, Olson M, Chang SC, Lin DW, Nguyen LSP. A New Monitoring Effort for Asia: The Asia Pacific Mercury Monitoring Network (APMMN). ATMOSPHERE 2020; 10:481. [PMID: 33005443 PMCID: PMC7526002 DOI: 10.3390/atmos10090481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Asia Pacific Mercury Monitoring Network (APMMN) cooperatively measures mercury in precipitation in a network of sites operating in Asia and the Western Pacific region. The network addresses significant data gaps in a region where mercury emission estimates are the highest globally, and available measurement data are limited. The reduction of mercury emissions under the Minamata Convention on Mercury also justifies the need for continent-wide and consistent observations that can help determine the magnitude of the problem and assess the efficacy of reductions over time. The APMMN's primary objectives are to monitor wet deposition and atmospheric concentrations of mercury and assist partners in developing their own monitoring capabilities. Network planning began in 2012 with wet deposition sampling starting in 2014. Currently, eight network sites measure mercury in precipitation following standardized procedures adapted from the National Atmospheric Deposition Program. The network also has a common regional analytical laboratory (Taiwan), and quality assurance and data flagging procedures, which ensure the network makes scientifically valid and consistent measurements. Results from our ongoing analytical and field quality assurance measurements show minimal contamination in the network and accurate analytical analyses. We are continuing to monitor a potential concentration and precipitation volume bias under certain conditions. The average mercury concentration in precipitation was 11.3 (+9.6) ng L-1 for 139 network samples in 2018. Concentrations for individual sites vary widely. Low averages compare to the low concentrations observed on the U.S. West Coast; while other sites have average concentrations similar to the high values reported from many urban areas in China. Future APMMN goals are to (1) foster new network partnerships, (2) continue to collect, quality assure, and distribute results on the APMMN website, (3) provide training and share best monitoring practices, and (4) establish a gaseous concentration network for estimating dry deposition.
Collapse
Affiliation(s)
- Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, 300 Jhong-Da Rd, Taoyuan 32001, Taiwan
- Correspondence: or
| | - David A. Gay
- National Atmospheric Deposition Program, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706, USA
- Correspondence: or
| | - David Schmeltz
- U.S. Environmental Protection Agency, Office of Atmospheric Programs, Clean Air Markets Division, 1200 Pennsylvania Avenue, NW, MC6204J, Washington, DC 20460, USA
| | - Mark Olson
- National Atmospheric Deposition Program, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706, USA
| | | | - Da-Wei Lin
- Department of Atmospheric Sciences, National Central University, 300 Jhong-Da Rd, Taoyuan 32001, Taiwan
| | - Ly Sy Phu Nguyen
- Department of Atmospheric Sciences, National Central University, 300 Jhong-Da Rd, Taoyuan 32001, Taiwan
| |
Collapse
|
14
|
Singh A, Chou CCK, Chang SY, Chang SC, Lin NH, Chuang MT, Pani SK, Chi KH, Huang CH, Lee CT. Long-term (2003-2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114813. [PMID: 32504975 DOI: 10.1016/j.envpol.2020.114813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
This study examined the long-term trends in chemical components in PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) samples collected at Lulin Atmospheric Background Station (LABS) located on the summit of Mt. Lulin (2862 m above mean sea level) in Taiwan in the western North Pacific during 2003-2018. High ambient concentrations of PM2.5 and its chemical components were observed during March and April every year. This enhancement was primarily associated with the long-range transport of biomass burning (BB) smoke emissions from Indochina, as revealed from cluster analysis of backward air mass trajectories. The decreasing trends in ambient concentrations of organic carbon (-0.67% yr-1; p = 0.01), elemental carbon (-0.48% yr-1; p = 0.18), and non-sea-salt (nss) K+ (-0.71% yr-1; p = 0.04) during 2003-2018 indicated a declining effect of transported BB aerosol over the western North Pacific. These findings were supported by the decreasing trend in levoglucosan (-0.26% yr-1; p = 0.20) during the period affected by the long-range transport of BB aerosol. However, NO3- displayed an increasing trend (0.71% yr-1; p = 0.003) with considerable enhancement resulting from the air masses transported from the Asian continent. Given that the decreasing trends were for the majority of the chemical components, the columnar aerosol optical depth (AOD) also demonstrated a decreasing trend (-1.04% yr-1; p = 0.0001) during 2006-2018. Overall decreasing trends in ambient (carbonaceous aerosol and nss-K+) as well as columnar (e.g., AOD) aerosol loadings at the LABS may influence the regional climate, which warrants further investigations. This study provides an improved understanding of the long-term trends in PM2.5 chemical components over the western North Pacific, and the results would be highly useful in model simulations for evaluating the effects of BB transport on an area.
Collapse
Affiliation(s)
- Atinderpal Singh
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 320, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, 115, Taiwan
| | - Shih-Yu Chang
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Shuenn-Chin Chang
- School of Public Health, National Defense Medical Center, Taipei, 114, Taiwan; Environmental Protection Administration, Taipei, 100, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Taoyuan, 320, Taiwan; Center for Environmental Monitoring Technology, National Central University, Taoyuan, 320, Taiwan
| | - Ming-Tung Chuang
- Research Center for Environmental Changes, Academia Sinica, Taipei, 115, Taiwan
| | - Shantanu Kumar Pani
- Department of Atmospheric Sciences, National Central University, Taoyuan, 320, Taiwan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, 112, Taiwan
| | - Chiu-Hua Huang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 320, Taiwan
| | - Chung-Te Lee
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 320, Taiwan.
| |
Collapse
|
15
|
Phu Nguyen LS, Zhang L, Lin DW, Lin NH, Sheu GR. Eight-year dry deposition of atmospheric mercury to a tropical high mountain background site downwind of the East Asian continent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113128. [PMID: 31521990 DOI: 10.1016/j.envpol.2019.113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric deposition, either dry or wet, has been identified as an important pathway of mercury (Hg) input to terrestrial and aquatic systems. Although East Asia is the major atmospheric Hg emission source region, very few studies have been conducted to quantify atmospheric Hg deposition in its downwind region. In this study, 8-year (2009-2016) atmospheric Hg dry deposition was reported at the Lulin Atmospheric Background Station (LABS), a high mountain forest site in central Taiwan. Dry deposition of speciated Hg was estimated using a bi-directional air-surface flux exchange model for gaseous elemental mercury (GEM) and dry deposition models for gaseous oxidized mercury (GOM) and particulate-bound mercury (PBM), making use of the monitored speciated atmospheric Hg concentrations. Annual total Hg dry deposition ranged from 51.9 to 84.9 μg m-2 yr-1, with a multi-year average of 66.1 μg m-2 yr-1. Among the three forms of atmospheric Hg, GEM was the main contributor to the total dry deposition, contributing about 77.8% to the total, due to the high density of forest canopy as well as the much higher concentration of GEM than GOM and PBM at LABS. Mercury dry deposition is higher in winter and spring than in summer and fall, partly due to the elevated Hg concentrations associated with air masses from East and Southeast Asia where with high atmospheric Hg emissions. The mean annual dry/wet deposition ratio of 2.8 at LABS indicated that Hg deposition to forest landscape was governed by dry rather than wet deposition.
Collapse
Affiliation(s)
- Ly Sy Phu Nguyen
- Department of Atmospheric Sciences, National Central University, Jhongli, 320, Taiwan
| | - Leiming Zhang
- Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Da-Wei Lin
- Department of Atmospheric Sciences, National Central University, Jhongli, 320, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Jhongli, 320, Taiwan
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Jhongli, 320, Taiwan.
| |
Collapse
|