1
|
Liu J, Shi J, Hu Y, Su Y, Zhang Y, Wu X. Flumethrin exposure perturbs gut microbiota structure and intestinal metabolism in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135886. [PMID: 39298952 DOI: 10.1016/j.jhazmat.2024.135886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Flumethrin mitigates Varroa's harm to honeybee colonies; however, its residues in colonies threaten the fitness of honeybee hosts and gut microbiota. Our previous research has shown that flumethrin induces significant physiological effects on honeybee larvae; but the effects of flumethrin on the gut microbiota and metabolism of adult honeybees are still unknown. In this study, 1-day-old honeybees were exposed to 0, 0.01, 0.1, and 1 mg/L flumethrin for 14 days and the impacts of flumethrin on the intestinal system were evaluated. The results showed that exposure to 1 mg/L flumethrin significantly reduced honeybee survival and the activities of antioxidative enzymes (superoxide dismutase and catalase) and detoxification enzymes (glutathione S-transferase) in honeybee heads. Moreover, exposure to 0.01, 0.1, and 1 mg/L flumethrin significantly decreased the diversity of the honeybee gut microbiota. Results from untargeted metabolomics showed that long-term exposure to 0.01, 0.1, and 1 mg/L flumethrin caused changes in the metabolic pathways of honeybee gut microbes. Furthermore, increased metabolism of phenylalanine, tyrosine, and tryptophan derivatives was observed in honeybee gut microbes. These findings underscore the importance of careful consideration in using pesticides in apiculture and provide a basis for safeguarding honeybees from pollutants, considering the effects on gut microbes.
Collapse
Affiliation(s)
- Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yuchen Su
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
2
|
Ledjanac S, Hoxha F, Jasnić N, Tasić A, Jovanović M, Blagojević S, Plavša N, Tosti T. The Influence of the Chemical Composition of Beeswax Foundation Sheets on Their Acceptability by the Bee's Colony. Molecules 2024; 29:5489. [PMID: 39683649 DOI: 10.3390/molecules29235489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Beeswax is one of the most important products for the well-being of bee colonies. The wax glands of young worker bees produce beeswax, which serves as a building material for honeycomb construction. Beekeepers using hives with mobile frames mainly utilize local beeswax to make foundations. Any paraffin addition represents adulteration, resulting in a high degree of contamination. During the preparation of re-used beeswax, losses during the process may instigate producers to add cheaper, wax-like substances like paraffin and tallow. This article presents a systematic investigation of the quality of beeswax foundation from six major producers in Vojvodina, Serbia, by applying the classic analytical procedure for the determination of selected physicochemical parameters and instrumental gas chromatography coupled with mass spectrometry (GC-MS) and Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy techniques. FTIR-ATR detected possible paraffin and beef tallow in 72 foundation sheet samples. This technique was complemented with GC-MS. This analysis revealed that paraffin content ranged between 19.75 and 85.68%, while no tallow was detected over the two-year period. Two sheets from each manufacturer were placed into wired Langstroth-Ruth frames and placed in beehives. The construction, based on built cells, was monitored every 24 h. Evaluating newly inserted sheets proved that without quality nectar, there is no intensive building, regardless of adulteration.
Collapse
Affiliation(s)
- Sava Ledjanac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Fatjon Hoxha
- Faculty of Biotechnology and Food, Agricultural University of Tirana, 'Paisi Vodica' Street, Koder-Kamez, 1029 Tirana, Albania
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Aleksandra Tasić
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Marko Jovanović
- Institute of General and Physical Chemistry, Studentski Trg 12/V, P.O. Box 45, 11158 Belgrade, Serbia
| | - Slavica Blagojević
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Nada Plavša
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
3
|
Carlson EA, Melathopoulos A, Sagili R. The power to (detect) change: Can honey bee collected pollen be used to monitor pesticide residues in the landscape? PLoS One 2024; 19:e0309236. [PMID: 39325774 PMCID: PMC11426543 DOI: 10.1371/journal.pone.0309236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Analysis of trapped honey bee pollen for pesticide residues is the most widely used method of monitoring the amount of pesticide entering colonies and its change over time. In this study, we collected and analyzed pollen from 70 sites across four bee-pollinated crops over two years to characterize the variation in pesticide detection across sites, crops and at different periods during bloom. Hazard Quotient, HQ, is the most common way that pesticide residues are aggregated into a single pesticide hazard value in the current literature. Therefore, change in pesticide hazard (HQ) was quantified in composite pollen samples collected from pollen traps and in pollen color subsamples separated into pollen from the target crop being pollinated and pollen from other plant species. We used our estimates of the variation in HQ to calculate the number of sample location sites needed to detect a 5% annual change in HQ across all crops or within specific crops over a 5-year period. The number of sites required to be sampled varied by crop and year and ranged between 139 and 7194 sites, costing an estimated $129,548 and $3.35 million, respectively. The HQ values detectable for this cost would be 575 and 154. We identified additional factors that complicate the interpretation of the results as a way to evaluate changes in pest management practices at a state level. First, in all but one crop (meadowfoam), the pollen collected from outside the crop honey bee colonies were pollinating comprised a major percentage of the total pollen catch. Moreover, we found that when the overall quantity of pollen from different pollen sources was taken into account, differences in HQ among crops widened. We also found that while HQ estimates remain consistent across the bloom period for some crops, such as cherry, we observed large differences in other crops, notably meadowfoam. Overall, our results suggest the current practice of interpreting pesticides levels in pollen may come with limitations for agencies charged with improving pesticide stewardship due to the high variation associated with HQ values over time and across crops. Despite the limitations of HQ for detecting change in pesticide hazard, there remains a potential for HQ to provide feedback to regulators and scientists on field-realistic pesticide hazard within a landscape.
Collapse
Affiliation(s)
- Emily A Carlson
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Andony Melathopoulos
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Ramesh Sagili
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Xueqing S, Delong L, Guizhi W, Yunhan F, Liuxu Y, Tianle C. Effect of fluvalinate on the expression profile of circular RNA in brain tissue of Apis mellifera ligustica workers. Front Genet 2023; 14:1185952. [PMID: 37252656 PMCID: PMC10213878 DOI: 10.3389/fgene.2023.1185952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Fluvalinate is widely used in apiculture as an acaricide for removing Varroa mites, but there have been growing concerns about the negative effects of fluvalinate on honeybees in recent years. Previous research revealed changes in the miRNA and mRNA expression profiles of Apis mellifera ligustica brain tissues during fluvalinate exposure, as well as key genes and pathways. The role of circRNAs in this process, however, is unknown. The goal of this study was to discover the fluvalinate-induced changes in circular RNA (circRNA) expression profiles of brain tissue of A. mellifera ligustica workers. A total of 10,780 circRNAs were detected in A. mellifera ligustica brain tissue, of which eight were differentially expressed between at least two of the four time periods before and after fluvalinate administration, and six circRNAs were experimentally verified to be structurally correct, and their expression patterns were consistent with transcriptome sequencing results. Furthermore, ceRNA analysis revealed that five differentially expressed circRNAs (DECs) (novel_circ_012139, novel_circ_011690, novel_circ_002628, novel_circ_004765, and novel_circ_010008) were primarily involved in apoptosis-related functions by competitive binding with miRNAs. This study discovered changes in the circRNA expression profile of A. mellifera ligustica brain tissue caused by fluvalinate exposure, and it provides a useful reference for the biological function study of circRNAs in A. mellifera ligustica.
Collapse
Affiliation(s)
- Shan Xueqing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lou Delong
- Comprehensive Testing and Inspection Center, Shandong Provincial Animal Husbandry and Veterinary Bureau, Jinan, Shandong, China
| | - Wang Guizhi
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Fan Yunhan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yang Liuxu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chao Tianle
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
5
|
Alkassab AT, Bischoff G, Thorbahn D, Frommberger M, Pistorius J. Transfer of xenobiotics from contaminated beeswax into different bee matrices under field conditions and the related exposure probability. CHEMOSPHERE 2022; 307:135615. [PMID: 35843433 DOI: 10.1016/j.chemosphere.2022.135615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Beeswax is known to have a high capacity to accumulate different contaminants due to its fat-soluble properties. Many surveys in Europe and the USA have shown high levels of contamination in beeswax especially with acaricides used for varroa treatment. In this study, we investigated the transfer pathways of various active substances from beeswax into different matrices under field conditions. Honey, bee bread, larvae, and pupae samples were collected 6-8 weeks after building the experimental colonies on different charges of wax foundations. Identification and quantification of the target substances were performed with an established and validated multi-residue method using LC-MS/MS and GC-MS systems. Nine out of 19 active substances in wax could be detected in the analyzed matrices. Our results confirm the migration of different contaminants from wax into different bee matrices including honey, bee bread, and bee brood. The concentration of detected residues in the different matrices was significantly increased by increasing residue concentration in wax. Therefore, the maximum detected residues in the matrices were almost in wax containing high residual concentrations. Bee bread can be considered as the most important matrix due to relatively high detected concentrations and transfer ratios of the most contaminants. A significant effect of the lipophilicity of active substances on the transfer ratio into bee bread was found, which means that increasing the Log P values has positive effects on the transfer ratio. In conclusion, our results provide the first detailed information regarding the migration of active substances from wax into various matrices under realistic field conditions and are fundamentally important for assessing potential exposure and risks for honey bees.
Collapse
Affiliation(s)
- Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kühn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, Braunschweig, Germany.
| | - Gabriela Bischoff
- Institute for Bee Protection, Julius Kühn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Königin-Luise-Str. 19, Berlin, Germany
| | - David Thorbahn
- Institute for Bee Protection, Julius Kühn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, Braunschweig, Germany
| | - Malte Frommberger
- Institute for Bee Protection, Julius Kühn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, Braunschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, Braunschweig, Germany
| |
Collapse
|
6
|
Qi S, Al Naggar Y, Li J, Liu Z, Xue X, Wu L, El-Seedi HR, Wang K. Acaricide flumethrin-induced sublethal risks in honeybees are associated with gut symbiotic bacterium Gilliamella apicola through microbe-host metabolic interactions. CHEMOSPHERE 2022; 307:136030. [PMID: 35973490 DOI: 10.1016/j.chemosphere.2022.136030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Flumethrin is one of the few acaricides that permit the control of Varroa disease or varroosis in bee colonies. However, flumethrin accumulates in hive products. We previously discovered that sublethal doses of flumethrin induce significant physiological stress in honeybees (Apis mellifera L.), however its potential impacts on the honeybee gut microenvironment remains unknown. To fill this gap, honeybees were exposed to a field-relevant concentration of flumethrin (10 μg/L) for 14 d and its potential impacts on gut system were evaluated. The results indicated that flumethrin triggered immune responses in the gut but had limited effects on survival and gut microbial composition. However, survival stress drastically increased in bees exposed to antibiotics, suggesting that the gut microbiota is closely related to flumethrin-induced dysbiosis in the bee gut. Based on a non-targeted metabolomics approach, flumethrin at 10 μg/L considerably altered the composition of intestinal metabolites, and we discovered that this metabolic stress was closely linked with a reduction of gut core bacterial endosymbiont Gilliamella spp. through a combination of microbiological and metabolomics investigations. Finally, an in vitro study showed that while flumethrin does not directly inhibit the growth of Gilliamella apicola isolates, it does have a significant impact on the glycerophospholipid metabolism in bacteria cells, which was also observed in host bees. These findings indicated that even though flumethrin administered at environmental relevant concentrations does not significantly induce death in honeybees, it still alters the metabolism balance between honeybees and the gut symbiotic bacterium, G. apicola. The considerable negative impact of flumethrin on the honeybee gut microenvironment emphasizes the importance of properly monitoring acaricide to avoid potential environmental concerns, and further studies are needed to illustrate the mode of action of bee health-gut microbiota-exogenous pesticides.
Collapse
Affiliation(s)
- Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany
| | - Jiahuan Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Zhaoyong Liu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-751 24, Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
7
|
Carlson EA, Melathopoulos A, Sagili R. The Value of Hazard Quotients in Honey Bee (Apis mellifera) Ecotoxicology: A Review. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.824992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estimates of pesticide application hazards have grown to be one of the most common methodologies for evaluating the impact of pest management practices on honey bees. Typically, hazards are estimated by calculating a Hazard Quotient (HQ), which is based on acute toxicity data for different pesticides and the quantity of those pesticides applied to a field or detected on bees and matrices associated with their hive (honey, wax, pollen, and/or bee bread). Although use of HQ is widespread, there have been few reviews of this methodology, particularly with focus on how effective this method is at predicting effects of pesticides on hives. We evaluated 36 relevant papers, containing calculations of HQ to estimate hazards to honey bees. We observed that HQ was primarily calculated using two different approaches: (1) from the concentration of pesticides in the food, hive, or tissues of honey bees or (2) using the field application rate of the active ingredient as the estimation of pesticide hazard. Within and between HQ calculation methods, thresholds vary widely with some HQ thresholds set below 1 and others set at 10,000. Based on our review we identify key weakness with current HQ methodology and how studies relate HQ to honey bee health endpoints. First, HQ thresholds from studies of pesticides in hives are not based on the same pesticide consumption models from the EPA, potentially overestimating the risk of impacts to colonies. Conversely, HQ estimates calculated from field application rates are not based on eco-toxicological estimates of field exposure, resulting in an overestimation of pesticide reaching colonies. We suggest it is for these reasons that there is poor correspondence between HQ and field-level honey bee health endpoints. Considering these challenges, HQ calculations should be used cautiously in future studies and more research should be dedicated to field level exposure models.
Collapse
|
8
|
Marti JNG, Kilchenmann V, Kast C. Evaluation of pesticide residues in commercial Swiss beeswax collected in 2019 using ultra-high performance liquid chromatographic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32054-32064. [PMID: 35018599 PMCID: PMC9054900 DOI: 10.1007/s11356-021-18363-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 05/06/2023]
Abstract
The aim of this study was to determine residue levels of pesticides in Swiss commercial beeswax. Foundation samples were collected in 2019 from nine commercial manufacturers for analysis of 21 pesticides using ultra-high performance liquid chromatography. Individual samples showed the variability and residue ranges and pooled samples represented the average annual residue values of the Swiss production. In total, 17 pesticides were identified and 13 pesticides were quantified. They included 13 acaricides and/or insecticides, two fungicides as well as a synergist and a repellent. The means calculated from individual samples were similar to the average annual residue values for most tested pesticides. Mean values of 401, 236, 106 and 3 μg·kg-1 were obtained for the beekeeping-associated contaminants coumaphos, tau-fluvalinate, bromopropylate and N-(2,4-Dimethylphenyl)-formamide (DMF; breakdown product of amitraz), respectively. For the other pesticides, the mean values were 203 μg·kg-1 (synergist piperonyl butoxide), 120 μg·kg-1 (repellent N,N-Diethyl-3-methylbenzamide, DEET), 19 μg·kg-1 (chlorfenvinphos) and 4 μg·kg-1 ((E)-fenpyroximate), while the means for acrinathrin, azoxystrobin, bendiocarb, boscalid, chlorpyrifos, flumethrin, permethrin, propoxur and thiacloprid were below the limit of quantification (< LOQ). Individual samples contained from seven to 14 pesticides. The ranges of values for coumaphos and piperonyl butoxide (from 14 to 4270 μg·kg-1; from 6 to 1555 μg·kg-1, respectively) were larger as compared to the ranges of values for DEET and tau-fluvalinate (from < LOQ to 585 μg·kg-1; from 16 to 572 μg·kg-1, respectively). In conclusion, the most prominent contaminants were the pesticides coumaphos and tau-fluvalinate, which are both acaricides with previous authorization for beekeeping in Switzerland, followed by piperonyl butoxide, a synergist to enhance the effect of insecticides.
Collapse
Affiliation(s)
- Joshua N G Marti
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Verena Kilchenmann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Christina Kast
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.
| |
Collapse
|
9
|
Thompson HM. The use of the Hazard Quotient approach to assess the potential risk to honeybees (Apis mellifera) posed by pesticide residues detected in bee-relevant matrices is not appropriate. PEST MANAGEMENT SCIENCE 2021; 77:3934-3941. [PMID: 33899320 DOI: 10.1002/ps.6426] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pesticide residue data for pollen and nectar are valuable for characterizing realistic exposure of pollinators, e.g. from agricultural crops, flowering margins. Interpretation of residues relies on comparing exposure with toxicity and the Hazard Quotient (HQ) is widely utilized. However, the HQ (threshold of concern 50) was only validated for foliar sprays, based on application rate as a proxy for exposure, not measured residues in bee-relevant matrices. RESULTS A review of the literature showed a range of HQ approaches and thresholds of concern used to assess non-foliar applications and residues detected in bee-relevant matrices, mostly pollen. The use of the HQ thresholds to assess risks associated with residue data or non-foliar spray application methods is not validated, does not reflect realistic exposure and the conclusions reached differ substantially from current risk assessment approaches. Re-evaluation of residue data from the first published use of the concentration-based HQ (2013) and a recent paper (2021) reduced the proportion of pesticides where a conclusion of potential risk was reached from 30 to 7% and 28% to 3-6%, respectively. CONCLUSIONS An understanding of the applicability of the selected risk assessment approach to the available residue data is needed to enable robust conclusions to be drawn on the potential risk to bees. Use of the HQ approach to assess the risk posed by application methods other than foliar sprays or residues in nectar and pollen is likely to result in unreliable conclusions. An alternative approach should be used to assess the significance of measured residues.
Collapse
Affiliation(s)
- Helen M Thompson
- Syngenta, Jealott's Hill International Research Station, Bracknell, UK
| |
Collapse
|
10
|
Vera-Herrera L, Sadutto D, Picó Y. Non-Occupational Exposure to Pesticides: Experimental Approaches and Analytical Techniques (from 2019). Molecules 2021; 26:3688. [PMID: 34208757 PMCID: PMC8235395 DOI: 10.3390/molecules26123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pesticide residues are a threat to the health of the global population, not only to farmers, applicators, and other pesticide professionals. Humans are exposed through various routes such as food, skin, and inhalation. This study summarizes the different methods to assess and/or estimate human exposure to pesticide residues of the global population. METHODS A systematic search was carried out on Scopus and web of science databases of studies on human exposure to pesticide residues since 2019. RESULTS The methods to estimate human health risk can be categorized as direct (determining the exposure through specific biomarkers in human matrices) or indirect (determining the levels in the environment and food and estimating the occurrence). The role that analytical techniques play was analyzed. In both cases, the application of generic solvent extraction and solid-phase extraction (SPE) clean-up, followed by liquid or gas chromatography coupled to mass spectrometry, is decisive. Advances within the analytical techniques have played an unquestionable role. CONCLUSIONS All these studies have contributed to an important advance in the knowledge of analytical techniques for the detection of pesticide levels and the subsequent assessment of nonoccupational human exposure.
Collapse
Affiliation(s)
| | | | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Moncada-Naquera Road km 4.5, Moncada, 46113 Valencia, Spain; (L.V.-H.); (D.S.)
| |
Collapse
|
11
|
Wilmart O, Legrève A, Scippo ML, Reybroeck W, Urbain B, de Graaf DC, Spanoghe P, Delahaut P, Saegerman C. Honey bee exposure scenarios to selected residues through contaminated beeswax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145533. [PMID: 33770874 DOI: 10.1016/j.scitotenv.2021.145533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 05/11/2023]
Abstract
Twenty-two pesticides and veterinary drugs of which residues were detected in beeswax in Europe were selected according to different criteria. The risk to honey bee health posed by the presence of these residues in wax was assessed based on three exposure scenarios. The first one corresponds to the exposure of larvae following their close contact with wax constituting the cells in which they develop. The second one corresponds to the exposure of larvae following consumption of the larval food that was contaminated from contact with contaminated wax. The third one corresponds to the exposure of adult honey bees following wax chewing when building cells and based on a theoretical worst-case scenario (= intake of contaminants from wax). Following these three scenarios, maximum concentrations which should not be exceeded in beeswax in order to protect honey bee health were calculated for each selected substance. Based on these values, provisional action limits were proposed. Beeswax exceeding these limits should not be put on the market.
Collapse
Affiliation(s)
- Olivier Wilmart
- Federal Agency for the Safety of the Food Chain (FASFC), Directorate Control Policy, Staff Direction for Risk Assessment, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium.
| | - Anne Legrève
- Université catholique de Louvain (UCL), Faculty of Bioscience Engineering, Earth & Life Institute (ELI), 2 bte L7.05.03 Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | - Marie-Louise Scippo
- Scientific Committee, Federal Agency for the Safety of the Food Chain, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium; University of Liège (ULiège), Faculty of Veterinary Medicine, Department of Food Sciences - Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH) Center, 10 Avenue de Cureghem, B43bis, B-4000 Liège, Sart-Tilman, Belgium
| | - Wim Reybroeck
- Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, 370 Brusselsesteenweg, B-9090 Melle, Belgium
| | - Bruno Urbain
- Federal Agency for Medicines and Health Products (FAMHP), Eurostation II, 40/40 Place Victor Horta, B-1060 Brussels, Belgium
| | - Dirk C de Graaf
- Ghent University (UGent), Faculty of Sciences, Laboratory of Molecular Entomology and Bee Pathology, 281 S2 Krijgslaan, B-9000 Ghent, Belgium
| | - Pieter Spanoghe
- Scientific Committee, Federal Agency for the Safety of the Food Chain, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium; Ghent University (UGent), Faculty of Bioscience Engineering, Department of Plants and Crops, 653 Coupure links, B-9000 Ghent, Belgium
| | - Philippe Delahaut
- Scientific Committee, Federal Agency for the Safety of the Food Chain, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium; Centre d'Economie Rurale (CER), Département Santé, 8 Rue de la Science, B-6900 Aye, Belgium
| | - Claude Saegerman
- Scientific Committee, Federal Agency for the Safety of the Food Chain, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium; University of Liège (ULiège), Faculty of Veterinary Medicine, Research Unit of Epidemiology and Risk analysis applied to Veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Quartier Vallée 2, 7A Avenue de Cureghem, B42, B-4000 Liège, Sart-Tilman, Belgium
| |
Collapse
|
12
|
El Agrebi N, Traynor K, Wilmart O, Tosi S, Leinartz L, Danneels E, de Graaf DC, Saegerman C. Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141036. [PMID: 32758732 DOI: 10.1016/j.scitotenv.2020.141036] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/11/2023]
Abstract
Pesticide and veterinary drug residues are one of the stress factors affecting bee health and mortality. To investigate the occurrence, the concentration and the toxicity risk to bees of pesticide residues in four different types of beeswax (brood comb wax, recycled comb wax, honey comb wax, and cappings wax), 182 samples were collected from apiaries located all over the Belgian territories, during spring 2016 and analysed by LC-MS/MS and GC-MS/MS for the presence of 294 chemical residues. The toxicity risk to bees expressed as the Hazard Quotient (HQ) was calculated for each wax sample, according to two scenarios with different tau-fluvalinate LD50 values. Residues showing the highest prevalence were correlated to bee mortality in a multivariate logistic regression model and a risk-based model was used to predict colony bee mortality. Altogether, 54 different pesticide and veterinary drug residues were found in the four types of beeswax. The residues with a higher likelihood to be retained in beeswax are applied in-hive or with a high lipophilic nature. The multivariate logistic regression model showed a statistically significant influence of chlorfenvinphos on bee mortality. All our results indicated that cappings wax was substantially less contaminated. This national survey on beeswax contamination provides guidelines on the re-use of beeswax by beekeepers and shows the necessity to introduce maximum residue levels for global trade in beeswax. An online tool was developed to enable beekeepers and wax traders to estimate the risk to honey bee health associated with contaminated wax.
Collapse
Affiliation(s)
- Noëmie El Agrebi
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A, B42, 4000 Liège, Sart-Tilman, Belgium
| | - Kirsten Traynor
- Global Biosocial Complexity Initiative, Arizona State University, Tempe, AZ, USA
| | - Olivier Wilmart
- Federal Agency for the Safety of the Food Chain (FASFC), Directorate Control Policy, Staff Direction for Risk Assessment, Boulevard du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Simone Tosi
- Epidemiology Unit, University Paris Est, ANSES (French Agency for Food, Environmental and Occupational Health and Safety) Animal Health Laboratory, Maisons-Alfort, France
| | - Laurent Leinartz
- Teaching Support Unit, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 5C-5D, B41, 4000 Liège, Sart-Tilman, Belgium
| | - Ellen Danneels
- Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Krijgslaan 281 S33, 9000 Ghent, Belgium
| | - Dirk C de Graaf
- Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Krijgslaan 281 S33, 9000 Ghent, Belgium; Faculty of Sciences, Laboratory of Molecular Entomology and Bee Pathology, Ghent University (UGent), Krijgslaan 281 S2, 9000 Ghent, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A, B42, 4000 Liège, Sart-Tilman, Belgium.
| |
Collapse
|
13
|
Qi S, Zhu L, Wang D, Wang C, Chen X, Xue X, Wu L. Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera L.) in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110101. [PMID: 31874407 DOI: 10.1016/j.ecoenv.2019.110101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Varroa mites often inflict heavy losses on the global bee industry and there are few effective control options. Among these methods to control mites, pesticides are extensively used as a cheap, easy to use, and high-efficiency control measure. However, bees are sensitive to many pesticides; thus, a balance between losses induced by drugs and maximum benefits are important for beekeeping and risk assessment. In this study, the effects of flumethrin, a pyrethroid miticide used on bee colonies, was evaluated using bee larvae reared in vitro. We found that flumethrin induced significant mortality during larval metamorphosis and adult emergence. After continuous exposure during the larval stage, significant changes were observed in antioxidative enzymes (SOD and CAT), lipid peroxidation (MDA, LPO, and POD), and detoxification enzymes (GSH, GST, and GR) in the late instar larvae before pupation. It is also noteworthy that flumethrin significantly regulated the expression of immune (Basket and Dscam) and developmental (Amems, Amhex10869, Vtg and Mfe) genes in larvae, which influences can also be found in the subsequent pupae and adult stages. These findings indicate that flumethrin itself is toxic to bee larvae and has potential risks during colony development. Bees are important pollinators and the sustainable and healthy development of colonies is the foundation of pollinating success for agricultural production. This study would provide some useful thinking for pesticides application techniques and processes in risk assessment of pesticides to bee larvae, even colony.
Collapse
Affiliation(s)
- Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Lizhen Zhu
- Risk Assessment Laboratory for Bee Products Quality and Safety of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Donghui Wang
- College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing, 100871, PR China
| | - Chen Wang
- Chinese Research Academy of Environmental Sciences, Beijing, 10012, PR China
| | - Xiaofeng Chen
- Shenzhen Noposion Agrochemicals Co., Ltd, 113-Tiegang Shuiku Road, Xixiang, Shenzhen, 518102, PR China
| | - Xiaofeng Xue
- Risk Assessment Laboratory for Bee Products Quality and Safety of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
14
|
Qi S, Niu X, Wang DH, Wang C, Zhu L, Xue X, Zhang Z, Wu L. Flumethrin at sublethal concentrations induces stresses in adult honey bees (Apis mellifera L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134500. [PMID: 31627045 DOI: 10.1016/j.scitotenv.2019.134500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Flumethrin is a typical pyrethroid varroacide widely used for mite control in beekeeping worldwide. Currently, information on the toxicological characteristics of flumethrin on bees at sublethal concentrations is still lacking. To fill this gap in information, we performed a 48-h acute oral and 14-day chronic toxicity testing of flumethrin in newly emerged adult honey bees under laboratory conditions. Results showed that flumethrin had high acute toxicity to honey bees with a 48-h LD50 of 0.47 µg/bee (95% CI, 0.39 ∼ 0.57 µg/bee), which is higher than that of many other commercial pyrethroid insecticides, but lower than that of tau-fluvalinate. After 14 days of chronic exposure to flumethrin at 0.01, 0.10, and 1.0 mg/L, significant antioxidant response, detoxification, immune reaction, and apoptosis were observed in the midguts. These findings indicated that flumethrin had potential risks to bees, and it can disturb the homeostasis of bees at sublethal concentrations under longer exposure conditions. Flumethrin is highly lipophilic and easy to accumulate in beeswax; thus, careless practices might pose risks to colony development in commercial beekeeping and native populations. This laboratory study can serve as an early warning, and further studies are required to understand the real residual level of flumethrin in bees and the risks of flumethrin in field condition.
Collapse
Affiliation(s)
- Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinyue Niu
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453000, Henan, China
| | - Dong Hui Wang
- College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, PR China
| | - Chen Wang
- Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Lizhen Zhu
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Zhongyin Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453000, Henan, China
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|