1
|
Wang Y, Liang B, Kang F, Wang Y, Zhao C, Lyu Z, Zhu T, Zhang Z. An efficient anoxic/aerobic/aerobic/anoxic process for domestic sewage treatment: From feasibility to application. Front Microbiol 2022; 13:970548. [PMID: 35983333 PMCID: PMC9378819 DOI: 10.3389/fmicb.2022.970548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
In this paper, the anoxic/aerobic/aerobic/anoxic (AOOA) process was proposed using fixed biofilms in a continuous plug-flow multi-chamber reactor, and no sludge reflux operation was performed during the 190 days of operation. The reactor volume ratio of 1.5:2:1.5:1 (A/O/O/A) with the dissolved oxygen (DO) concentration of 2 mg L−1 in the aerobic zone was the optimal condition for reactor operation. According to the results obtained from the treatment of real domestic sewage, when the hydraulic retention time (HRT) was 6 h, the effluent of the reactor could meet the discharge standard even in cold conditions (13°C). Specifically, the elemental-sulfur-based autotrophic denitrification (ESAD) process contributed the most to the removal of total inorganic nitrogen (TIN) in the reactor. In addition, the use of vibration method was helpful in removing excess sludge from the biofilms of the reactor. Overall, the AOOA process is an efficient and convenient method for treating domestic sewage.
Collapse
|
2
|
Wang X, Yang H. Nitrogen removal performance of anammox immobilized fillers in response to seasonal temperature variations and different operating modes: Substrate utilization and microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154574. [PMID: 35304144 DOI: 10.1016/j.scitotenv.2022.154574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Four anaerobic ammonium oxidation (anammox) immobilized filler reactors (R1: 33 °C-normal, R2: seasonal temperature-normal, R3: seasonal temperature-feast, R4: seasonal temperature-starvation) were established to study the response of anammox immobilized fillers to seasonal temperature changes and different operating modes. The results showed that the anammox immobilized filler could better adapt to the seasonal temperature drop and maintain the activity potential by adjusting the hydraulic retention time (HRT). During the temperature rise phase, R2 activity increased rapidly with the highest nitrogen removal rate reaching 1.26 kgN·(m3·d)-1, which was equivalent to control sample R1 (1.33 kgN·(m3·d)-1). However, feasting and famine conditions severely impaired anammox performance and changed stoichiometric ratios; feasting, in particular, significantly lowered the nitrogen removal potential of R3. The specific anammox activity of R2, R3 and R4 was 92.2%, 52.6% and 67.9%, respectively, that of R1, respectively, where the accumulation of functional bacteria was the reason for the higher activity of R2. Degradation kinetics and NO2--N inhibition curves showed that R3 was less sensitive to high concentrations of NH4+-N, while R4 responded earlier to low concentrations of NH4+-N, and the reduction of IC50 at low temperature was the reason for the inhibition of R3 activity. Furthermore, seasonal temperature fluctuations had little effect on the microbial community structure but had a considerable impact on bacteria abundance. The anammox functional bacteria Candidatus Kuenenia was found to be the dominant genus in R1-R4; however, the relative abundance of most bacteria, including anammox bacteria, decreased in R3, while the proportion of fermentation bacteria and denitrifying bacteria increased in R4. These findings highlight the necessity of rational regulation of HRT for the adaptation of anammox immobilized fillers to seasonal temperature changes, which could enhance our understanding of the synergistic effect of seasonal temperature changes and different operating modes on nitrogen removal.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Wang Y, Liang B, Kang F, Wang Y, Yuan Z, Lyu Z, Zhu T, Zhang Z. Denitrification Performance in Packed-Bed Reactors Using Novel Carbon-Sulfur-Based Composite Filters for Treatment of Synthetic Wastewater and Anaerobic Ammonia Oxidation Effluent. Front Microbiol 2022; 13:934441. [PMID: 35875584 PMCID: PMC9301263 DOI: 10.3389/fmicb.2022.934441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
To avoid nitrate pollution in water bodies, two low-cost and abundant natural organic carbon sources were added to make up the solid-phase denitrification filters. This study compared four novel solid-phase carbon-sulfur-based composite filters, and their denitrification abilities were investigated in laboratory-scale bioreactors. The filter F4 (mixture of elemental sulfur powder, shell powder, and peanut hull powder with a mass ratio of 6:2.5:1.5) achieved the highest denitrification ability, with an optimal nitrate removal rate (NRR) of 723 ± 14.2 mg NO3–-N⋅L–1⋅d–1 when the hydraulic retention time (HRT) was 1 h. The HRT considerably impacted effluent quality after coupling of anaerobic ammonium oxidation (ANAMMOX) and solid-phase-based mixotrophic denitrification process (SMDP). The concentration of suspended solids (SS) of the ANAMMOX effluent may affect the performance of the coupled system. Autotrophs and heterotrophs were abundant and co-existed in all reactors; over time, the abundance of heterotrophs decreased while that of autotrophs increased. Overall, the SMDP process showed good denitrification performance and reduced the sulfate productivity in effluent compared to the sulfur-based autotrophic denitrification (SAD) process.
Collapse
Affiliation(s)
- Yao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Baorui Liang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Fei Kang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Zhihong Yuan
- Shenyang Zhenxing Environmental Technology Co., Ltd., Shenyang, China
| | - Zhenning Lyu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
- *Correspondence: Tong Zhu, , orcid.org/0000-0002-3460-7316
| | - Zhijun Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
- Zhijun Zhang, , orcid.org/0000-0003-4281-5331
| |
Collapse
|
4
|
Xu J, Cui Q, Bu C, Ismail S, Ni SQ. Partition of Anammox and Nitrifiers Through Bio-Carriers for Full-Scale Sidestream Partial Nitrification-Anammox Plant. Front Bioeng Biotechnol 2022; 10:819937. [PMID: 35402396 PMCID: PMC8987576 DOI: 10.3389/fbioe.2022.819937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
This study assessed the activity and community structure in different types of sludge to reveal the partition mechanism of anammox and nitrifiers in a full-scale partial nitrification-anammox plant. Batch experiments confirmed that suspended sludge had higher partial nitrification capacity, and biofilm sludge had higher anammox activity, 16.9 times higher than suspended sludge. qPCR analysis confirmed that the amoA gene was mainly present in suspended sludge, and the highest abundance of the Amx gene was observed in biofilm sludge, reaching 1.01 × 107 copies/ng DNA. High-throughput results revealed that Nitrosomonas was the main ammonia-oxidizing bacteria with high activity in suspended sludge, and Candidatus Brocadia had the highest abundance of 13.4% in biofilm sludge. This is the exploration of the microbial community of three different sludge types in the full-scale sidestream PN/A system for the first time, which can guide the construction and replication of full-scale PN/A plants.
Collapse
Affiliation(s)
- Jinliang Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| | - Qingjie Cui
- Department of Mechanical and Environmental Protection, Shandong Electric Power Engineering Consulting Institute Ltd. (SDEPCI), Jinan, China
| | - Cuina Bu
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Sherif Ismail
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Environmental Engineering Department, Zagazig University, Zagazig, Egypt
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| |
Collapse
|
5
|
Lu X, Wang Y, Wang W, Li J, Li B, Huang X. Characteristics of rapid-biofiltering anammox reactor (RBAR) for low nitrogen wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 318:124066. [PMID: 32919287 DOI: 10.1016/j.biortech.2020.124066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This research provides an important approach for rapid treatment of low nitrogen wastewater through anaerobic ammonium oxidation (anammox), which was realized in a rapid-biofiltering anammox reactor (RBAR). The operation mode of continuous upward flow and gradually shortened hydraulic retention time (HRT) accumulated anammox bacteria effectively in RBAR, where carmine anammox granular sludge and thick biofilm were co-existed, leading the biomass concentration and the specific anammox activity to reach 21.61 gSS/L and 0.82 gN/gVSS·d in the main functional zone. Moreover, the relative abundance of anammox bacteria in the whole reactor was more than 50%, and the relative abundance of Candidatus Brocadia in the biofilm of 20-47 cm zone reached 71.10%. Results showed that the removal rate and effluent concentration of total nitrogen remained stable at 86.24% and 14.20 mg/L (below 15 mg/L) averagely, under HRT of 32 min when the the nitrogen loading rate was 4.86 kgN/m3·d.
Collapse
Affiliation(s)
- Xinxin Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| | - Wenhuai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Jiajun Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Binjuan Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiaozhong Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| |
Collapse
|
6
|
Zhang K, Kang T, Yao S, Liang B, Chang M, Wang Y, Ma Y, Hao L, Zhu T. A novel coupling process with partial nitritation-anammox and short-cut sulfur autotrophic denitrification in a single reactor for the treatment of high ammonium-containing wastewater. WATER RESEARCH 2020; 180:115813. [PMID: 32438139 DOI: 10.1016/j.watres.2020.115813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel coupling process with partial nitritation-anaerobic ammonium oxidation (anammox) (PNA) and sulfur autotrophic denitrification (SAD) was studied using an upflow biofilm reactor with mechanical vibration. At a lower dissolved oxygen (DO) concentration (0.40 ± 0.20 mg L-1), ammonia could be efficiently removed from synthetic wastewater by the coupling system with a total nitrogen removal efficiency (NRE) of 98% and an influent NH4+-N concentration of 600 mg L-1. In this system, the nitrate, which was produced during the anammox reaction, could be timely reduced by the SAD reaction. Compared with the conventional PNA and SAD processes, coupling the PNA and SAD processes in a single reactor prevented nitrite accumulation in the SAD reaction and reduced the total sulfate production by 59%. The high-throughput sequencing analysis supported that the SAD bacteria (Thiobacillus) and anammox bacteria (Candidatus Kuenenia) could coexist on the elemental sulfur stone. Additionally, sulfur consumption and sulfate production were increased under a high DO concentration. The sulfate production/nitrate reduction ratio and changing profile of the substrate suggested that the short-cut SAD process mainly occurred in this coupling system. Otherwise, batch experiments also suggested that the nitrite removal rate in the anammox process was 34.5 times higher than that in the SAD process. The outcomes of these experiments revealed that most of the nitrite, as an intermediate product in the SAD reaction, served as an electron acceptor for the anammox reaction. A stoichiometric calculation of this coupling process indicated that the novel reaction scheme with a high NRE was successfully achieved. Under an ideal short-cut SAD process, almost 55% of the sulfur consumption could be reduced in this coupling system. The coupling system provides a new perspective for nitrogen removal in a single reactor and further promotes anammox and SAD performance in wastewater treatment processes.
Collapse
Affiliation(s)
- Kuo Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, China.
| | - Tianli Kang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, China
| | - Sai Yao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, China
| | - Baorui Liang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, China
| | - Mingdong Chang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, China.
| | - Yongguang Ma
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110112, China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, China.
| |
Collapse
|