1
|
Ren Z, Ma K, Jia X, Wang Q, Zhang C, Li X. Metagenomics Unveils Microbial Diversity and Their Biogeochemical Roles in Water and Sediment of Thermokarst Lakes in the Yellow River Source Area. MICROBIAL ECOLOGY 2023; 85:904-915. [PMID: 35650293 DOI: 10.1007/s00248-022-02053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 05/04/2023]
Abstract
Thermokarst lakes have long been recognized as biogeochemical hotspots, especially as sources of greenhouse gases. On the Qinghai-Tibet Plateau, thermokarst lakes are experiencing extensive changes due to faster warming. For a deep understanding of internal lake biogeochemical processes, we applied metagenomic analyses to investigate the microbial diversity and their biogeochemical roles in sediment and water of thermokarst lakes in the Yellow River Source Area (YRSA). Sediment microbial communities (SMCs) had lower species and gene richness than water microbial communities (WMCs). Bacteria were the most abundant component in both SMCs and WMCs with significantly different abundant genera. The functional analyses showed that both SMCs and WMCs had low potential in methanogenesis but strong in aerobic respiration, nitrogen assimilation, exopolyphosphatase, glycerophosphodiester phosphodiesterases, and polyphosphate kinase. Moreover, SMCs were enriched in genes involved in anaerobic carbon fixation, aerobic carbon fixation, fermentation, most nitrogen metabolism pathways, dissimilatory sulfate reduction, sulfide oxidation, polysulfide reduction, 2-phosphonopropionate transporter, and phosphate regulation. WMCs were enriched in genes involved in assimilatory sulfate reduction, sulfur mineralization, phosphonoacetate hydrolase, and phosphonate transport. Functional potentials suggest the differences of greenhouse gas emission, nutrient cycling, and living strategies between SMCs and WMCs. This study provides insight into the main biogeochemical processes and their properties in thermokarst lakes in YRSA, improving our understanding of the roles and fates of these lakes in a warming world.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xuan Jia
- College of Education for the Future, Beijing Normal University, Zhuhai, 519087, China
| | - Qing Wang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Engineering Technology, Beijing Normal University, Zhuhai, 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Chen Y, Liu A, Cheng X. Detection of thermokarst lake drainage events in the northern Alaska permafrost region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150828. [PMID: 34627883 DOI: 10.1016/j.scitotenv.2021.150828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/02/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
The rapidly warming Arctic climate is reducing the stability of near-surface permafrost, and the thawing of ice-rich permafrost causes landscape changes known as thermokarst processes. Growing evidence suggests an increasing trend in the frequency and magnitude of thermokarst lake drainage events, which would significantly alter topography and hydrology, affecting ecosystem stability and carbon cycling. Dynamic monitoring of thermokarst lakes through satellite imagery remains a challenging task, as current temporal trend analysis methods have difficulty in accurately detecting when thermokarst lake drainage events occur. In this study, to improve the detection of time series breakpoints, an advanced temporal segmentation and change detection algorithm developed for forest change detection was, for the first time, transposed to monitor thermokarst lake dynamics. Moreover, to filter out spurious signals caused by fluctuations in lake area, we developed a hybrid algorithm to validate the detected thermokarst lake drainage events at the pixel-level and lake object-level, respectively. The method developed in this study demonstrates its effectiveness in detecting thermokarst lake drainage events in Arctic permafrost ecosystems and the potential to monitor the evolution of thermokarst landscapes using Landsat archive. A time-series analysis of changes in the thermokarst lake region of northern Alaska since 2000 using all available Landsat continuous data was performed on the Google Earth Engine platform. In total, 90 drainage lakes larger than 5 ha in size were detected in our study area, nearly a third of which were almost completely drained. As thermokarst lakes drainage represent hotspots of permafrost degradation, we publicly share information on these drained lakes to help select more targeted sites for costly fieldwork and validation activities. This study provides a basis for understanding and quantifying thermokarst lake dynamics in the Arctic permafrost region, which will contribute to the goal of integrating thermokarst processes into earth system models.
Collapse
Affiliation(s)
- Yating Chen
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Aobo Liu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiao Cheng
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
3
|
Jongejans LL, Liebner S, Knoblauch C, Mangelsdorf K, Ulrich M, Grosse G, Tanski G, Fedorov AN, Konstantinov PY, Windirsch T, Wiedmann J, Strauss J. Greenhouse gas production and lipid biomarker distribution in Yedoma and Alas thermokarst lake sediments in Eastern Siberia. GLOBAL CHANGE BIOLOGY 2021; 27:2822-2839. [PMID: 33774862 DOI: 10.1111/gcb.15566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1-year-long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO2 ) and methane (CH4 ) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L-1 ). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO2 -C g-1 dw, 28 ± 36 µg CH4 -C g-1 dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO2 -C g-1 dw, 19 ± 29 µg CH4 -C g-1 dw). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation.
Collapse
Affiliation(s)
- Loeka L Jongejans
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Permafrost Research Section, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Susanne Liebner
- Section Geomicrobiology, GFZ German Research Center for Geosciences, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christian Knoblauch
- Institute of Soil Science, Universität Hamburg, Hamburg, Germany
- Center for Earth System Research and Sustainability, Hamburg, Germany
| | - Kai Mangelsdorf
- Section Organic Geochemistry, GFZ German Research Center for Geosciences, Potsdam, Germany
| | - Mathias Ulrich
- Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Guido Grosse
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Permafrost Research Section, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - George Tanski
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Permafrost Research Section, Potsdam, Germany
- Department of Earth Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alexander N Fedorov
- Melnikov Permafrost Institute, Laboratory of General Geocryology, Siberian Branch Russian Academy of Sciences, Yakutsk, Russia
- BEST International Centre, North-Eastern Federal University, Yakutsk, Russia
| | - Pavel Ya Konstantinov
- Melnikov Permafrost Institute, Laboratory of General Geocryology, Siberian Branch Russian Academy of Sciences, Yakutsk, Russia
| | - Torben Windirsch
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Permafrost Research Section, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Julia Wiedmann
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Permafrost Research Section, Potsdam, Germany
- Baugrund-Ingenieurbüro GmbH Maul und Partner, Potsdam, Germany
| | - Jens Strauss
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Permafrost Research Section, Potsdam, Germany
| |
Collapse
|
4
|
in 't Zandt MH, Frank J, Yilmaz P, Cremers G, Jetten MSM, Welte CU. Long-term enriched methanogenic communities from thermokarst lake sediments show species-specific responses to warming. FEMS MICROBES 2020; 1:xtaa008. [PMID: 37333957 PMCID: PMC10117432 DOI: 10.1093/femsmc/xtaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 04/05/2024] Open
Abstract
Thermokarst lakes are large potential greenhouse gas (GHG) sources in a changing Arctic. In a warming world, an increase in both organic matter availability and temperature is expected to boost methanogenesis and potentially alter the microbial community that controls GHG fluxes. These community shifts are, however, challenging to detect by resolution-limited 16S rRNA gene-based approaches. Here, we applied full metagenome sequencing on long-term thermokarst lake sediment enrichments on acetate and trimethylamine at 4°C and 10°C to unravel species-specific responses to the most likely Arctic climate change scenario. Substrate amendment was used to mimic the increased organic carbon availability upon permafrost thaw. By performing de novo assembly, we reconstructed five high-quality and five medium-quality metagenome-assembled genomes (MAGs) that represented 59% of the aligned metagenome reads. Seven bacterial MAGs belonged to anaerobic fermentative bacteria. Within the Archaea, the enrichment of methanogenic Methanosaetaceae/Methanotrichaceae under acetate amendment and Methanosarcinaceae under trimethylamine (TMA) amendment was not unexpected. Surprisingly, we observed temperature-specific methanogenic (sub)species responses with TMA amendment. These highlighted distinct and potentially functional climate-induced shifts could not be revealed with 16S rRNA gene-based analyses. Unraveling these temperature- and nutrient-controlled species-level responses is essential to better comprehend the mechanisms that underlie GHG production from Arctic lakes in a warming world.
Collapse
Affiliation(s)
- Michiel H in 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
| | - Jeroen Frank
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Polen Yilmaz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
5
|
In 't Zandt MH, Liebner S, Welte CU. Roles of Thermokarst Lakes in a Warming World. Trends Microbiol 2020; 28:769-779. [PMID: 32362540 DOI: 10.1016/j.tim.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022]
Abstract
Permafrost covers a quarter of the northern hemisphere land surface and contains twice the amount of carbon that is currently present in the atmosphere. Future climate change is expected to reduce its near-surface cover by over 90% by the end of the 21st century, leading to thermokarst lake formation. Thermokarst lakes are point sources of carbon dioxide and methane which release long-term carbon stocks into the atmosphere, thereby initiating a positive climate feedback potentially contributing up to a 0.39°C rise of surface air temperatures by 2300. This review describes the potential role of thermokarst lakes in a warming world and the microbial mechanisms that underlie their contributions to the global greenhouse gas budget.
Collapse
Affiliation(s)
- Michiel H In 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands; Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; University of Potsdam, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands; Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|