1
|
Shi Z, Zhu A, Chen F, Cai Y, Deng L. Synthesis of Amorphous MnFe@SBA Composites for Efficient Adsorptive Removal of Pb(Ⅱ) and Sb(V) from Aqueous Solution. Molecules 2025; 30:679. [PMID: 39942786 PMCID: PMC11820195 DOI: 10.3390/molecules30030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The extensive release of water contaminated with lead (Pb(II)) and antimony (Sb(V)) constitutes a serious threat to the human living environment and public health, necessitating immediate attention. In this study, a novel MnFe@SBA composite was synthesized using the hydrothermal method through the in situ growth of MnFe2O4 on SBA-15. The MnFe@SBA exhibits an amorphous structure with a high specific surface area of 405.9 m2/g and pore sizes ranging from 2 to 10 nm. Adsorption experiments demonstrated that MnFe@SBA removed over 99% of Pb(II) and 80% of Sb(V) within 120 min at initial concentrations of 10 mg/L, whereas both MnFe2O4 and SBA-15 exhibited poor adsorption capacities. Additionally, the MnFe@SBA displayed excellent tolerance towards coexisting cations, including Na+, K+, Mg2+, Ca2+, Zn2+, Ni2+, and Cd2+, as well as anions such as Cl-, NO3-, CO32-, and PO43-. The adsorption behavior of Pb(II) onto MnFe@SBA was satisfactorily described by the pseudo-second-order kinetic model and the Freundlich isotherm, while the adsorption of Sb(V) was well-fitted by the pseudo-second-order kinetic model and the Langmuir isotherm. At 318 K, the maximum adsorption capacities of MnFe@SBA for Pb(II) and Sb(V) were determined to be 329.86 mg/g and 260.40 mg/g, respectively. Mechanistic studies indicated that the adsorption of Pb(II) and Sb(V) onto MnFe@SBA involved two primary steps: electrostatic attraction and complexation. In conclusion, the MnFe@SBA is anticipated to serve as an ideal candidate for efficient removal of Pb(II) and Sb(V) from contaminated water.
Collapse
Affiliation(s)
| | | | | | - Yishu Cai
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; (Z.S.); (A.Z.); (F.C.)
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; (Z.S.); (A.Z.); (F.C.)
| |
Collapse
|
2
|
Zeng H, Zeng Y, Xu H, Sun S, Zhang J, Li D. Sb(III) Removal by Granular Adsorbent Synthesized with Iron-Containing Water Treatment Residuals and Chitosan. Polymers (Basel) 2024; 16:3214. [PMID: 39599305 PMCID: PMC11598717 DOI: 10.3390/polym16223214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
In this study, chitosan and iron-containing water treatment residues were used to prepare a chitosan/Fe-sludge particle adsorbent (CHFS) via the embedding method for Sb(III) removal. Various technologies were applied to characterize the CHFS, and batch experiments were used to investigate its adsorption properties. The results show that CHFS adsorbents are amorphous and have a specific surface area (119.95 m2/g), both beneficial for adsorption. pH and ionic strength have no impact on the adsorption. Sb(III) adsorption on CHFS occurs spontaneously and endothermically. Sb(III) adsorption by CHFS matches the pseudo-second-order kinetic model and the Langmuir model better, with a maximum adsorption capacity of 24.38 mg/g. The primary adsorption mechanism for Sb(III) is the inner sphere complexation between the Sb and Fe-O bond, while other adsorption mechanisms include chelation, pore filling, and hydrogen bonding. This study offers a reference for antimony removal and resource utilization of iron sludge.
Collapse
Affiliation(s)
- Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuwei Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - He Xu
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Siqi Sun
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Li J, Liu M, Tong L, Zhou Y, Kong L. Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135598. [PMID: 39178781 DOI: 10.1016/j.jhazmat.2024.135598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)3 hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)3 dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.
Collapse
Affiliation(s)
- Jining Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, 5210023, China
| | - Mengdi Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, 5210023, China
| | - Lizhi Tong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, Guangdong 510655, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Yang X, Fan J, Jiang L, Zhu F, Yan Z, Li X, Jiang P, Li X, Xue S. Using Fe/H 2O 2-modified biochar to realize field-scale Sb/As stabilization and soil structure improvement in an Sb smelting site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168775. [PMID: 38016550 DOI: 10.1016/j.scitotenv.2023.168775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Antimony (Sb) and arsenic (As) released from the Sb smelting activities pose a major environmental risk and ecological degradation in Sb smelting sites. Here the effects of Fe/H2O2 modified biochar (Fe@H2O2-BC) on the synchronous stabilization of Sb/As and the improvement of soil structure in a typical Sb smelting site in Southern China based on a 1-year field experiment were studied. Application of ≥1 % (w/w) Fe@H2O2-BC could stably decrease the leaching concentrations of Sb and As of the polluted soils to Environmental quality standards for surface water Chinese Level III (GB3838-2002). Compared to the untreated soils, the stabilization efficiency of soil Sb and As treated by Fe@H2O2-BC reached 90.7 % ~ 95.7 % and 89.6 % ~ 90.8 %, respectively. The residue fractions of Sb/As in the soils increased obviously, and the bio-availability of Sb/As decreased by 65.0-95.6 % and 91.1-96.0 %, respectively. Moreover, Fe@H2O2-BC addition elevated soil organic carbon content, increased soil porosity, and improved water retention capacity, indicating the positive effects on soil structure and functions. Advanced mineral identification and characterization systems showed that Sb/As usually occurred in Fe-bearing minerals and stabilized by surface complexation and co-precipitation. The findings demonstrated that 1 % (w/w) Fe@H2O2-BC was appropriate to Sb/As stabilization and soil function recovery following field conditions, which provided potential application for ecological restoration in Sb smelting sites.
Collapse
Affiliation(s)
- Xingwang Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiarong Fan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lanying Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Zaolin Yan
- Hunan Bisenyuan energy saving and environmental protection Co., LTD, Yiyang 413000, PR China
| | - Xue Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Pinghong Jiang
- Hunan Research Academy of Environmental Sciences, Changsha 410018, PR China
| | - Xianghui Li
- Hunan Research Academy of Environmental Sciences, Changsha 410018, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
5
|
Peng L, Wang N, Xiao T, Wang J, Quan H, Fu C, Kong Q, Zhang X. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism. CHEMOSPHERE 2023; 327:138529. [PMID: 36990360 DOI: 10.1016/j.chemosphere.2023.138529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Antimony (Sb) has raised widespread concern because of its negative effects on ecology and human health. The extensive use of antimony-containing products and corresponding Sb mining activities have discharged considerable amounts of anthropogenic Sb into the environment, especially the water environment. Adsorption has been employed as the most effective strategy for Sb sequestration from water; thus, a comprehensive understanding of the adsorption performance, behavior and mechanisms of adsorbents benefits to develop the optimal adsorbent to remove Sb and even drive its practical application. This review presents a holistic analysis of adsorbent species with the ability to remove Sb from water, with a special emphasis on the Sb adsorption behavior of various adsorption materials and their Sb-adsorbent interaction mechanisms. Herein, we summarize research results based on the characteristic properties and Sb affinities of reported adsorbents. Various interactions, including electrostatic interactions, ion exchange, complexation and redox reactions, are fully reviewed. Relevant environmental factors and adsorption models are also discussed to clarify the relevant adsorption processes. Overall, iron-based adsorbents and corresponding composite adsorbents show relatively excellent Sb adsorption performance and have received widespread attention. Sb removal mainly depends on chemical properties of the adsorbent and Sb itself, and complexation is the main driving force for Sb removal, assisted by electrostatic attraction. The future directions of Sb removal by adsorption focus on the shortcomings of current adsorbents; more attention should be given to the practicability of adsorbents and their disposal after use. This review contributes to the development of effective adsorbents for removing Sb and provides an understanding of Sb interfacial processes during Sb transport and the fate of Sb in the water environment.
Collapse
Affiliation(s)
- Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huabang Quan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chuanbin Fu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingnan Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Gan Y, Ding C, Xu B, Liu Z, Zhang S, Cui Y, Wu B, Huang W, Song X. Antimony (Sb) pollution control by coagulation and membrane filtration in water/wastewater treatment: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130072. [PMID: 36303342 DOI: 10.1016/j.jhazmat.2022.130072] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Antimony (Sb) pollution in the water environment caused by the large-scale mining of Sb ore and the wide use of Sb-containing products seriously endangers human health and poses a great threat to the ecological environment. Coagulation is one of the most cost-effective technologies for Sb pollution control in water/wastewater treatment and has been widely used. However, a comprehensive understanding of Sb pollution control by coagulation, from fundamental research to practical applications, is lacking. In this work, based on the current status of Sb pollution in the water environment, a critical review of the Sb removal performance and mechanism by coagulation and related combined processes was carried out. The influencing factors of Sb removal performance by coagulation are introduced in detail. The internal mechanisms and improvement strategies of Sb removal by oxidation/reduction-coagulation and coagulation-membrane filtration technologies are emphasized. Moreover, given the development of Sb-removing coagulants and the resource utilization of Sb-containing sludge, future perspectives of coagulation for Sb removal are discussed. As the first review in this field, this work will illuminate avenues of basic research and practical applications for Sb and Sb-like pollution control in water/wastewater treatment.
Collapse
Affiliation(s)
- Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| | - Wenguang Huang
- South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510535, China
| | - Xiaojie Song
- SINOPEC Yangzi Petrochemical Co., Ltd., Nanjing 210048, China
| |
Collapse
|
7
|
Wang Z, Tian T, Xu K, Jia Y, Zhang C, Li J, Wang Z. Removal of antimony(III) by magnetic MIL-101(Cr)-NH2 loaded with SiO2: optimization based on response surface methodology and adsorption properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02069-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Deng R, Chen Y, Deng X, Huang Z, Zhou S, Ren B, Jin G, Hursthouse A. A Critical Review of Resistance and Oxidation Mechanisms of Sb-Oxidizing Bacteria for the Bioremediation of Sb(III) Pollution. Front Microbiol 2021; 12:738596. [PMID: 34557178 PMCID: PMC8453088 DOI: 10.3389/fmicb.2021.738596] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/03/2022] Open
Abstract
Antimony (Sb) is a priority pollutant in many countries and regions due to its chronic toxicity and potential carcinogenicity. Elevated concentrations of Sb in the environmental originating from mining and other anthropogenic sources are of particular global concern, so the prevention and control of the source of pollution and environment remediation are urgent. It is widely accepted that indigenous microbes play an important role in Sb speciation, mobility, bioavailability, and fate in the natural environment. Especially, antimony-oxidizing bacteria can promote the release of antimony from ore deposits to the wider environment. However, it can also oxidize the more toxic antimonite [Sb(III)] to the less-toxic antimonate [Sb(V)], which is considered as a potentially environmentally friendly and efficient remediation technology for Sb pollution. Therefore, understanding its biological oxidation mechanism has great practical significance to protect environment and human health. This paper reviews studies of the isolation, identification, diversity, Sb(III) resistance mechanisms, Sb(III) oxidation characteristics and mechanism and potential application of Sb-oxidizing bacteria. The aim is to provide a theoretical basis and reference for the diversity and metabolic mechanism of Sb-oxidizing bacteria, the prevention and control of Sb pollution sources, and the application of environment treatment for Sb pollution.
Collapse
Affiliation(s)
- Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yilin Chen
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xinpin Deng
- Hunan 402 Geological Prospecting Part, Changsha, China
| | - Zhongjie Huang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Saijun Zhou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Guizhong Jin
- Hsikwangshan Twinkling Star Co., Ltd., Lengshuijiang, China
| | - Andrew Hursthouse
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
- School of Computing, Engineering and Physical Sciences, The University of the West of Scotland, Paisley, United Kingdom
| |
Collapse
|