1
|
Abera GB, Trømborg E, Solli L, Walter JM, Wahid R, Govasmark E, Horn SJ, Aryal N, Feng L. Biofilm application for anaerobic digestion: a systematic review and an industrial scale case. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:145. [PMID: 39695822 DOI: 10.1186/s13068-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas-liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants. This work comprehensively reviewed the current applications of biofilm in anaerobic digestion and focused on impacting factors, optimization strategies, reactor set-up, and microbial communities. Moreover, a full-scale biofilm reactor case from Norway is also reported. This review provides a state of-the- art insight on the role of biofilm in anaerobic digestion.
Collapse
Affiliation(s)
- Getachew Birhanu Abera
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, Postbox 128, Shashemene, Ethiopia
| | - Erik Trømborg
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Linn Solli
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
| | | | - Radziah Wahid
- Antec Biogas As, Olaf Helsets Vei 5, 0694, Oslo, Norway
| | | | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Nabin Aryal
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway (USN), Campus Porsgrunn, Kjølnes Ring 56, 3918, Porsgrunn, Norway
| | - Lu Feng
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway.
| |
Collapse
|
2
|
Yan Z, Han X, Wang H, Jin Y, Song X. Influence of aeration modes and DO on simultaneous nitrification and denitrification in treatment of hypersaline high-strength nitrogen wastewater using sequencing batch biofilm reactor (SBBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121075. [PMID: 38723502 DOI: 10.1016/j.jenvman.2024.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.
Collapse
Affiliation(s)
- Zixuan Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Haodi Wang
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xingfu Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
3
|
Yang L, Zhang S, Lv X, Liu Y, Guo S, Hu X, Manirakiza B. Vallisneria natans decreased CH 4 fluxes in wetlands: Interactions among plant physiological status, nutrients and epiphytic bacterial community. ENVIRONMENTAL RESEARCH 2023; 224:115547. [PMID: 36822529 DOI: 10.1016/j.envres.2023.115547] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Submerged macrophytes provide niches for epiphytic microbes (including aerobic methanotrophs) growth. However, little is known about the impacts of submerged macrophytes growth status and nutrients loadings on methanotroph community and methane release in wetlands. In the present study, methane fluxes, bacterial and methanotroph community in epiphytic biofilm, and environmental parameters were investigated during Vallisneria natans senescence in wetlands under low (VnL) and high (VnH) nutrients for seven weeks. Relative conductivity and concentration of H2O2, total chlorophyll and malondialdehyde were higher in leaves of V. natans in VnH than VnL at the same sampling time. Nutrients loading increased methane fluxes in treatments with or without (Control) macrophytes, while healthy V. natans plants reduced the methane flux and nutrients concentration in water columns. CH4 fluxes were positively correlated to temperature and COD (p < 0.05). Methane oxidation rates were 3.04-31.68 μmol methane mg-1 fresh weight of V. natans leaves - epiphytic biofilm within 1 h. Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Actinobacteria and Acidobacteria were dominant phylum in all epiphytic biofilms. The mean abundances of pmoA/16S rRNA were higher in VnL than VnH. According to Illumina sequencing results of pmoA gene, γ-proteobacteria and α-proteobacteria were the dominant methanotroph class in epiphytic biofilm from VnH and VnL, respectively. Among seven detected methanotrophic genera, Methylomonas was significantly higher in VnH than VnL. Network analysis revealed that there were much closer relationships between the environmental parameters and epiphytic bacterial community in VnH than in VnL. COD and MDA were negatively correlated with Methyloglobulus, Methylosarcina, Methylobacter and Methylocystis, but positively correlated with Methylomonas and Methylosinus. This study highlights that methanotrophs in epiphytic biofilm play important roles in methane-oxidizing, which can be affected by plant physiological status and environmental parameters.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuansi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shaozhuang Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiuren Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Benjamin Manirakiza
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
4
|
Wang Y, Zhu T, Wong YJ, Zhang K, Chang M. Treatment performance of multistage active biological process (MSABP) reactor for saline sauerkraut wastewater: acclimatization, optimization and improvement. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02877-2. [PMID: 37103579 DOI: 10.1007/s00449-023-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The wastewater with a high concentration of organics and salt is a major contaminant in the production of sauerkraut. In this study, a multistage active biological process (MSABP) system was constructed to treat sauerkraut wastewater. The key process parameters of the MSABP system were analyzed and optimized by response surface methodology. The optimization results indicated that the most optimal removal efficiencies and removal loading rates of chemical oxygen demand (COD) and NH4+-N were 87.9%, 95.5%, 2.11 kg·m-3·d-1 and 0.12 kg·m-3·d-1, respectively, with hydraulic retention time (HRT) of 2.5 d and pH of 7.3. Meanwhile, this system could also be improved for the further treatment of COD and total nitrogen by effluent recycle and ozone oxidation. The COD and total nitrogen removal efficiencies of the modified MSABP system were 99.9% and 60.2%, respectively. In addition, the modified system could also reduce the potential harm from high concentrations of NO2--N.
Collapse
Affiliation(s)
- Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China
- DongYuan Environment S&T, 400-19, Zhihui 2 Road, Hunnan District, Shenyang, 110004, China
| | - Yong Jie Wong
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, 520-0811, Japan
- Department of Bioenvironmental Design, Faculty of Bioenvironmental Science, Kyoto University of Advance Science, Kyoto, 606-8501, Japan
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, People's Republic of China
| | - Mingdong Chang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China.
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, 520-0811, Japan.
| |
Collapse
|
5
|
Juárez-Jiménez B, Fenice M, Pasqualetti M, Muñoz-Palazon B, Correa-Galeote D, Braconcini M, Gorrasi S. Flow Cytometric Investigation of Salinicola halophilus S28 Physiological Response Provides Solid Evidence for Its Uncommon and High Ability to Face Salt-Stress Conditions. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
In a previous work, some bacterial strains isolated from the Saline di Tarquinia marine salterns (Viterbo, Italy) showed very unusual growth profiles in relation to temperature and salinity variations when grown in solid media. In particular, Salinicola halophilus S28 showed optimal or suboptimal growth in a very wide range of NaCl concentrations, suggesting a great coping ability with salinity variations. These intriguing outcomes did not fit with the general Salinicola halophilus description as a moderately halophilic species. Therefore, this study profiles the actual physiological status of S28 cells subjected to different NaCl concentrations to provide evidence for the actual coping ability of strain S28 with broad salinity variations. Flow cytometry was selected as the evaluation method to study the physiological status of bacterial cells subjected to different salinity levels, monitoring the strain response at different growth phases over 72 h. Strain S28 showed maximal growth at 8% NaCl; however, it grew very well with no statistically significant differences at all salinity conditions (4–24% NaCl). Flow cytometric results provided clear evidence of its actual and strong ability to face increasing salinity, revealing a good physiological response up to 24% of NaCl. In addition, strain S28 showed very similar cell physiological status at all salinity levels, as also indicated by the flat growth profile revealed in the range of 4–24% NaCl. This is the first study regarding the physiological response during the growth of halophilic bacteria under different conditions of salinity via flow cytometry. This technique represents an effective tool for the investigation of the physiological status of each cell, even if it is somehow underrated and underused by microbiologists for this purpose.
Collapse
Affiliation(s)
- Belén Juárez-Jiménez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Andalucía, Spain
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Laboratory of Applied Marine Microbiology, CoNISMa, University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Laboratory of Ecology of Marine Fungi, CoNISMa, University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Barbara Muñoz-Palazon
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Andalucía, Spain
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - David Correa-Galeote
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Andalucía, Spain
| | - Martina Braconcini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| |
Collapse
|
6
|
Maximum thickness of non-buffer limited electro-active biofilms decreases at higher anode potentials. Biofilm 2022; 4:100092. [DOI: 10.1016/j.bioflm.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
|
7
|
Cao X, Gao X, Zheng K, Wu S, Wu Y, Meng G, Hu Z, Niu Q, Su J. Efficient pollutants removal and microbial flexibility under high-salt gradient of an oilfield wastewater treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153619. [PMID: 35124032 DOI: 10.1016/j.scitotenv.2022.153619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The treatment of hypersaline oilfield wastewater (HSOW) is a challenge due to its complex composition and low biodegradability, especially in coastal areas. In this study, an HSOW treatment system of gas flotation and biochemistry technology combined with constructed wetland (CW) was investigated. The combined treatment system could efficiently remove COD, NH4+-N and oil under high salinity (1.36-2.21 × 104 mg/L), with average removal rates of 98.5%, 99.9% and 96%, respectively. Meanwhile, different salinity shaped particular community structures and functions. The abundance of Marivita, Parvibaculum, etc. was highly correlated with salinity. Co-occurrence network resulted that the microorganisms were highly interconnected, and formed a functional group of petroleum degrading. Pseudomonas, Rosevarius, Alternaria, etc. were the key genera. Moreover, functional prospected revealed that high salinity reduced the energy metabolism activity. This study will optimize the combined process and provide the basis for further extraction of high-efficiency degradation strains for HSOW enhanced treatment.
Collapse
Affiliation(s)
- Xiaoqing Cao
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Xue Gao
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Kai Zheng
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Shan Wu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Yanan Wu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Guodong Meng
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Jixin Su
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
8
|
Shitu A, Liu G, Muhammad AI, Zhang Y, Tadda MA, Qi W, Liu D, Ye Z, Zhu S. Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Zhu YM, Xu D, Ren H, Geng J, Xu K. Metagenomic insights into the "window" effect of static magnetic field on nitrous oxide emission from biological nitrogen removal process at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113377. [PMID: 34375917 DOI: 10.1016/j.jenvman.2021.113377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to explore whether the "window" effect of static magnetic field (SMF) on nitrous oxide (N2O) emission from the biological nitrogen removal process at low temperature existed and reveal its biological mechanism at the gene level. Four sequencing batch reactors (SBRs) with SMFs of 0, 10, 45, and 75 mT were operated continuously for 110 days at 10 °C and the lowest N2O-Gas cumulative emission (5.50 mg N/day) and N2O conversion rate (4.28 %) in 45 mT SMF-SBR verified the existence of the "window" effect. In 45 mT SMF-SBR, nearly all enzymatic activities related to N2O reduction and corresponding functional gene abundances improved significantly. Metagenomic high-throughput sequencing analysis revealed that Alicycliphilus denitricans, Paracoccus denitrificans, Rhodopseudomonas palustris, Pseudomonas stutzeri, and Dechloromonas aromatica, as species related to N2O reduction, could be separately enriched by applying suitable SMF intensity. Gene functions annotation based on KEGG and CAZy databases indicated that SMF not only accelerated the rate of free ammonia into ammonia-oxidizing bacteria and electrons delivered to the corresponding denitrification reductases, but also enhanced the degradation of complex organic matter into smaller molecules, and thus reducing the production of N2O via nitrifier denitrification and incomplete denitrification pathways at 10 °C. These findings provided a guideline and presented a blueprint of ecophysiology for the future application of magnetic field to the reduction of N2O emission in wastewater treatment plants in the cold region.
Collapse
Affiliation(s)
- Yuan-Mo Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China
| | - Dan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China.
| |
Collapse
|
10
|
Oliveira CA, Fuess LT, Soares LA, Damianovic MHRZ. Increasing salinity concentrations determine the long-term participation of methanogenesis and sulfidogenesis in the biodigestion of sulfate-rich wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113254. [PMID: 34271347 DOI: 10.1016/j.jenvman.2021.113254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The competition between sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) depends on several factors, such as the COD/SO42- ratio, sensitivity to inhibitors and even the length of the operating period in reactors. Among the inhibitors, salinity, a characteristic common to diverse types of industrial effluents, can act as an important factor. This work aimed to evaluate the long-term participation of sulfidogenesis and methanogenesis in the sulfate-rich wastewater process (COD/SO42- = 1.6) in an anaerobic structured-bed reactor (AnSTBR) using sludge not adapted to salinity. The AnSTBR was operated for 580 d under mesophilic temperature (30 °C). Salinity levels were gradually increased from 1.7 to 50 g-NaCl L-1. Up to 35 g-NaCl L-1, MA and SRB equally participated in COD conversion, with a slight predominance of the latter (53 ± 11%). A decrease in COD removal efficiency associated with acetate accumulation was further observed when applying 50 g-NaCl L-1. The sulfidogenic pathway corresponded to 62 ± 17% in this case, indicating the inhibition of MA. Overall, sulfidogenic activity was less sensitive (25%-inhibition) to high salinity levels compared to methanogenesis (100%-inhibition considering the methane yield). The wide spectrum of SRB populations at different salinity levels, namely, the prevalence of Desulfovibrio sp. up to 35 g-NaCl L-1 and the additional participation of the genera Desulfobacca, Desulfatirhabdium, and Desulfotomaculum at 50 g-NaCl-1 explain such patterns. Conversely, the persistence of Methanosaeta genus was not sufficient to sustain methane production. Hence, exploiting SRB populations is imperative to anaerobically remediating saline wastewaters.
Collapse
Affiliation(s)
- Cristiane Arruda Oliveira
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil.
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil; Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18, Conjunto Das Químicas, SP, 05508-000, Brazil
| | - Lais Américo Soares
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| |
Collapse
|
11
|
Pu H, Xu Y, Lin L, Sun D. Biofilm formation of
Pectobacterium
carotovorum
subsp.
carotovorum
on polypropylene surface during multiple cycles of vacuum cooling. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Yiwen Xu
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Lian Lin
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Da‐Wen Sun
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
- Food Refrigeration and Computerized Food Technology (FRCFT) Agriculture and Food Science Centre University College Dublin National University of Ireland Belfield, Dublin 4 Ireland
| |
Collapse
|
12
|
Alak G, Kaynar Ö, Atamanalp M. The impact of salt concentrations on the physicochemical and microbiological changes of rainbow trout caviar. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Zerva I, Remmas N, Melidis P, Ntougias S. Biotreatment efficiency, hydrolytic potential and bacterial community dynamics in an immobilized cell bioreactor treating caper processing wastewater under highly saline conditions. BIORESOURCE TECHNOLOGY 2021; 325:124694. [PMID: 33454565 DOI: 10.1016/j.biortech.2021.124694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Although caper processing wastewaters (CPW) are characterized by high organic content and salt concentration, no attempt has been made to treat these effluents. In this study, an immobilized cell bioreactor efficiently treated CPW even at hypersaline conditions (100 g/L salinity). Nitrogen was mainly assimilated during biotreatment, as nitrification was inhibited at elevated salinities. The hydrolytic potential was assessed by determining glucanase, xylanase, glucosidase, lipase and protease activities, which were negatively affected above 20 g/L salinity as the consequence of the inhibition of non-halotolerant microbiota. Succession of non-halotolerant taxa by the slightly halotolerant bacteria Defluviimonas, Amaricoccus, Arenibacter, Formosa and Muricauda, and then by the moderately/extremely halotolerant genera Halomonas, Roseovarius and Idiomarina occurred over salinity increase. Diversity indices were reduced during transition from moderately saline to hypersaline conditions. A distinct network was formed at hypersaline conditions, consisting of the halotolerant genera Halomonas, Idiomarina, Saliterribacillus and Gracilibacillus.
Collapse
Affiliation(s)
- Ioanna Zerva
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece.
| |
Collapse
|
14
|
Qiu Z, Zhang S, Ding Y, Zhang W, Gong L, Yuan Q, Mu X, Fu D. Comparison of Myriophyllum Spicatum and artificial plants on nutrients removal and microbial community in constructed wetlands receiving WWTPs effluents. BIORESOURCE TECHNOLOGY 2021; 321:124469. [PMID: 33296776 DOI: 10.1016/j.biortech.2020.124469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The impacts of WWTPs effluents on nutrients removal and epiphytic microbial community in constructed wetlands dominated by submersed macrophytes remain to be fully illustrated. In this study, compared to M. Spicatum, artificial submersed macrophytes (control) generally had higher NH4+-N (78.35% vs 80.52%) and TN (73.35% vs 90.25%) removal rates and similar COD (70.64% vs 70.80%) and TP (59.86% vs 60.82%) removal rates in wetlands receiving simulated effluents of WWTPs (GB18918-2002). Microbial population richness was higher in epiphytic biofilms on M. Spicatum than artificial ones, and substrates played the most decisive role in determining the microbial diversities. Network analysis revealed that there were more complex interactions among environmental parameters, bacteria and eukaryotes in M. Spicatum systems than in artificial ones. Nutrients in effluents could cause damage to M. Spicatum. The results highlight that artificial plants have better performance on effluents deep treatments than submerged plants.
Collapse
Affiliation(s)
- Zheng Qiu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Ding
- Kunshan Water Affairs Bureau, Kunshan 215300, China
| | - Wenjun Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lixue Gong
- Jiangsu Environmental Science Consulting Co., Ltd, Nanjing 210036, China
| | - Qiang Yuan
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoying Mu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Dongwang Fu
- Nanjing Water Planning and Designing Institute. Corp. Ltd, China
| |
Collapse
|
15
|
Li T, Guo Z, She Z, Zhao Y, Guo L, Gao M, Jin C, Ji J. Comparison of the effects of salinity on microbial community structures and functions in sequencing batch reactors with and without carriers. Bioprocess Biosyst Eng 2020; 43:2175-2188. [PMID: 32661564 DOI: 10.1007/s00449-020-02403-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
This study investigated and compared the microbial communities between a sequencing batch reactor (SBR) without carriers and a hybrid SBR with addition of carriers for the treatment of saline wastewater. The two systems were operated over 292 days with alternating aerobic/anoxic mode (temperature: 28℃, salinity: 0.0-3.0%). High removal efficiency of chemical oxygen demand (COD) and total inorganic nitrogen (TIN) was achieved in both the SBR (above 86.7 and 95.4% respectively) and hybrid SBR (above 84.4 and 94.0%) at 0.0-2.5% salinity. Further increasing salinity to 3.0% decreased TIN removal efficiency to 78.4% in the hybrid SBR. Steep decline of biodiversity and relative abundance of ammonia-oxidizing bacteria (AOB) contributed to the worse performance. More genera related to sulfide-oxidizing and sulfate-reducing bacteria were detected in the hybrid SBR than the SBR at 3.0% salinity. The abundance of halotolerant bacteria increased with the salinity increase for both reactors, summing up to 25.5% in the suspended sludge (S-sludge) from the SBR, 28.9 and 22.9% in the S-sludge and biofilm taken from the hybrid SBR, respectively. Nitrification and denitrification via nitrate was the main nitrogen removal pathway in the SBR and hybrid SBR at 0.0 and 0.5% salinity, while partial nitrification and denitrification via nitrite became the key process for nitrogen removal in the two reactors when the salinity was increased to 1.0-3.0%. Higher abundance of anaerobic ammonium-oxidizing (ANAMMOX) and sulfide-oxidizing autotrophic denitrification (SOAD) bacteria were found in the hybrid SBR at 3.0% salinity.
Collapse
Affiliation(s)
- Ting Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zixuan Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. .,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|