1
|
El Hanafi K, Fernández-Bautista T, Ouerdane L, Corns WT, Bueno M, Fontagné-Dicharry S, Amouroux D, Pedrero Z. Exploring mercury detoxification in fish: The role of selenium from tuna byproduct diets for sustainable aquaculture. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135779. [PMID: 39298964 DOI: 10.1016/j.jhazmat.2024.135779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Exposure to mercury (Hg) through fish consumption poses significant environmental and public health risks, given its status as one of the top ten hazardous chemicals. Aquaculture is expanding, driving a surge in demand for sustainable aquafeeds. Tuna byproducts, which are rich in protein, offer potential for aquafeed production, yet their use is challenged by the high content of heavy metals, particularly Hg. However, these byproducts also contain elevated levels of selenium (Se), which may counteract Hg adverse effects. This study examines the fate of dietary Hg and Se in an aquaculture model fish. Biomolecular speciation analyses through hyphenated analytical approaches were conducted on the water-soluble protein fraction of key organs of juvenile rainbow trout (Oncorhynchus mykiss) exposed to various combinations of Hg and Se species, including diets containing tuna byproducts, over a six-month period. The findings shed light on the dynamics of Hg and Se compounds in fish revealing potential Hg detoxification mechanisms through complexation with Hg-biomolecules, such as cysteine, glutathione, and metallothionein. Furthermore, the trophic transfer of selenoneine is demonstrated, revealing novel opportunities for sustainable aquafeed production. Understanding the interactions between Hg and Se in aquaculture systems is crucial for optimizing feed formulations and mitigating environmental risks. This research contributes to the broader goal of advancing sustainable practices in aquaculture while addressing food security challenges.
Collapse
Affiliation(s)
- Khouloud El Hanafi
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Tamara Fernández-Bautista
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laurent Ouerdane
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, United Kingdom
| | - Maite Bueno
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | | | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France.
| |
Collapse
|
2
|
Bataglioli I, Vieira J, da Siva J, Andrade L, Faria V, Corcoba R, de Almeida R, Zara L, Buzalaf M, Adamec J, Padilha P. Metallomic Approach to Mercury and Selenium in the Liver Tissue of Psectrogaster amazonica and Raphiodon vulpinus from the Brazilian Amazon. Int J Mol Sci 2024; 25:11946. [PMID: 39596016 PMCID: PMC11594490 DOI: 10.3390/ijms252211946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
This paper reports the results of a mercury (Hg) and selenium (Se) metallomic study in the liver tissues of Psectrogaster amazonica and Raphiodon vulpinus from the Brazilian Amazon. Two-dimensional electrophoresis, graphite furnace atomic absorption spectrometry, and liquid chromatography-tandem mass spectrometry were performed. Hg and Se determinations allowed the calculation of Hg:Se and Se:Hg molar ratio and Se values for health benefits (Se HBVs). The Se:Hg values were >1 for both fish species, whereas the Se HBVs were >5 for P. amazonica and >10 for R. vulpinus, indicating that both possess Se reserves to control Hg toxicity. The metallomic data allowed the identification of 11 Hg/Se-associated protein spots in the two fish species, with concentrations in the range of 9.70 ± 0.14 and 28.44 ± 0.31 mg kg-1 of Hg and 16.15 ± 0.21 and 43.12 ± 0.51 mg kg-1 of Se. Five metal binding proteins (MBP) in the Hg/Se-associated protein spots in the liver proteome of P. amazonica and eight in R. vulpinus were identified, indicating the possible formation of Hg/Se complexes on the MBP structures. The activities analysis of catalase, superoxide dismutase, GPx enzymes, and lipoperoxide concentrations demonstrated that Hg-induced oxidative stress did not occur, possibly because both fish species possess Se reserves necessary to inhibit the Hg's deleterious effects.
Collapse
Affiliation(s)
- Izabela Bataglioli
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
| | - José Vieira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil; (J.V.); (V.F.)
| | - Joyce da Siva
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
| | - Luane Andrade
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
| | - Victor Faria
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil; (J.V.); (V.F.)
| | - Rebeca Corcoba
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
| | - Ronaldo de Almeida
- Wolfgang C. Pfeiffer Environmental Biogeochemistry Laboratory, Federal University of Rondônia, Porto Velho 76801-974, RO, Brazil;
| | - Luiz Zara
- College of Planaltina, University of Brasília (UNB), Planaltina 70842-970, DF, Brazil
| | - Marília Buzalaf
- Department of Biochemistry, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil;
| | - Jiri Adamec
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - Pedro Padilha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil; (J.V.); (V.F.)
| |
Collapse
|
3
|
de L Freitas F, Costa AB, de Moraes ASB, Lima ADF, Santos RP, Silva VAD, Pereira NS, Cavalcante RM. Contaminants of Emerging Concern (CECs): Assessment of health and dietary risk in the consumption of Plagioscion squamosissimus in one of the largest rivers in a semi-arid region (Rio São Francisco, Brazil). CHEMOSPHERE 2024; 363:142889. [PMID: 39032734 DOI: 10.1016/j.chemosphere.2024.142889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The São Francisco River, significant in semi-arid areas, faces impacts from hydroelectric plants and agricultural pesticides. Despite extensive research on its aquatic life, especially fish reproductive biology, there's a notable lack of studies on toxicity and its human health implications. This gap highlights the need for targeted research in this vital ecological zone. Consequently, this study aimed to scrutinize the concentrations of Contaminants of Emerging Concern (CECs), including Polychlorinated Biphenyls (PCBs), Polybrominated Diphenyl Ethers (PBDEs), Organochlorine Pesticides (OCPs), pyrethroid pesticides (PPs), triazine pesticides (TPs), and Organophosphorus Pesticides (OPPs) in the water, sediment, and fish (Plagioscion squamosissimus). The findings revealed the presence of all compound classes in sediment, albeit in limited quantities in water. Biotic components exhibited higher concentrations in nerve tissue, followed by the liver and muscle, indicative of a bioaccumulation trend. It is noteworthy that more concerning levels were observed in both water and sediments. In particular, Fenvalerate in water and Prometon in sediments demonstrated the highest Bioaccumulation Factor (BAF) values. While for non-carcinogenic effects and Cancer Risk (CR), the parameters were calculated and all classified in the areas of acceptable or insignificant according to chemical safety agencies. However, the compounds under scrutiny demand vigilant attention, given their nearly ubiquitous presence across various matrices and demonstrated bioaccumulative capacity, potentially posing future repercussions for human health.
Collapse
Affiliation(s)
| | - Ana B Costa
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Chemical Program, Federal University of Ceará (UFC), Brazil
| | - Alessandra S B de Moraes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Chemical Program, Federal University of Ceará (UFC), Brazil
| | - Antonia D F Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program/LABOMAR/UFC, Brazil
| | - Rafael P Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program/LABOMAR/UFC, Brazil
| | - Viviane A da Silva
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil
| | - Natan S Pereira
- Human Ecology Programa, State University of Bahia, Juazeiro, BA, Brazil; PGQA, Department of Exact and Earth Science, State University of Bahia, Salvador, Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program/LABOMAR/UFC, Brazil; Chemical Program, Federal University of Ceará (UFC), Brazil
| |
Collapse
|
4
|
da Costa JR, Capparelli MV, Padilha PM, Borges E, Ramaglia AC, Dos Santos MR, Augusto A. Chronic Cadmium Exposure can Alter Energy Allocation to Physiological Functions in the Shrimp Penaeus vannamei. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:58-68. [PMID: 38922419 DOI: 10.1007/s00244-024-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Environmental stressors in aquatic organisms can be assessed using a bioenergetic approach based on the evaluation of changes in their physiological parameters. We evaluated the chronic effects of cadmium (Cd2+) on the energy balance as well as the survival, growth, metabolism, nitrogen excretion, hepatosomatic index, oxidized energy substrate, and osmoregulation of the shrimp Penaeus vannamei with the hypothesis that the high energy demand related to the homeostatic regulation of Cd2+could disrupt the energy balance and as a consequence, their physiological functions. The shrimp exposed to Cd2+ had higher mortality (30%), directed more energy into growth (33% of energy intake), ingested 10% more energy, and defecated less than control animals. Cd2+ exposure caused a tendency to decrease metabolism and ammonia excretion but did not alter the hepatosomatic index, type of energy substrate oxidized, and the hyperosmorregulatory pattern of the species. The Cd+2 exposure may have induced a trade-off response because there was a growth rate increase accompanied by increased mortality.
Collapse
Affiliation(s)
- Juliana Rodrigues da Costa
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico
| | - Pedro Magalhães Padilha
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 14884-900, Brazil
| | - Emanuelle Borges
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Andressa C Ramaglia
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Michelle Roberta Dos Santos
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Alessandra Augusto
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 14884-900, Brazil.
- Department of Zoology, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
- Laboratory of Sustainable Aquaculture, São Paulo State University (UNESP), São Vicente, SP, 11380-972, Brazil.
| |
Collapse
|
5
|
Austin D, Jahan K, Feng X, Carney J, Hensley DK, Chen J, Altidor BE, Guo Z, Michaelis E, Kebaso MK, Yue Y. Sulfur functionalized biocarbon sorbents for low-concentration mercury isolation. Dalton Trans 2024; 53:2098-2107. [PMID: 38180386 DOI: 10.1039/d3dt02625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Sulfur functionalized biocarbons were prepared from naturally abundant lignin alkali with sodium thiocyanate as an activation agent and a sulfur source. The resultant biocarbon sorbents showed a high mercury isolation ability from aqueous solutions, where high surface area and doping of sulfur significantly aid the uptake of mercury, i.e., 0.05 g of biocarbon sorbent removed 99% of mercury from 250 mL of simulated wastewater with an initial concentration of mercury of 10 mg L-1.
Collapse
Affiliation(s)
- Douglas Austin
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Kousar Jahan
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Xu Feng
- Surface Analysis Facility, University of Delaware, Newark, DE 19716, USA
| | - Jared Carney
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Dale K Hensley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Brianna E Altidor
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China.
| | - Elizabeth Michaelis
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Mariana K Kebaso
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| |
Collapse
|
6
|
de Almeida EC, Faria VD, Cirinêu FD, Santiago MGA, Miotto B, Vieira JCS, Braga CP, Adamec J, Fernandes AAH, Buzalaf MAR, Padilha PDM. Metalloproteomic Investigation of Hg-Binding Proteins in Renal Tissue of Rats Exposed to Mercury Chloride. Int J Mol Sci 2023; 25:164. [PMID: 38203335 PMCID: PMC10779082 DOI: 10.3390/ijms25010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Results obtained from rat studies indicate that, even at low concentrations, mercurial species cause harmful effects on the kidneys, by inducing the nephrotic oxidative stress response. In the present work, Hg-associated proteins were identified as possible mercury-exposure biomarkers in rat kidneys exposed to low mercury chloride concentrations for 30 days (Hg-30) and 60 days (Hg-60), using metalloproteomic strategies. The renal proteomic profile was fractioned by two-dimensional electrophoresis and the mercury determinations in kidney samples, protein pellets and protein spots were performed using graphite furnace atomic absorption spectrometry. The characterization of Hg-associated protein spots and the analysis of differentially expressed proteins were performed by liquid chromatography, coupled with tandem mass spectrometry. Eleven Hg-associated protein spots with a concentration range of 79 ± 1 to 750 ± 9 mg kg-1 in the Hg-60 group were identified. The characterization and expression analyses allowed the identification of 53 proteins that were expressed only in the Hg-60 group, 13 "upregulated" proteins (p > 0.95) and 47 "downregulated" proteins (p < 0.05). Actin isoforms and hemoglobin subunits were identified in protein spots of the Hg-60 group, with mercury concentrations in the range of 138 to 750 mg kg-1, which qualifies these proteins as potential mercury-exposure biomarkers.
Collapse
Affiliation(s)
- Emerson Carlos de Almeida
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (E.C.d.A.); (V.D.F.); (F.D.C.); (M.G.A.S.); (B.M.); (J.C.S.V.); (A.A.H.F.)
| | - Victor Diego Faria
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (E.C.d.A.); (V.D.F.); (F.D.C.); (M.G.A.S.); (B.M.); (J.C.S.V.); (A.A.H.F.)
| | - Felipe Dalmazzo Cirinêu
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (E.C.d.A.); (V.D.F.); (F.D.C.); (M.G.A.S.); (B.M.); (J.C.S.V.); (A.A.H.F.)
| | - Maria G. A. Santiago
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (E.C.d.A.); (V.D.F.); (F.D.C.); (M.G.A.S.); (B.M.); (J.C.S.V.); (A.A.H.F.)
| | - Beatriz Miotto
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (E.C.d.A.); (V.D.F.); (F.D.C.); (M.G.A.S.); (B.M.); (J.C.S.V.); (A.A.H.F.)
| | - José C. S. Vieira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (E.C.d.A.); (V.D.F.); (F.D.C.); (M.G.A.S.); (B.M.); (J.C.S.V.); (A.A.H.F.)
| | | | - Jiri Adamec
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - Ana A. H. Fernandes
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (E.C.d.A.); (V.D.F.); (F.D.C.); (M.G.A.S.); (B.M.); (J.C.S.V.); (A.A.H.F.)
| | - Marília A. R. Buzalaf
- Faculty of Dentistry of Bauru (FOB), University of Sao Paulo (USP), Bauru 17012-901, SP, Brazil;
| | - Pedro de Magalhães Padilha
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (E.C.d.A.); (V.D.F.); (F.D.C.); (M.G.A.S.); (B.M.); (J.C.S.V.); (A.A.H.F.)
| |
Collapse
|
7
|
Vieira JCS, Braga CP, Queiroz JVD, Cavecci-Mendonça B, Oliveira GD, Freitas NGD, Fernandes AAH, Fernandes MDS, Buzalaf MAR, Adamec J, Zara LF, Padilha PDM. The effects of mercury exposure on Amazonian fishes: An investigation of potential biomarkers. CHEMOSPHERE 2023; 316:137779. [PMID: 36632955 DOI: 10.1016/j.chemosphere.2023.137779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 05/05/2023]
Abstract
Exposure to mercury can interfere with the expression of proteins and enzymes, compromise important pathways, such as apoptosis and glucose metabolism, and even induce the expression of metallothioneins. In this study, analytical techniques were used to determine the concentration of total mercury (THg) in muscle and liver tissue, protein pellets, and spots [using graphite furnace atomic absorption spectrometry (GFAAS)], and molecular techniques were used to identify metalloproteins present in mercury-associated protein spots. Thirty individuals from three different fish species, Cichla sp. (n = 10), Brachyplatystoma filamentosum (n = 10), and Semaprochilodus sp. (n = 10) from the Brazilian Amazon were used. Oxidative stress indicators [such as glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), a marker of lipid peroxidation (LPO)] and the possible expression of metallothioneins in muscle and liver tissues were investigated. The two piscivorous species, Cichla sp. and B. filamentosum, presented the highest concentrations of mercury in their hepatic tissue, 1219 ± 15.00 and 1044 ± 13.6 μg kg-1, respectively, and in their muscle tissue, 101 ± 1.30 μg kg-1 and 87.4 ± 0.900 μg kg-1, respectively. The non-carnivorous species Semaprochilodus sp. had comparatively low concentrations of mercury in both its hepatic (852 ± 11.1 μg kg-1) and muscle (71.4 ± 0.930 μg kg-1) tissues. The presence of mercury was identified in 24 protein spots using GFAAS; concentrations ranged from 11.5 to 787 μg kg-1, and mass spectrometry identified 21 metal-binding proteins. The activities of GSH-Px, CAT, and SOD, related to oxidative stress, decreased proportionally as tissue Hg concentrations increased, while the levels of LPO markers increased, indicating the presence of stress. Our study results demonstrate possible mercury interference in oxidative stress markers (GSH-Px, CAT, SOD, and LPO), in addition to the identification of 21 metal-binding proteins as possible biomarkers of mercury exposure in fish.
Collapse
Affiliation(s)
| | | | - João Vitor de Queiroz
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil
| | - Bruna Cavecci-Mendonça
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - Grasieli de Oliveira
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo, Brazil
| | | | | | | | | | - Jiri Adamec
- University of Nebraska (UNL), Lincoln, United States
| | - Luiz Fabrício Zara
- University of Brasília (UNB), College of Planaltina, Distrito Federal, Brazil
| | - Pedro de Magalhães Padilha
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil.
| |
Collapse
|
8
|
Santiago MGA, Faria VD, Cirinêu FD, Queiroz da Silva LLDL, de Almeida EC, Cavallini NG, Souza Vieira JC, Henrique Fernandes AA, Braga CP, Zara LF, Rabelo Buzalaf MA, Adamec J, de Magalhães Padilha P. Metalloproteomic approach to liver tissue of rats exposed to mercury. CHEMOSPHERE 2023; 312:137222. [PMID: 36375612 DOI: 10.1016/j.chemosphere.2022.137222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The aims of this study were to identify mercury-associated protein spots in the liver tissue of rats exposed to low concentrations of mercury and to elucidate the physiological and functional aspects of the proteins identified in the protein spots. Therefore, proteomic analysis of the liver tissue of Wistar rats exposed to mercury chloride (4.60 μg kg-1 in Hg2+) was performed for thirty days (Hg-30 group) and sixty days (Hg-60 group). The proteomic profile of the liver tissue of the rats was obtained by two-dimensional electrophoresis (2D-PAGE), and the determinations of total mercury in the liver tissue, pellets and protein spots were performed by graphite furnace atomic absorption spectrometry (GFAAS). ImageMaster 2D Platinum 7.0 software was used to identify the differentially expressed mercury-associated protein spots, which were then characterized by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The determinations by GFAAS indicated a total mercury bioaccumulation of 2812% in the Hg-30 group and 3298% in the Hg-60 group and 10 mercury-associated protein spots with a concentration range of 51 ± 1.0 to 412 ± 6.00 mg kg-1 in the 2D PAGE gels from the liver tissue of the Hg-60 group. The LC-MS/MS analyses allowed the identification of 11 metal binding proteins in mercury-associated protein spots that presented fold change with upregulation >1.5, downregulation < -1.7 or that were expressed only in the Hg-60 group. Using the FASTA sequences of the proteins identified in the mercury-associated protein spots, bioinformatics analyses were performed to elucidate the physiological and functional aspects of the metal binding proteins, allowing us to infer that enzymes such as GSTM2 presented greater mercury concentrations and downregulation < -3; Acaa2 and Bhmt, which showed expression only in the Hg-60 group, among others, may act as potential mercury exposure biomarkers.
Collapse
Affiliation(s)
| | - Victor Diego Faria
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil
| | | | | | | | | | | | | | | | - Luís Fabrício Zara
- University of Brasília (UNB), College of Planaltina, Distrito Federal, Brazil
| | | | | | | |
Collapse
|
9
|
da Cunha Bataglioli I, de Queiroz JV, Vieira JCS, Cavalline NG, Braga CP, Buzalaf MAR, Zara LF, Adamec J, de Magalhães Padilha P. Mercury metalloproteomic profile in muscle tissue of Arapaima gigas from the Brazilian Amazon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:705. [PMID: 35999477 DOI: 10.1007/s10661-022-10357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Metalloproteomics is an innovative methodology for identifying of protein-associated mercury. Thus, we analyzed the muscle proteome of Arapaima gigas (pirarucu), collected in the Madeira River of the Brazilian Amazon, to identify protein-associated mercury, with the aim of identifying possible mercury biomarkers in fish muscle tissue. After obtaining the protein pellet, we conducted two-dimensional electrophoresis (2D PAGE) to fractionate the muscle proteome. Total mercury in muscle tissue and protein pellets and mapping of mercury content in protein spots of the 2D PAGE gels was determined using graphite furnace atomic absorption spectrometry (GFAAS). The protein-associated mercury identification was performed using liquid chromatography coupled with sequence mass spectrometry (LC‒MS/MS). Total mercury determinations by GFAAS indicated concentrations on the order of 153 ± 1.90 mg kg-1 and 142 ± 1.50 mg kg-1 (total precipitation of protein fraction) and 139 ± 1.45 mg kg-1 (fractional precipitation of protein fraction) in muscle tissue and protein pellets, respectively. Mercury concentrations in the range of 48 ± 0.90 to 165 ± 3.00 mg kg-1 were found in twelve protein spots. Among the 2D PAGE protein spots, eleven Hg-binding proteins were identified using LC‒MS/MS, which showed characteristics of mercury exposure biomarkers for important metabolic functions, such as five parvalbumin isoforms, triosephosphate isomerase, cofilin 2 (muscle), and fructose-bisphosphate aldolases.
Collapse
Affiliation(s)
| | - João Vitor de Queiroz
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Nubya Gonçalves Cavalline
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | - Luís Fabrício Zara
- College of Planaltina, University of Brasília (UNB), Distrito Federal, Brazil
| | | | - Pedro de Magalhães Padilha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil.
| |
Collapse
|
10
|
Vieira JCS, de Oliveira G, Cavallini NG, Braga CP, Adamec J, Zara LF, Buzalaf MAR, de Magalhães Padilha P. Investigation of Protein Biomarkers and Oxidative Stress in Pinirampus pirinampu Exposed to Mercury Species from the Madeira River, Amazon-Brazil. Biol Trace Elem Res 2022; 200:1872-1882. [PMID: 34482504 DOI: 10.1007/s12011-021-02805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
In recent decades, the scientific community has widely debated the contamination of fish in the Amazon region by mercury species. As the diet of riverside populations in the Amazon region is based mainly on fish, these populations are exposed to mercurial species that can cause serious and irreversible damage to their health. The risks of consuming fish exposed to mercurial species in the Amazon region have motivated toxicological investigations. However, the effect of mercurial species on protein and enzyme levels is still controversial. In this work, analytical and bioanalytical techniques Two-dimensional polyacrylamide gel electrophoresis [2D-PAGE] Graphite Furnace Atomic Absorption Spectrometry [GFAAS], and Mass Spectrometry in Sequence with Electrospray Ionization [ESI-MS/MS] were used to identify proteins associated with mercury (metal-binding protein) in muscle and liver tissues of the fish species Pinirampus pirinampu from the Madeira River, in the Brazilian Amazon. Enzymatic and lipid peroxidation analyses were also used to assess changes related to oxidative stress. Determinations of total mercury by GFAAS indicated higher concentrations in liver tissue (555 ± 19.0 µg kg-1) when compared to muscle tissue (60 ± 2.0 µg kg-1). The fractionation process of tissue proteomes by 2D-PAGE and subsequent mapping of mercury by GFAAS in the protein spots of the gels identified the presence of mercury in three spots of the liver tissue (concentrations in the range of 0.800 to 1.90 mg kg-1). The characterization of protein spots associated with mercury by ESI-MS/MS identified the enzymes triosephosphate isomerase A, adenylate kinase 2 mitochondrial, and glyceraldehyde-3-phosphate dehydrogenase as possible candidates for mercury exposure biomarkers. The muscle tissue did not show protein spots associated with mercury. Enzymatic activity decreased proportionally to the increase in mercury concentrations in the tissues.
Collapse
Affiliation(s)
| | - Grasieli de Oliveira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Jiri Adamec
- University of Nebraska (UNL), Lincoln, NE, USA
| | - Luiz Fabrício Zara
- College of Planaltina, University of Brasília (UNB), Brasília, Distrito Federal, Brazil
| | | | | |
Collapse
|
11
|
de Queiroz JV, Cavecci-Mendonça B, Vieira JCS, Martins RA, de Almeida Assunção AS, Cavallini NG, Dos Santos FA, de Magalhães Padilha P. Metalloproteomic Strategies for Identifying Proteins as Biomarkers of Mercury Exposure in Serrasalmus rhombeus from the Amazon Region. Biol Trace Elem Res 2021; 199:712-720. [PMID: 32449008 DOI: 10.1007/s12011-020-02178-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023]
Abstract
This manuscript describes the results of a metalloproteomic study of mercury in samples of muscle and liver tissue of the species Serrasalmus rhombeus, popularly known as black piranha and characterised as the most voracious and aggressive predator in the Brazilian Amazon. The metalloproteomic study involved using two-dimensional electrophoresis (2D PAGE) to fractionate the proteome of the muscle and liver tissue samples, along with atomic absorption spectrometry in a graphite furnace (GFAAS) to identify mercury associated with protein SPOTs and mass spectrometry with electrospray ionisation (ESI-MS/MS) to characterise the mercury-binding proteins. The protein SPOTs characterised showed concentrations in the order of 156 mg kg-1, which ranks as the highest concentrations of mercury determined so far in metalloproteomic studies involving fish species in the Amazon region. Based on FASTA sequences of proteins characterised by ESI-MS/MS, bioinformatics studies were performed that allowed identifying nine proteins with characteristics of biomarkers of mercury exposure. Of those proteins, glutathione peroxidase stands out as an enzyme of great importance in the antioxidant defence of organisms subjected to oxidative stress caused by xenobiotics.
Collapse
Affiliation(s)
- João Vitor de Queiroz
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof R. Dr. Valter Maurício Corrêa, s/n, Botucatu, SP, 18.618-681, Brazil
| | - Bruna Cavecci-Mendonça
- Venom and Venomous Animals Study Center (CEVAP) of São Paulo State University (UNESP), Rua José Barbosa de Barros, 1780 - Vila Ema, Botucatu, SP, 18.610-307, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18.618-689, Brazil.
| | - José Cavalcante Souza Vieira
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18.618-689, Brazil
| | - Renata Aparecida Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof R. Dr. Valter Maurício Corrêa, s/n, Botucatu, SP, 18.618-681, Brazil
| | - Andrey Sávio de Almeida Assunção
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof R. Dr. Valter Maurício Corrêa, s/n, Botucatu, SP, 18.618-681, Brazil
| | - Nubya Gonçalves Cavallini
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18.618-689, Brazil
| | - Felipe André Dos Santos
- Faculty of Science and Engineering, São Paulo State University (UNESP), R. Domingos da Costa Lopes, 780 - Jardim Itaipu, Tupã, SP, 17.602-496, Brazil
| | - Pedro de Magalhães Padilha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof R. Dr. Valter Maurício Corrêa, s/n, Botucatu, SP, 18.618-681, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18.618-689, Brazil.
| |
Collapse
|
12
|
Luminescent metal organic framework for selective detection of mercury in aqueous media: Microwave-based synthesis and evaluation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Lin SH, Luo P, Yuan E, Zhu X, Zhang B, Wu X. Physiological and Proteomic Analysis of Penicillium digitatum in Response to X33 Antifungal Extract Treatment. Front Microbiol 2020; 11:584331. [PMID: 33240238 PMCID: PMC7677231 DOI: 10.3389/fmicb.2020.584331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Penicillium digitatum is a widespread pathogen among Rutaceae species that causes severe fruit decay symptoms on infected citrus fruit (known as citrus green mold). The employment of fungicides can effectively control the citrus green mold, significantly reducing agricultural economic loss. In this study, we found that the X33 antifungal extract produced by Streptomyces lavendulae strain X33 inhibited the hyphae polarization of P. digitatum. Additionally, physiological and proteomic analysis strategies were applied to explore the inhibitory mechanism of the X33 antifungal extract of the S. lavendulae strain X33 on the mycelial growth of P. digitatum. A total of 277 differentially expressed proteins, consisting of 207 upregulated and 70 downregulated, were identified from the comparative proteomics analysis. The results indicated that the X33 antifungal extract induced mitochondrial membrane dysfunction and cellular integrity impairment, which can affect energy metabolism, oxidative stress, and transmembrane transport. The improved alkaline phosphatase activity and extracellular conductivity, increased H2O2 and malondialdehyde contents, and inhibition of energy, amino acid, and sugar metabolism indicated that the oxidative stress of P. digitatum is induced by the X33 antifungal extract. These findings provided insight into the antifungal mechanism of the X33 antifungal extract against P. digitatum by suggesting that it may be an effective fungicide for controlling citrus postharvest green mold.
Collapse
Affiliation(s)
- Shu-Hua Lin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Pan Luo
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiangdong Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| |
Collapse
|
14
|
Vasques ICF, Lima FRD, Oliveira JR, de Morais EG, Pereira P, Guilherme LRG, Marques JJ. Comparison of bioaccessibility methods in spiked and field Hg-contaminated soils. CHEMOSPHERE 2020; 254:126904. [PMID: 32957297 DOI: 10.1016/j.chemosphere.2020.126904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Estimating bioaccessible content of mercury in soils is essential in evaluating risks that contaminated soils pose. In this study, soil samples spiked with HgCl2 through adsorption were used to test the effects of liming, soil organic matter, soil depth, and Hg concentration on the following bioaccessibility tests: dilute nitric acid at room temperature, dilute nitric acid at body temperature, Simplified Bioaccessibility Extraction Test (SBET) method, and gastric phase of the In vitro Gastrointestinal (IVG) protocol. Soil and sediment samples from Descoberto, Minas Gerais (Brazil), a city with a well-known record of Hg contamination from artisanal mining, were subjected to these bioaccessibility tests for the first time, and the different methods of estimating bioaccessible content were compared. Bioaccessible fractions in spiked samples ranged from 10% to 60%, and this high bioaccessibility was due to the highly soluble species of Hg and the short time under adsorption. In general, clay and organic matter decreased bioaccessible content. Although the soil in Descoberto is undoubtedly polluted, mercury bioaccessibility in that area is low. In general, dilute nitric acid estimated higher bioaccessible content in soil samples, whereas the SBET method estimated higher bioaccessible content in sediment samples. In multivariate analysis, two groups of bioaccessibility tests arise: one with the two nitric acid tests, and the other with SBET and the gastric phase of the IVG protocol. The addition of pepsin and glycine in the last two tests suggests a more reliable test for assessing mercury bioaccessibility.
Collapse
Affiliation(s)
- Isabela C F Vasques
- Departamento de Solos, Avenida PH Rolfs, Universidade Federal de Viçosa, Viçosa, 36570-000, Minas Gerais, Brazil
| | - Francielle R D Lima
- Departamento de Ciência do Solo, Avenida Dr Sylvio Menecucci, Universidade Federal de Lavras, Lavras, 37200-900, Minas Gerais, Brazil
| | - Jakeline R Oliveira
- Departamento de Ciência do Solo, Avenida Dr Sylvio Menecucci, Universidade Federal de Lavras, Lavras, 37200-900, Minas Gerais, Brazil
| | - Everton G de Morais
- Departamento de Ciência do Solo, Avenida Dr Sylvio Menecucci, Universidade Federal de Lavras, Lavras, 37200-900, Minas Gerais, Brazil
| | - Polyana Pereira
- Departamento de Ciência do Solo, Avenida Dr Sylvio Menecucci, Universidade Federal de Lavras, Lavras, 37200-900, Minas Gerais, Brazil
| | - Luiz Roberto G Guilherme
- Departamento de Ciência do Solo, Avenida Dr Sylvio Menecucci, Universidade Federal de Lavras, Lavras, 37200-900, Minas Gerais, Brazil
| | - João José Marques
- Departamento de Ciência do Solo, Avenida Dr Sylvio Menecucci, Universidade Federal de Lavras, Lavras, 37200-900, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Wang X, Wang WX. Determination of the Low Hg Accumulation in Rabbitfish ( Siganus canaliculatus) by Various Elimination Pathways: Simulation by a Physiologically Based Pharmacokinetic Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7440-7449. [PMID: 32408739 DOI: 10.1021/acs.est.0c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) in fish poses a great threat to human health. Consumption of low-Hg-level fish species (e.g., rabbitfish, Siganus canaliculatus) could be one possible solution to balance the nutrient benefits and Hg exposure. However, the underlying mechanisms for the low Hg accumulation in rabbitfish remain unclear. This study quantitatively described the disposition of inorganic Hg(II) and methylmercury (MeHg) in rabbitfish under different exposure routes by constructing a physiologically based pharmacokinetic (PBPK) model. The results strongly suggested that effective elimination (estimated rate constant of 0.060, 0.065, and 0.020 d-1 for waterborne Hg(II)-, dietary Hg(II)-, and MeHg-exposed fish, respectively) was the main reason for the low Hg accumulation in rabbitfish. By quantifying the possible pathways for Hg elimination, our study revealed that biliary coupled with fecal excretion played an important role in the elimination of dietary Hg. Although the biliary excretion rate for MeHg was remarkable (6.8 ± 2.2 d-1) and the excreted amount per day could reach up to 790 ng, most of the MeHg in the bile was reabsorbed by the intestine and transferred back to the liver through enterohepatic circulation, leading to a prolonged retention time in the fish body. Moreover, branchial excretion dominated the Hg(II) elimination following aqueous exposure, suggesting a flexible alteration on elimination pathways against different exposure scenarios. The present study provided important understanding of the unique strategies adopted by rabbitfish to maintain the low Hg levels.
Collapse
Affiliation(s)
- Xun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|