1
|
Iglesias-Guevara D, Sánchez-Torres P. Characterization of antifungal properties of avocado leaves and majagua flowers extracts and their potential application to control Alternaria alternata. Int J Food Microbiol 2024; 413:110579. [PMID: 38277871 DOI: 10.1016/j.ijfoodmicro.2024.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Plant extracts are used as an alternative to a wide range of foods against different types of fungal pathogens. In the present study, the extracts of avocado leaves (Persea americana) and majagua flowers (Talipariti elatum) were tested according to their antifungal activity against different fungi. The most promising extracts were those of majagua flowers that were applied lyophilized and in aqueous extract, being very effective against Alternaria alternata and reaching a 50 % in vitro reduction. Antifungal properties were also evaluated during infection of apples by A. alternata. A decrease in infection progression was confirmed with up to a 30 % reduction in disease incidence and a 20 % reduction in disease severity. Majagua extracts were also tested combined with edible pectin coatings, greatly increasing their effectiveness up 60 % reduction. Thus, extracts of majagua could provide a feasible alternative to control fungal pathogens during postharvest.
Collapse
Affiliation(s)
- Dairon Iglesias-Guevara
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain; Faculty of Pharmacy and Food (IFAL), Havana University, Havana, Cuba
| | - Paloma Sánchez-Torres
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
2
|
Zhou R, Dzomba P, Gwatidzo L. Formulation of a herbal topical cream against Tinea capitis using flavonoids glycosides from Dicerocaryum senecioides and Diospyros mespiliformis. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Abstract
Topical fungal infections including, Tinea capitis with escalating resistance to conventional therapies are a rising concern globally. Studies have shown substantial in vitro efficacy of plant compounds against fungal pathogens. This study utilized flavonoid glycosides from Dicerocaryum senecioides and Diospyros mespiliformis as active compounds to formulate a topical cream against Tinea capitis. The in vitro test utilized disc diffusion assay prepared from fungal isolates obtained from individuals showing resistance to topical miconazole. Clinical trials were performed using volunteers. Both isolated strains exhibited substantial in vitro susceptibility to the cream formulation with inhibition zones ranging between 10 and 18 mm. MIC values for both test organisms ranged between 85 mg/ml and 120 mg/ml. The cream showed stability both physico-chemically and against microbial contamination. Physicochemical parameters evaluated include colour, pH, appearance, particle size, phase separation, phase inversion, creaming, spread-ability, electrical conductivity and in vitro occlusivity test and were within the accepted range. In limited clinical trials using volunteers, Tinea capitis started disappearing as from day 5 by topically applying the cream twice per day. All the patients were completely healed by the 7th day. The results of the study showed that flavonoid glycosides from D. senecioides and D. mespiliformis are good candidates to be utilized as active natural compounds against Tinea capitis resistant strains. Therefore more clinical trials and structural elucidations are recommended.
Collapse
Affiliation(s)
- Rudo Zhou
- Department of Chemistry , Bindura University of Science Education , Bindura , Zimbabwe
| | - Pamhidzai Dzomba
- Department of Chemistry , Bindura University of Science Education , Bindura , Zimbabwe
| | - Luke Gwatidzo
- Department of Chemistry , Bindura University of Science Education , Bindura , Zimbabwe
| |
Collapse
|
3
|
Qiao J, Lu G, Wu G, Liu H, Wang W, Zhang T, Xie G, Qin M. Influence of different pretreatments and drying methods on the chemical compositions and bioactivities of Smilacis Glabrae Rhizoma. Chin Med 2022; 17:54. [PMID: 35524264 PMCID: PMC9074193 DOI: 10.1186/s13020-022-00614-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background The processing of medicinal plant materials is one of the important factors influencing the components and biological activities of TCMs. Smilax glabra Roxb. is an herbal vine widely distributed in China, and its dried rhizome (Smilacis Glabrae Rhizoma, SGR) is often used in traditional medicines and functional foods. The processing methods of fresh cutting for SGR slices have been included in ancient Chinese herbal works, some local standards of TCMs, and the current Chinese Pharmacopoeia. Nevertheless, to date, the scientific basis for the processing of fresh medicinal materials for SGR slices has not been revealed. Methods To optimize the processing method for preparing SGR slices from the fresh rhizomes, the chemical compositions of the un-pretreated and pretreated (boiling, steaming) samples before and after drying (sun-drying, shade-drying, oven-drying), and the contents of astilbin isomers in dried SGR were analyzed by UHPLC-Q-TOF-MS/MS and UHPLC-DAD methods, respectively. Then, the antioxidant, anti-inflammatory, xanthine oxidase and α-glucosidase inhibitory activities of the prepared SGR slices were investigated by biological assays. Results A total of fifty-two compounds were identified from the un-pretreated and pretreated samples and a total of forty-nine compounds were identified from the subsequently dried samples. After pretreated by boiling and steaming, the contents of neoastilbin, neoisoastilbin, and isoastilbin in the prepared samples all increased. As a quality marker of SGR, the content of astilbin was unchanged or decreased slightly compared with that in the un-pretreated samples. During the drying process, the contents of the four astilbin stereoisomers in the un-pretreated samples increased significantly, while those in the pretreated samples had a slight increase or decrease. The effects of different processing methods were sorted according to the bioactivities of the prepared SGR. As a result, SGR slices prepared with no pretreatment followed by a sun-drying process have a higher astilbin content, better bioactivities and more energy savings, representing the optimum processing method for SGR slices. Conclusions This study reveals the scientific basis for the processing of fresh medicinal materials for SGR slices. The results provide scientific information for the quality control of SGR and its rational applications in herbal medicines and functional foods. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00614-7.
Collapse
Affiliation(s)
- Juanjuan Qiao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gengyu Lu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gang Wu
- The Teaching Experiments Center of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Liu
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000, China
| | - Wanli Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianmao Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA, Chávez-González ML, Contreras-Esquivel JC, Aguilar CN. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021; 10:3152. [PMID: 34945704 PMCID: PMC8701411 DOI: 10.3390/foods10123152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Procyanidins are an important group of bioactive molecules known for their benefits to human health. These compounds are promising in the treatment of chronic metabolic diseases such as cancer, diabetes, and cardiovascular disease, as they prevent cell damage related to oxidative stress. It is necessary to study effective extraction methods for the recovery of these components. In this review, advances in the recovery of procyanidins from agro-industrial wastes are presented, which are obtained through ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, pressurized fluid extraction and subcritical water extraction. Current trends focus on the extraction of procyanidins from seeds, peels, pomaces, leaves and bark in agro-industrial wastes, which are extracted by ultrasound. Some techniques have been coupled with environmentally friendly techniques. There are few studies focused on the extraction and evaluation of biological activities of procyanidins. The identification and quantification of these compounds are the result of the study of the polyphenolic profile of plant sources. Antioxidant, antibiotic, and anti-inflammatory activity are presented as the biological properties of greatest interest. Agro-industrial wastes can be an economical and easily accessible source for the extraction of procyanidins.
Collapse
Affiliation(s)
- Leidy Johana Valencia-Hernandez
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Jorge E. Wong-Paz
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles C.P. 79010, SL, Mexico;
| | - Juan Alberto Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Juan Carlos Contreras-Esquivel
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| |
Collapse
|
5
|
Fu Y, Wang W, Zeng Q, Wang T, Qian W. Antibiofilm Efficacy of Luteolin Against Single and Dual Species of Candida albicans and Enterococcus faecalis. Front Microbiol 2021; 12:715156. [PMID: 34721318 PMCID: PMC8555412 DOI: 10.3389/fmicb.2021.715156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/08/2021] [Indexed: 12/04/2022] Open
Abstract
Candida albicans and Enterococcus faecalis biofilm-associated infections have been a huge challenge to the medical community. However, the efficacy of natural products against mixed biofilms of C. albicans and E. faecalis still remains largely unexploited. The aim of this study was to evaluate the efficacy of luteolin against planktonic cell growth, adhesion, and biofilm formation of C. albicans and E. faecalis in single and mixed cultures in vitro. The results showed that the minimum inhibitory concentrations of luteolin against planktonic cells of C. albicans, E. faecalis, and mixed cultures were 32 and 64 μg ml–1, respectively. The results displayed that a remarkable variation in biofilm biomass, viability, structure, and composition of single and dual-species biofilms formed by mono- and dual-species biofilms of C. albicans and E. faecalis in the presence of luteolin was confirmed by mainly crystal violet staining assay (CVSA), optical microscope, field emission scanning electron microscope (FESEM), and confocal laser scanning microscope (CLSM). The tolerance of luteolin-treated single- and dual-species biofilms to antibiotics was found to obviously decrease, and the loss of biofilm matrix components (mainly polysaccharides and proteins) was revealed by CLSM. Moreover, luteolin was effective at inactivating biofilm cells, as well as destructing preformed biofilm structures by single and dual species by CVSA, FESEM, and CLSM. Collectively, these data indicate the potential of luteolin as a promising antibiofilm agent for the therapeutic management of biofilm-related infections induced by single and dual species of C. albicans and E. faecalis.
Collapse
Affiliation(s)
- Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenjing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Qiao Zeng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
6
|
Solís-Salas LM, Sierra-Rivera CA, Cobos-Puc LE, Ascacio-Valdés JA, Silva-Belmares SY. Antibacterial Potential by Rupture Membrane and Antioxidant Capacity of Purified Phenolic Fractions of Persea americana Leaf Extract. Antibiotics (Basel) 2021; 10:508. [PMID: 33946930 PMCID: PMC8146011 DOI: 10.3390/antibiotics10050508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
The present research focused on evaluating the antibacterial effect and the mechanism of action of partially purified fractions of an extract of Persea americana. Furthermore, both its antioxidant capacity and composition were evaluated. The extract was fractionated by vacuum liquid chromatography. The antimicrobial effect against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 11229), Pseudomonas aeruginosa (ATCC 15442), and Salmonella choleraesuis (ATCC 1070) was analyzed by microdilution and the mechanism of action by the Sytox green method. The antioxidant capacity was determined by DPPH, FRAP, and ABTS techniques and the composition by Rp-HPLC-MS. All fractions showed a concentration-dependent antibacterial effect. Fractions F3, F4, and F5 (1000 µg/mL) showed a better antibacterial effect than the extract against the bacteria mentioned. The F3 fraction showed inhibition of 95.43 ± 3.04% on S. aureus, F4 showed 93.30 ± 0.52% on E. coli, and F5 showed 88.63 ± 1.15% on S. choleraesuis and 86.46 ± 3.20% on P. aeruginosa. The most susceptible strain to the treatment with the extract was S. aureus. Therefore, in this strain, the bacterial membrane damage induced by the extract and fractions was evidenced by light fluorescence microscopy. Furthermore, the extract had better antioxidant action than each fraction. Finally, sinensitin was detected in F3 and cinnamoyl glucose, caffeoyl tartaric acid, and cyanidin 3-O-(6''-malonyl-3''-glucosyl-glucoside) were detected in F4; esculin and kaempferide, detected in F5, could be associated with the antibacterial and antioxidant effect.
Collapse
Affiliation(s)
| | | | | | | | - Sonia Yesenia Silva-Belmares
- Department of Food Science and Technology, Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo 25280, Mexico; (L.M.S.-S.); (C.A.S.-R.); (L.E.C.-P.); (J.A.A.-V.)
| |
Collapse
|
7
|
Al Aboody MS, Mickymaray S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel) 2020; 9:E45. [PMID: 31991883 PMCID: PMC7168129 DOI: 10.3390/antibiotics9020045] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of fungal infections is growing at an alarming pace and the pathogenesis is still not clearly understood. Recurrence of these fungal diseases is often due to their evolutionary avoidance of antifungal resistance. The development of suitable novel antimicrobial agents for fungal diseases continues to be a major problem in the current clinical field. Hence, it is urgently necessary to develop surrogate agents that are more effective than conventional available drugs. Among the remarkable innovations from earlier investigations on natural-drugs, flavonoids are a group of plant-derived substances capable of promoting many valuable effects on humans. The identification of flavonoids with possible antifungal effects at small concentrations or in synergistic combinations could help to overcome this problem. A combination of flavonoids with available drugs is an excellent approach to reduce the side effects and toxicity. This review focuses on various naturally occurring flavonoids and their antifungal activities, modes of action, and synergetic use in combination with conventional drugs.
Collapse
Affiliation(s)
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Riyadh Region, Majmaah 11952, Saudi Arabia;
| |
Collapse
|