1
|
Marzari A, Racotta IS, Escobedo-Fregoso C, Artigaud S, Kraffe E, Salgado-García RL. Reproductive effort affects cellular response in the mantle of Nodipecten subnodosus scallops exposed to acute hyperthermia. Comp Biochem Physiol A Mol Integr Physiol 2024:111766. [PMID: 39426584 DOI: 10.1016/j.cbpa.2024.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
In marine ecosystems, temperature regulates the energy metabolism of animals. In the last decades, the temperature increase was related to mass mortality events of marine ectotherms, particularly during high-energy investment for reproduction. In scallops, the mantle has been poorly investigated while this tissue covers more than 40 % of the body mass, contributing to the perception of surrounding environmental stimuli. Our aim was to assess the cellular and molecular responses linked to energy metabolism in the mantle of adult N. subnodosus facing acute hyperthermia during reproductive effort. Scallops collected in spring (late gametogenesis) and summer (ripe gonads) were exposed to a control temperature (22 °C) or acute hyperthermia (30 °C) for 24 h. In spring, increased arginine kinase (AK) activity together with increased pyruvate kinase/citrate synthase ratio (PK/CS) suggested an enhanced carbohydrate, pyruvate, and arginine metabolism to maintain the adenylate energy charge (AEC) in the mantle of scallops coping with acute thermal increase. In summer, animals decreased their AEC (5 %) and arginine phosphate pool (40 %) and increased their anaerobic metabolism as shown by enhanced activities of lactate-dehydrogenase (LDH) and octopine dehydrogenase (ODH), respectively. The abundance of twenty proteins involved in energy metabolism (isocitrate dehydrogenase, ATP synthase subunit β), protein protection (cognates heat shock protein 70), and cytoskeleton (actins and tubulins) were affected only by season. These results underlie the role of the mantle of N. subnodosus in the seasonal responses of this tissue to thermal fluctuations during reproductive effort with possible implications for the physiological performance of scallops under heat waves in wild or harvest conditions.
Collapse
Affiliation(s)
- A Marzari
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - I S Racotta
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| | - C Escobedo-Fregoso
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| | - S Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - E Kraffe
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - R L Salgado-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| |
Collapse
|
2
|
Sun YX, Hu LS, Dong YW. Microhabitat-specific diurnal metabolomic responses of the intertidal limpet Cellana toreuma to winter low temperature. iScience 2023; 26:106128. [PMID: 36852273 PMCID: PMC9958412 DOI: 10.1016/j.isci.2023.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
High-throughput determination of circadian rhythms in metabolic response and their divergent patterns in various microhabitats are crucial for understanding how organisms respond to environmental stresses. A mid-intertidal limpet Cellana toreuma was collected at various time points across both daytime and nighttime in winter during low tide for investigating the diurnal metabolomic responses to cold stress and elucidating the divergent metabolic responses to temperature variations across microhabitats. Temperatures of emergent rock microhabitats were lower than the tidal pool and even aggravated at night. A series of metabolomic responses exhibited coordinated diurnal changes in winter. Metabolic responses which were associated with cellular stress responses and energy metabolism of emergent rock microhabitat individuals were highly induced compared to the tidal pool ones. This study shed light on the diurnal patterns of metabolomic responses of intertidal molluscs in the field and emphasized the variations in metabolic responses between microhabitats.
Collapse
Affiliation(s)
- Yong-Xu Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Li-Sha Hu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
3
|
Leung C, Guscelli E, Chabot D, Bourret A, Calosi P, Parent GJ. The lack of genetic variation underlying thermal transcriptomic plasticity suggests limited adaptability of the Northern shrimp, Pandalus borealis. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
IntroductionGenetic variation underlies the populations’ potential to adapt to and persist in a changing environment, while phenotypic plasticity can play a key role in buffering the negative impacts of such change at the individual level.MethodsWe investigated the role of genetic variation in the thermal response of the northern shrimp Pandalus borealis, an ectotherm species distributed in the Arctic and North Atlantic Oceans. More specifically, we estimated the proportion transcriptomic responses explained by genetic variance of female shrimp from three origins after 30 days of exposure to three temperature treatments.ResultsWe characterized the P. borealis transcriptome (170,377 transcripts, of which 27.48% were functionally annotated) and then detected a total of 1,607 and 907 differentially expressed transcripts between temperatures and origins, respectively. Shrimp from different origins displayed high but similar level of transcriptomic plasticity in response to elevated temperatures. Differences in transcript expression among origins were not correlated to population genetic differentiation or diversity but to environmental conditions at origin during sampling.DiscussionThe lack of genetic variation explaining thermal plasticity suggests limited adaptability in this species’ response to future environmental changes. These results together with higher mortality observed at the highest temperature indicate that the thermal niche of P. borealis will likely be restricted to higher latitudes in the future. This prediction concurs with current decreases in abundance observed at the southern edge of this species geographical distribution, as it is for other cold-adapted crustaceans.
Collapse
|
4
|
Biełło KA, Lucena C, López-Tenllado FJ, Hidalgo-Carrillo J, Rodríguez-Caballero G, Cabello P, Sáez LP, Luque-Almagro V, Roldán MD, Moreno-Vivián C, Olaya-Abril A. Holistic view of biological nitrogen fixation and phosphorus mobilization in Azotobacter chroococcum NCIMB 8003. Front Microbiol 2023; 14:1129721. [PMID: 36846808 PMCID: PMC9945222 DOI: 10.3389/fmicb.2023.1129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Nitrogen (N) and phosphorus (P) deficiencies are two of the most agronomic problems that cause significant decrease in crop yield and quality. N and P chemical fertilizers are widely used in current agriculture, causing environmental problems and increasing production costs. Therefore, the development of alternative strategies to reduce the use of chemical fertilizers while maintaining N and P inputs are being investigated. Although dinitrogen is an abundant gas in the atmosphere, it requires biological nitrogen fixation (BNF) to be transformed into ammonium, a nitrogen source assimilable by living organisms. This process is bioenergetically expensive and, therefore, highly regulated. Factors like availability of other essential elements, as phosphorus, strongly influence BNF. However, the molecular mechanisms of these interactions are unclear. In this work, a physiological characterization of BNF and phosphorus mobilization (PM) from an insoluble form (Ca3(PO4)2) in Azotobacter chroococcum NCIMB 8003 was carried out. These processes were analyzed by quantitative proteomics in order to detect their molecular requirements and interactions. BNF led to a metabolic change beyond the proteins strictly necessary to carry out the process, including the metabolism related to other elements, like phosphorus. Also, changes in cell mobility, heme group synthesis and oxidative stress responses were observed. This study also revealed two phosphatases that seem to have the main role in PM, an exopolyphosphatase and a non-specific alkaline phosphatase PhoX. When both BNF and PM processes take place simultaneously, the synthesis of nitrogenous bases and L-methionine were also affected. Thus, although the interdependence is still unknown, possible biotechnological applications of these processes should take into account the indicated factors.
Collapse
Affiliation(s)
- Karolina A. Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. López-Tenllado
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Jesús Hidalgo-Carrillo
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain,*Correspondence: Alfonso Olaya-Abril,
| |
Collapse
|
5
|
Bultelle F, Boutet I, Devin S, Caza F, St-Pierre Y, Péden R, Brousseau P, Chan P, Vaudry D, Le Foll F, Fournier M, Auffret M, Rocher B. Molecular response of a sub-antarctic population of the blue mussel (Mytilus edulis platensis) to a moderate thermal stress. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105393. [PMID: 34217095 DOI: 10.1016/j.marenvres.2021.105393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The Kerguelen Islands (49°26'S, 69°50'E) represent a unique environment due to their geographical isolation, which protects them from anthropogenic pollution. The ability of the endemic mussel, part of the Mytilus complex, to cope with moderate heat stress was explored using omic tools. Transcripts involved in six major metabolic functions were selected and the qRT-PCR data indicated mainly changes in aerobic and anaerobic energy metabolism and stress response. Proteomic comparisons revealed a typical stress response pattern with cytoskeleton modifications and elements suggesting increased energy metabolism. Results also suggest conservation of protein homeostasis by the long-lasting presence of HSP while a general decrease in transcription is observed. The overall findings are consistent with an adaptive response to moderate stresses in mussels in good physiological condition, i.e. living in a low-impact site, and with the literature concerning this model species. Therefore, local blue mussels could be advantageously integrated into biomonitoring strategies, especially in the context of Global Change.
Collapse
Affiliation(s)
- F Bultelle
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - I Boutet
- Station Biologique de Roscoff CNRS, Laboratory Adaptation & Diversity in Marine Environment (UMR7144 CNRS-SU), Sorbonne Université, Roscoff, France.
| | - S Devin
- UMR 7360 LIEC, Université Metz-Lorraine, France.
| | - F Caza
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Y St-Pierre
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - R Péden
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France; UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, Université de REIMS Champagne-Ardenne, Campus Moulin de la Housse, 51687, Reims, France.
| | - P Brousseau
- Institut des Sciences de la mer, Le Parc de la rivière Mitis, Sainte-Flavie, Québec, G0J 2L0, Canada.
| | - P Chan
- Normandie Univ, UNIROUEN, Plateforme PISSARO, IRIB, 76821, Mont-Saint-Aignan, France.
| | - D Vaudry
- Normandie Univ, UNIROUEN, Plateforme PISSARO, IRIB, 76821, Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, INSERM U1239 DC2N, 76821, Mont-Saint-Aignan, France.
| | - F Le Foll
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - M Fournier
- Institut des Sciences de la mer, Le Parc de la rivière Mitis, Sainte-Flavie, Québec, G0J 2L0, Canada.
| | - M Auffret
- UMR CNRS 6539-LEMAR/ Laboratoire des Sciences de l'Environnement Marin, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - B Rocher
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| |
Collapse
|
6
|
Madeira D, Fernandes JF, Jerónimo D, Ricardo F, Santos A, Domingues MR, Calado R. Calcium homeostasis and stable fatty acid composition underpin heatwave tolerance of the keystone polychaete Hediste diversicolor. ENVIRONMENTAL RESEARCH 2021; 195:110885. [PMID: 33609552 DOI: 10.1016/j.envres.2021.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Extreme weather events, such as heatwaves, are becoming increasingly frequent, long-lasting and severe as global climate change continues, shaping marine biodiversity patterns worldwide. Increased risk of overheating and mortality across major taxa have been recurrently observed, jeopardizing the sustainability of ecosystem services. Molecular responses of species, which scale up to physiological and population responses, are determinant processes that modulate species sensitivity or tolerance to extreme weather events. Here, by integrating proteomic, fatty acid profiling and physiological approaches, we show that the tolerance of the intertidal ragworm Hediste diversicolor, a keystone species in estuarine ecosystems and an emergent blue bio-resource, to long-lasting heatwaves (24 vs 30 °C for 30 days) is shaped by calcium homeostasis, immune function and stability of fatty acid profiles. These features potentially enabled H. diversicolor to increase its thermal tolerance limit by 0.81 °C under the heatwave scenario and maintain survival. No growth trade-offs were detected, as wet weight remained stable across conditions. Biological variation of physiological parameters was lower when compared to molecular measures. Proteins showed an overall elevated coefficient of variation, although decreasing molecular variance under the heatwave scenario was observed for both proteins and fatty acids. This finding is consistent with the phenomenon of physiological canalization in extreme environments and contradicts the theory that novel conditions increase trait variation. Our results show that keystone highly valued marine polychaetes are tolerant to heatwaves, confirming the potential of H. diversicolor as a blue bio-resource and opening new avenues for sustainable marine aquaculture development.
Collapse
Affiliation(s)
- Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal; UCIBIO, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; University of Quebec in Rimouski (UQAR), Department of Biology, Chemistry and Geography, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
| | - Joana Filipa Fernandes
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Daniel Jerónimo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Fernando Ricardo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Andreia Santos
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal.
| |
Collapse
|