1
|
Liu J, Zhu M, Shi X, Hui C, Sun Y, Zhang R, Jin D, Li Z, Chen H, Zhao Z. Cascading impacts of nitrogen deposition on soil microbiome and herbivore communities in desert steppes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176892. [PMID: 39419226 DOI: 10.1016/j.scitotenv.2024.176892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Human activities in the last century have intensified global nitrogen deposition, resulting in the degradation of ecosystem function and loss of biodiversity worldwide. Nitrogen addition is a crucial method for examining the effects of atmospheric nitrogen deposition on species composition and structure of soil microbiome and biotic community, as exogenous nitrogen inputs can trigger cascading effects on ecosystem functions. In a 6-year experiment, we evaluated the impact of nitrogen addition on soil microbial-plant-insect systems in desert steppes. Our results show that nitrogen addition significantly altered soil microbial composition and ecological function, leading to a decrease in nitrogen-fixing bacteria and an increase in saprophytic fungi. High levels of nitrogen addition increased total plant biomass while decreasing species diversity. Additionally, high nitrogen addition levels suppressed below-ground biomass of gramineae and legumes compared to low nitrogen addition. Nitrogen addition also increased herbivore abundance by altering insect community structure, particularly benefiting chewing pests over sucking pests, thus heightening the risk of biological disasters through trophic cascading effects. Consequently, excessive nitrogen addition may destabilize desert steppe ecosystems by disturbing soil microbial-plant-insect interactions, hindering the maintenance of biotic community diversity and steppe productivity.
Collapse
Affiliation(s)
- Jingxi Liu
- Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China
| | - Mengmeng Zhu
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiangfeng Shi
- Institute of Design and Agricultural Survey in Ningxia, Yinchuan 750002, China
| | - Cang Hui
- Department of Mathematical Sciences, Centre for Invasion Biology, Stellenbosch University, Matieland 7600, South Africa; Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town 7100, South Africa
| | - Yurong Sun
- Institute of Design and Agricultural Survey in Ningxia, Yinchuan 750002, China
| | - Rong Zhang
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Decai Jin
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihong Li
- Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China
| | - Honghao Chen
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zihua Zhao
- Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Goforth M, Obergh V, Park R, Porchas M, Brierley P, Turni T, Patil B, Ravishankar S, Huynh S, Parker CT, Cooper KK. Bacterial diversity of cantaloupes and soil from Arizona and California commercial fields at the point of harvest. PLoS One 2024; 19:e0307477. [PMID: 39325812 PMCID: PMC11426484 DOI: 10.1371/journal.pone.0307477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/05/2024] [Indexed: 09/28/2024] Open
Abstract
Across the United States, melons are a high demand crop reaching a net production of 2.7 million tons in 2020 with an economic value of $915 million dollars. The goal of this study was to characterize the bacterial diversity of cantaloupe rinds and soil from commercial melon fields at the point of harvest from two major production regions, Arizona, and California. Cantaloupes and composite soil samples were collected from three different commercial production fields, including Imperial Valley, CA, Central Valley, CA, and Yuma Valley, AZ, at the point of harvest over a three-month period, and 16S rRNA gene amplicon sequencing was used to assess bacterial diversity and community structure. The Shannon Diversity Index showed higher diversity among soil compared to the cantaloupe rind regardless of the sampling location. Regional diversity of soil differed significantly, whereas there was no difference in diversity on cantaloupe surfaces. Bray-Curtis Principal Coordinate Analysis (PCoA) dissimilarity distance matrix found the samples clustered by soil and melon individually, and then clustered tighter by region for the soil samples compared to the cantaloupe samples. Taxonomic analysis found total families among the regions to be 52 for the soil samples and 12 among cantaloupes from all three locations, but composition and abundance did vary between the three locations. Core microbiome analysis identified two taxa shared among soil and cantaloupe which were Bacillaceae and Micrococcaceae. This study lays the foundation for characterizing the cantaloupe microbiome at the point of harvest that provides the cantaloupe industry with those bacterial families that are potentially present entering post-harvest processing, which could assist in improving cantaloupe safety, shelf-life, cantaloupe quality and other critical aspects of cantaloupe post-harvest practices.
Collapse
Affiliation(s)
- Madison Goforth
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
| | - Victoria Obergh
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
| | - Richard Park
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
| | - Martin Porchas
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Paul Brierley
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tom Turni
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- Produce Safety and Microbiology, Agricultural Research Services, USDA, Albany, California, United States of America
| | - Bhimanagouda Patil
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- USDA, Center of Excellence, Melons, Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas, United States of America
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
| | - Steven Huynh
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, Arizona, United States of America
| | - Craig T. Parker
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, Arizona, United States of America
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
3
|
Silva I, Alves M, Malheiro C, Silva ARR, Loureiro S, Henriques I, González-Alcaraz MN. Structural and Functional Shifts in the Microbial Community of a Heavy Metal-Contaminated Soil Exposed to Short-Term Changes in Air Temperature, Soil Moisture and UV Radiation. Genes (Basel) 2024; 15:107. [PMID: 38254996 PMCID: PMC10815596 DOI: 10.3390/genes15010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The interplay between metal contamination and climate change may exacerbate the negative impact on the soil microbiome and, consequently, on soil health and ecosystem services. We assessed the response of the microbial community of a heavy metal-contaminated soil when exposed to short-term (48 h) variations in air temperature, soil humidity or ultraviolet (UV) radiation in the absence and presence of Enchytraeus crypticus (soil invertebrate). Each of the climate scenarios simulated significantly altered at least one of the microbial parameters measured. Irrespective of the presence or absence of invertebrates, the effects were particularly marked upon exposure to increased air temperature and alterations in soil moisture levels (drought and flood scenarios). The observed effects can be partly explained by significant alterations in soil properties such as pH, dissolved organic carbon, and water-extractable heavy metals, which were observed for all scenarios in comparison to standard conditions. The occurrence of invertebrates mitigated some of the impacts observed on the soil microbial community, particularly in bacterial abundance, richness, diversity, and metabolic activity. Our findings emphasize the importance of considering the interplay between climate change, anthropogenic pressures, and soil biotic components to assess the impact of climate change on terrestrial ecosystems and to develop and implement effective management strategies.
Collapse
Affiliation(s)
- Isabel Silva
- CEF (Center for Functional Ecology), Associate Laboratory TERRA, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Marta Alves
- CBQF (Center for Biotechnology and Fine Chemistry), School of Biotechnology, Portuguese Catholic University, 4169-005 Porto, Portugal;
| | - Catarina Malheiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Ana Rita R. Silva
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Susana Loureiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Isabel Henriques
- CEF (Center for Functional Ecology), Associate Laboratory TERRA, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - M. Nazaret González-Alcaraz
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
- Department of Agricultural Engineering of the E.T.S.I.A., Technical University of Cartagena, 30203 Cartagena, Spain
| |
Collapse
|
4
|
Jia J, Hu G, Ni G, Xie M, Li R, Wang G, Zhang J. Bacteria drive soil multifunctionality while fungi are effective only at low pathogen abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167596. [PMID: 37802347 DOI: 10.1016/j.scitotenv.2023.167596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
The positive correlation between soil biodiversity and multifunctionality has gained widespread recognition. However, the impact of plant pathogens on soil multifunctionality and its relationship with microbial diversity remains understudied. To address this knowledge gap, we collected soil samples from three Hami melon (Cucumis melo L.) planting sites with varying monoculture durations (1, 3, and 5 years). We sequenced the bacterial and fungal communities in these samples and quantified multifunctionality. The results revealed a significant increase in the relative abundance of fungal pathogens over the years of planting, which influenced the correlations between microbial diversity and multifunctionality at a threshold value of 0.01. Both bacterial and fungal richness positively influenced multifunctionality when fungal pathogen abundance was low (< 0.01), whereas only bacterial richness showed a positive correlation with multifunctionality under high fungal pathogen abundance (> 0.01) conditions. Both bacterial and fungal communities were primarily governed by deterministic processes. However, only bacterial community assembly drove soil multifunctionality, showing positive correlations with multifunctionality dissimilarity under low fungal pathogen abundance condition and negative correlations under high fungal pathogen abundance condition, reflecting distinct pathogen pressures. Structural equaling modeling further confirmed the distinct roles of bacterial and fungal richness and composition in promoting multifunctionality under different fungal pathogen condition. Our findings provide evidence that shifts in fungal pathogen abundance alter the balance and interactions between biodiversity and multifunctionality and highlight the importance of engineering biotic interactions in determining soil functioning in agroecosystems.
Collapse
Affiliation(s)
- Jiyu Jia
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China; Department of Soil Quality, Wageningen University & Research, P.O. Box 47, 6700AA Wageningen, the Netherlands
| | - Guozhi Hu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China; Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Gang Ni
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Muxi Xie
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Ruipeng Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Guangzhou Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
| | - Junling Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Cheng X, Xiang X, Yun Y, Wang W, Wang H, Bodelier PLE. Archaea and their interactions with bacteria in a karst ecosystem. Front Microbiol 2023; 14:1068595. [PMID: 36814573 PMCID: PMC9939782 DOI: 10.3389/fmicb.2023.1068595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Karst ecosystems are widely distributed around the world, accounting for 15-20% of the global land area. However, knowledge on microbial ecology of these systems does not match with their global importance. To close this knowledge gap, we sampled three niches including weathered rock, sediment, and drip water inside the Heshang Cave and three types of soils overlying the cave (forest soil, farmland soil, and pristine karst soil). All these samples were subjected to high-throughput sequencing of V4-V5 region of 16S rRNA gene and analyzed with multivariate statistical analysis. Overall, archaeal communities were dominated by Thaumarchaeota, whereas Actinobacteria dominated bacterial communities. Thermoplasmata, Nitrosopumilaceae, Aenigmarchaeales, Crossiella, Acidothermus, and Solirubrobacter were the important predictor groups inside the Heshang Cave, which were correlated to NH4 + availability. In contrast, Candidatus Nitrososphaera, Candidatus Nitrocosmicus, Thaumarchaeota Group 1.1c, and Pseudonocardiaceae were the predictors outside the cave, whose distribution was correlated with pH, Ca2+, and NO2 -. Tighter network structures were found in archaeal communities than those of bacteria, whereas the topological properties of bacterial networks were more similar to those of total prokaryotic networks. Both chemolithoautotrophic archaea (Candidatus Methanoperedens and Nitrosopumilaceae) and bacteria (subgroup 7 of Acidobacteria and Rokubacteriales) were the dominant keystone taxa within the co-occurrence networks, potentially playing fundamental roles in obtaining energy under oligotrophic conditions and thus maintaining the stability of the cave ecosystem. To be noted, all the keystone taxa of karst ecosystems were related to nitrogen cycling, which needs further investigation, particularly the role of archaea. The predicted ecological functions in karst soils mainly related to carbohydrate metabolism, biotin metabolism, and synthesis of fatty acid. Our results offer new insights into archaeal ecology, their potential functions, and archaeal interactions with bacteria, which enhance our understanding about the microbial dark matter in the subsurface karst ecosystems.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
6
|
Wu Y, Sun J, Yu P, Zhang W, Lin Y, Ma D. The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiol 2022; 22:232. [PMID: 36180838 PMCID: PMC9523940 DOI: 10.1186/s12866-022-02648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background Weedy rice competes for nutrients and living space with cultivated rice, which results in serious reductions in rice production. The rhizosphere bacterial community plays an important role in nutrient competition between species. It is therefore important to clarify the differences in the diversities of the inter rhizosphere bacterial community between cultivated rice and weedy rice. The differences in compositions and co-occurrence networks of the rhizosphere bacterial community of cultivated rice and weedy rice are largely unknown and thus the aim of our study. Results In our study, the different rhizosphere bacterial community structures in weedy rice (AW), cultivated rice (AY) and cultivated rice surrounded by weedy rice (WY) were determined based on 16S rRNA gene sequencing. The majority of the WY rhizosphere was enriched with unique types of microorganisms belonging to Burkholderia. The rhizosphere bacterial community showed differences in relative abundance among the three groups. Network analysis revealed a more complex co-occurrence network structure in the rhizosphere bacterial community of AW than in those of AY and WY due to a higher degree of Microbacteriaceae and Micrococcaceae in the network. Both network analysis and functional predictions reveal that weedy rice contamination dramatically impacts the iron respiration of the rhizosphere bacterial community of cultivated rice. Conclusions Our study shows that there are many differences in the rhizosphere bacterial community of weedy rice and cultivated rice. When cultivated rice was disturbed by weedy rice, the rhizosphere bacterial community and co-occurrence network also changed. The above differences tend to lead to a nutritional competitive advantage for weedy rice in paddy soils. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02648-1.
Collapse
Affiliation(s)
- Yue Wu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Pengcheng Yu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Weiliang Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Youze Lin
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
7
|
Silva I, Alves M, Malheiro C, Silva ARR, Loureiro S, Henriques I, González-Alcaraz MN. Short-Term Responses of Soil Microbial Communities to Changes in Air Temperature, Soil Moisture and UV Radiation. Genes (Basel) 2022; 13:genes13050850. [PMID: 35627235 PMCID: PMC9142034 DOI: 10.3390/genes13050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 01/31/2023] Open
Abstract
We analyzed the effects on a soil microbial community of short-term alterations in air temperature, soil moisture and ultraviolet radiation and assessed the role of invertebrates (species Enchytraeus crypticus) in modulating the community’s response to these factors. The reference soil, Lufa 2.2, was incubated for 48 h, with and without invertebrates, under the following conditions: standard (20 °C + 50% water holding capacity (WHC)); increased air temperature (15–25 °C or 20–30 °C + 50% WHC); flood (20 °C + 75% WHC); drought (20 °C + 25% WHC); and ultraviolet radiation (UV) (20 °C + 50% WHC + UV). BIOLOG EcoPlates and 16S rDNA sequencing (Illumina) were used to assess the microbial community’s physiological profile and the bacterial community’s structure, respectively. The bacterial abundance (estimated by 16S rDNA qPCR) did not change. Most of the conditions led to an increase in microbial activity and a decrease in diversity. The structure of the bacterial community was particularly affected by higher air temperatures (20–30 °C, without E. crypticus) and floods (with E. crypticus). Effects were observed at the class, genera and OTU levels. The presence of invertebrates mostly resulted in the attenuation of the observed effects, highlighting the importance of considering microbiome–invertebrate interactions. Considering future climate changes, the effects described here raise concern. This study provides fundamental knowledge to develop effective strategies to mitigate these negative outcomes. However, long-term studies integrating biotic and abiotic factors are needed.
Collapse
Affiliation(s)
- Isabel Silva
- CEF (Center for Functional Ecology), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Marta Alves
- CBQF—Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, 4169-005 Porto, Portugal;
| | - Catarina Malheiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Ana Rita R. Silva
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Susana Loureiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Isabel Henriques
- CEF (Center for Functional Ecology), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- Correspondence: (I.H.); (M.N.G.-A.)
| | - M. Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203 Cartagena, Spain
- Correspondence: (I.H.); (M.N.G.-A.)
| |
Collapse
|
8
|
Synthesis and characterization of a novel controlled release nitrogen-phosphorus fertilizer hybrid nanocomposite based on banana peel cellulose and layered double hydroxides nanosheets. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|