1
|
Jiang Y, Wu J, Liu Z, He R, Zhang X, Huang K, Wu Y. Unveiling the impact of low-molecular-weight organic acids on enrofloxacin sorption in North China agricultural soil: Insights and implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123060. [PMID: 39447354 DOI: 10.1016/j.jenvman.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Low-molecular-weight organic acids (LMWOAs) play a crucial role as components of dissolved organic matter in soil, influencing the sorption/desorption, degradation, and plant uptake of diverse pollutants within the agricultural soil ecosystem. This study delves into the sorption behavior and mechanism of the fluoroquinolone antibiotic enrofloxacin (ENR) on agricultural soil in North China, focusing on the impact of LMWOAs. Through batch equilibrium experiments, we explored the sorption/desorption kinetics of ENR under varying conditions such as temperature, pH, ion strength, and ion type, with the addition of acetic acid, oxalic acid, and citric acid individually. Our findings reveal that the sorption and desorption kinetics of ENR-whether with or without LMWOAs-conformed well to the pseudo-second-order kinetic model (R2 ≥ 0.997). The presence of LMWOAs notably enhanced ENR sorption while impeding desorption in soil, with oxalic acid demonstrating the highest promotion effect followed by acetic acid and citric acid. Moreover, the sorption capacity and affinity of ENR decreased with rising solution pH, dropping from 96.8%-98.5% to 30.9%-34.4%. Acidic conditions favored ENR retention in soil, with inhibition of sorption escalating alongside increasing ionic strength. LMWOAs, soil solution pH, and coexisting ions emerge as pivotal factors shaping ENR sorption behavior. Furthermore, LMWOA presence intensified desorption hysteresis of ENR on soil, with a desorption hysteresis coefficient (HI) ≤ 0.124. These results suggest that LMWOAs restrict ENR mobility in the local soil environment, heightening the risk of its accumulation in soil and crops. This study offers valuable insights into the intricate interplay among LMWOAs, ENR sorption dynamics, and environmental outcomes, underscoring the importance of understanding such complexities in agricultural soil management.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Jiali Wu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zhewei Liu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Rui He
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaozhen Zhang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kui Huang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yingqin Wu
- Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Wu J, Jiang Y, He R, Liu Z, Zhang X, Wang W, Kong W, Wang G, Wu Y. Adsorption/desorption of enrofloxacin in farmland soil as the effect of pH and coexisting ions: implications for enrofloxacin fate and risk in loess soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:363. [PMID: 39126534 DOI: 10.1007/s10653-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Fluoroquinolone antibiotics have been extensively used in clinical treatments for human and animal diseases. However, their long-term presence in the environment increases the risk of producing resistance genes and creates a potential threat to ecosystems and the health of humans and animals. Batch equilibrium experiments were utilized to investigate the adsorption and retention behavior and mechanism of the quinolone antibiotic enrofloxacin (ENR) in farmland soil in North China. The adsorption and desorption kinetics of ENR in soil were best fitted by pseudo-second-order model (R2 > 0.999). Both the adsorption and desorption processes of ENR in soil reached equilibrium in 1 h. The desorption amounts of ENR were significantly lower than the adsorption amounts, with the hysteresis coefficient (HI) being less than 0.7. The adsorption thermodynamic process of ENR followed the Linear and Freundlich models (0.965 < R2 < 0.985). Hydrophobic distribution and heterogeneous multimolecular layer adsorption were identified as critical factors in the adsorption process. The adsorption amount of ENR gradually decreased with increasing temperature and the initial concentration of ENR. The adsorption rate of ENR was above 80%, while the desorption rate remained below 15%, indicating strong retention ability. The adsorption rate of ENR in soil decreased with increasing pH, the adsorption rate reached 98.3% at pH 3.0 but only 31.5% at pH 11. The influence of coexisting ions on adsorption primarily depended on their properties, such as ion radius, ionic strength, and hydrolysis properties, and the inhibition of adsorption increased with increasing ionic strength. These findings contribute to understanding the fate and risk of veterinary antibiotics in loess soil in North China.
Collapse
Affiliation(s)
- Jiali Wu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Rui He
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zhewei Liu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaozhen Zhang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wenjing Wang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Weichen Kong
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Gang Wang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yingqin Wu
- Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
3
|
Wang J, Huang R, Liang Y, Long X, Wu S, Han Z, Liu H, Huangfu X. Prediction of antibiotic sorption in soil with machine learning and analysis of global antibiotic resistance risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133563. [PMID: 38262323 DOI: 10.1016/j.jhazmat.2024.133563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Although the sorption of antibiotics in soil has been extensively studied, their spatial distribution patterns and sorption mechanisms still need to be clarified, which hinders the assessment of antibiotic resistance risk. In this study, machine learning was employed to develop the models for predicting the soil sorption behavior of three classes of antibiotics (sulfonamides, tetracyclines, and fluoroquinolones) in 255 soils with 2203 data points. The optimal independent models obtained an accurate predictive performance with R2 of 0.942 to 0.977 and RMSE of 0.051 to 0.210 on test sets compared to combined models. Besides, a global map of the antibiotic sorption capacity of soil predicted with the optimal models revealed that the sorption potential of fluoroquinolones was the highest, followed by tetracyclines and sulfonamides. Additionally, 14.3% of regions had higher antibiotic sorption potential, mainly in East and South Asia, Central Siberia, Western Europe, South America, and Central North America. Moreover, a risk index calculated with the antibiotic sorption capacity of soil and population density indicated that about 3.6% of soils worldwide have a high risk of resistance, especially in South and East Asia with high population densities. This work has significant implications for assessing the antibiotic contamination potential and resistance risk.
Collapse
Affiliation(s)
- Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Youheng Liang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Xinlong Long
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhengpeng Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
5
|
Wan G, Huang J, Wang R, Liu H, Wei L, Liang X, Li F, Wang Z, Gu X, Ruan J. Enrofloxacin hydrochloride toxicological effects on crucian carp reflected by serological changes and neurotoxicity. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109737. [PMID: 37661043 DOI: 10.1016/j.cbpc.2023.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Due to its water solubility and wide applicability, enrofloxacin hydrochloride (EH) may enter aquatic ecosystems and cause negative effects on aquatic organisms. This study aimed to explore toxicological effects via serological changes and neurotoxicity, which were induced by EH exposure in crucian carp (Carassius auratus var. Pengze). The drug residues in brain tissue and protein content in serum were determined to analyze serological changes. Alterations in brain tissue structure and function, cerebral microvessels permeability, and the expressions of gene and protein regarding blood-brain barrier (BBB) were studied to reflect the neurotoxicity. Employing a validated high-performance liquid chromatography (HPLC) method, EH residues could be detected at various time-points throughout the experiment. Enzyme-linked immunosorbent assay (ELISA) showed that EH increased the levels of S100B, NSE and GFAP proteins in serum. Additionally, there was a significant positive correlation between serum S100B, NSE protein contents and EH residues (P < 0.05). Hematoxylin and eosin (H&E) staining revealed brain damage from EH exposure by the formation of vacuoles in brain glial cells, pyknosis of the nucleus, and a decrease in cell population density. Transmission electron microscope (TEM) revealed morphological changes in microvessels and condensation of astrocyte nucleus. Evans blue (EB) permeability test visualized an obvious increase in cerebral microvessels leakage. The real-time quantitative PCR (qPCR) results indicated that EH up-regulated the mRNA expression levels of S100B, NSE and GFAP, down-regulated the mRNA expression levels of P-gp, ZO-1, Occludin and Claudin-5. The Western blot (WB) results demonstrated increased NSE and GFAP protein expressions, decreased P-gp and Occludin protein expressions following EH exposure in brain, in consistent with the gene expressions, respectively. In conclusion, these findings indicated that EH brought about marked rise in serum biomarker levels and disrupted the central nervous system (CNS) of crucian carp. These data would help elucidate the mechanism underlying EH-induced neurotoxicological effects.
Collapse
Affiliation(s)
- Gen Wan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jianzhen Huang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Runping Wang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lili Wei
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ximei Liang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Fugui Li
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhao Wang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuechun Gu
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiming Ruan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
6
|
Rodríguez-López L, Santás-Miguel V, Cela-Dablanca R, Núñez-Delgado A, Álvarez-Rodríguez E, Rodríguez-Seijo A, Arias-Estévez M. Clarithromycin as soil and environmental pollutant: Adsorption-desorption processes and influence of pH. ENVIRONMENTAL RESEARCH 2023; 233:116520. [PMID: 37390951 DOI: 10.1016/j.envres.2023.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Antibiotics pollution is a growing environmental issue, as high amounts of these compounds are found in soil, water and sediments. This work studies the adsorption/desorption of the macrolide antibiotic clarithromycin (CLA) for 17 agricultural soils with different edaphic characteristics. The research was carried out using batch-type experiments, with an additional assessment of the specific influence of pH for 6 of the soils. The results show that CLA adsorption reaches between 26 and 95%. In addition, the fit of the experimental data to adsorption models provided values between 1.9 and 19.7 Ln μmol1-n kg-1 for the KF, Freundlich affinity coefficient, and between 2.5 and 10.5 L kg-1 for Kd, distribution constant of Linear model. Regarding the linearity index, n, it varied between 0.56 and 1.34. Desorption showed lower scores than adsorption, with an average of 20%, and with values of 3.1 and 93.0 Ln μmol1-n kg-1 for KF(des) and 4.4 and 95.0 L kg-1 for Kd(des). The edaphic characteristics with the highest influence on adsorption were the silt fraction content and the exchangeable Ca content, while in the case of desorption, they were the total nitrogen, organic carbon, and exchangeable Ca and Mg contents. Regarding the pH, within the range studied (between 3 and 10), its value did not decisively affect the adsorption/desorption process. Overall, the set of these results could be of help to program appropriate measures leading to the retention/elimination of this antibiotic when it reaches the environment as a pollutant.
Collapse
Affiliation(s)
- Lucía Rodríguez-López
- Department of Plant Biology and Soil Science, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Vanesa Santás-Miguel
- Department of Plant Biology and Soil Science, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| | - Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Andrés Rodríguez-Seijo
- Department of Plant Biology and Soil Science, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Department of Plant Biology and Soil Science, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| |
Collapse
|
7
|
Zhao F, Yang L, Yen H, Yu X, Fang L, Li M, Chen L. Can agricultural land use alter the responses of soil biota to antibiotic contamination? JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129350. [PMID: 35749896 DOI: 10.1016/j.jhazmat.2022.129350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics accumulate in soils via various agricultural activities, endangering soil biota that play fundamental roles in maintaining agroecosystem function. However, the effects of land-use heterogeneity on soil biota tolerance to antibiotic stresses are not well understood. In this study, we explored the relationships between antibiotic residues, bacterial communities, and earthworm populations in areas with different land-use types (forest, maize, and peanut fields). The results showed that antibiotic levels were generally higher in maize and peanut fields than in forests. Furthermore, land use modulated the effects of antibiotics on soil bacterial communities and earthworm populations. Cumulative antibiotic concentrations in peanut fields were negatively correlated with bacterial diversity and earthworm abundance, whereas no significant correlations were detected in maize fields. In contrast, antibiotics improved bacterial diversity and richness in forest soils. Generally, earthworm populations showed stronger tolerance to antibiotics than did soil bacterial communities. Agricultural land use differentially modified the responses of the soil bacterial community and earthworm population to antibiotic contamination, and earthworms might provide an alternative for controlling antibiotic contamination.
Collapse
Affiliation(s)
- Fangkai Zhao
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haw Yen
- School of Forestry and Wildlife Sciences, Auburn University, Auburn 36849, USA; Environmental Exposure Modeling, Bayer US Crop Science Division, Chesterfield 63017, USA
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Metagenomic Analysis of the Long-Term Synergistic Effects of Antibiotics on the Anaerobic Digestion of Cattle Manure. ENERGIES 2022. [DOI: 10.3390/en15051920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The conversion of cattle manure into biogas in anaerobic digestion (AD) processes has been gaining attention in recent years. However, antibiotic consumption continues to increase worldwide, which is why antimicrobial concentrations can be expected to rise in cattle manure and in digestate. This study examined the long-term synergistic effects of antimicrobials on the anaerobic digestion of cattle manure. The prevalence of antibiotic resistance genes (ARGs) and changes in microbial biodiversity under exposure to the tested drugs was investigated using a metagenomic approach. Methane production was analyzed in lab-scale anaerobic bioreactors. Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant bacteria in the samples. The domain Archaea was represented mainly by methanogenic genera Methanothrix and Methanosarcina and the order Methanomassiliicoccales. Exposure to antibiotics inhibited the growth and development of methanogenic microorganisms in the substrate. Antibiotics also influenced the abundance and prevalence of ARGs in samples. Seventeen types of ARGs were identified and classified. Genes encoding resistance to tetracyclines, macrolide–lincosamide–streptogramin antibiotics, and aminoglycosides, as well as multi-drug resistance genes, were most abundant. Antibiotics affected homoacetogenic bacteria and methanogens, and decreased the production of CH4. However, the antibiotic-induced decrease in CH4 production was minimized in the presence of highly drug-resistant microorganisms in AD bioreactors.
Collapse
|
9
|
Chen J, Tan L, Qu K, Cui Z, Wang J. Novel electrochemical sensor modified with molecularly imprinted polymers for determination of enrofloxacin in marine environment. Mikrochim Acta 2022; 189:95. [PMID: 35142925 DOI: 10.1007/s00604-022-05205-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
Molecularly imprinted polymers were synthesized by gel-sol method with multi-walled carbon nanotubes as support and enrofloxacin as a template and further modified on the surface of glassy carbon electrode to construct a molecularly imprinted electrochemical sensor. The performance of the imprinted electrochemical sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The influence of imprinted polymers amount, electrolyte pH, and incubation time on the sensor performance was investigated for the detection of enrofloxacin. Under the optimal experimental conditions in a three-electrode system with the modified electrode as the working electrode the differential pulse voltammetry response current of the sensor had a good linear relationship at 0.2 V (vs. saturated calomel reference electrode) with the enrofloxacin concentration within 2.8 pM-28 μM and the limit of detection of the method was 0.9 pM. The competitive interference experiment showed that the imprinted electrochemical sensor could selectively recognize enrofloxacin. The method was applied to analyze spiked natural seawater, fish, and shrimp samples. The recovery was 96.4%-102%, and RSD was less than 4.3% (n = 3), indicating that the proposed imprinted electrochemical sensor was suitable for the determination of trace enrofloxacin in marine environment samples.
Collapse
Affiliation(s)
- Jianlei Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Marine Fishery Environment and Bioremediation Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Keming Qu
- Marine Fishery Environment and Bioremediation Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Zhengguo Cui
- Marine Fishery Environment and Bioremediation Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
10
|
Mrozik W, Minofar B, Thongsamer T, Wiriyaphong N, Khawkomol S, Plaimart J, Vakros J, Karapanagioti H, Vinitnantharat S, Werner D. Valorisation of agricultural waste derived biochars in aquaculture to remove organic micropollutants from water - experimental study and molecular dynamics simulations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113717. [PMID: 34547568 PMCID: PMC8542888 DOI: 10.1016/j.jenvman.2021.113717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, we evaluated the valorisation of agricultural waste materials by transforming coconut husks and shells, corncobs and rice straw into biochar for water treatment in aquaculture. We compared the biochars' suitability for removal of organic micropollutants (acetaminophen, oxytetracycline, tetracycline, enrofloxacin, atrazine, diuron and diclofenac) from surface water needed for aquaculture. The biochars were prepared by three methods ranging from inexpensive drum kilns (200 °C) to pyrolysis with biogasfication (350-750 °C). Overall, antibiotics tetracycline and enrofloxacin were the most strongly sorbed micropollutants, and coconut husk biochar prepared at 750 °C was the best sorbent material. Molecular Dynamics simulations indicated that the major sorption mechanism is via π-π stacking interactions and there is a possibility of multilayer sorption for some of the micropollutants. We observed, a strong impact of ionic strength (salinity), which is an important consideration in coastal aquaculture applications. High salinity decreased the sorption for antibiotics oxytetracycline, tetracycline and enrofloxacin but increased diclofenac, atrazine and diuron sorption. We considered coconut husk biochar produced in drum kilns the most practical option for biochar applications in small-scale coastal aquacultures in South Asia. Pilot trials of canal water filtration at an aquaculture farm revealed that micropollutant sorption by coconut husk biochar under real-world conditions might be 10-500 times less than observed in the laboratory studies. Even so, biochar amendment of sand enhanced the micropollutant retention, which may facilitate subsequent biodegradation and improve the quality of brackish surface water used for food production in coastal aquaculture.
Collapse
Affiliation(s)
- Wojciech Mrozik
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Babak Minofar
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333, Nové Hrady, Czech Republic.
| | - Thunchanok Thongsamer
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - Nathacha Wiriyaphong
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - Sasiwimol Khawkomol
- Energy and Environmental Engineering Center, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Jidapa Plaimart
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - John Vakros
- Department of Chemistry, University of Patras, Patras, 26504, Greece
| | | | - Soydoa Vinitnantharat
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
11
|
An B, Xu X, Ma W, Huo M, Wang H, Liu Z, Cheng G, Huang L. The adsorption-desorption characteristics and degradation kinetics of ceftiofur in different agricultural soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112503. [PMID: 34273851 DOI: 10.1016/j.ecoenv.2021.112503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Cephalosporins are one of the most widely used antibiotics. When cephalosporins are discharged into the environment, they not only induce the production of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARBs) but also cause toxic effects on animals and plants. Due to their complicated environmental behavior and lack of relevant data, the environmental behavior remains unclear. In this study, the adsorption-desorption and degradation characteristics of the third-generation cephalosporin drug ceftiofur (CEF) were investigated in three agricultural soils (sandy loam, loam and clay). According to the relevant parameters of the Freundlich adsorption isotherm (the Kf range was 57.63-122.44 μg1-1/n L1/n kg-1), CEF was adsorbed moderately in the soils and had the potential to migrate into groundwater. CEF exhibited low persistence in the soils and faster degradation than other antibiotics, such as tetracyclines and fluoroquinolones. The degradation half-lives (DT50) of CEF in soils ranged from 0.76 days to 4.31 days. Adding feces, increasing the water content, providing light and increasing the temperature significantly accelerated the degradation of CEF in soils. The DT50 values of CEF in soils were significantly prolonged when the soils were sterilized, indicating that both physical degradation and biodegradation played important roles in the degradation of CEF in soils. The DT50 values of CEF in soils were significantly prolonged at high concentrations, indicating that the degradability of CEF in soils was affected by the initial concentration. No significant differences were observed in the DT50 values for the different soil types (p > 0.05). This study provides useful information about the environmental behavior of CEF and improves the environmental risk assessment of CEF.
Collapse
Affiliation(s)
- Boyu An
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
12
|
Alvarez-Esmorís C, Conde-Cid M, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M. Environmental relevance of adsorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine before and after the removal of organic matter from soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112354. [PMID: 33735681 DOI: 10.1016/j.jenvman.2021.112354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
In this work batch-type experiments were used to study the adsorption of the antibiotics doxycycline (DC), enrofloxacin (ENR), and sulfamethoxypyridazine (SMP) in cultivation soils, before and after the removal of soil organic matter. Organic matter removal by calcination resulted not only in C and N removal, but also in increased soil pH, exchangeable basic cations and surface area values. The results indicate a very different behavior depending on the type of antibiotic, showing the adsorption sequence DC > ENR > SMP. Specifically, DC adsorption was very high in untreated soil samples (with organic matter), and was still high (although decreased) after the removal of soil organic matter. Furthermore, the adsorption behavior of DC was clearly dependent on the pH of the medium. Regarding ENR, it also showed high adsorption, although to a lesser extent than DC. However, when soil organic matter was removed, ENR adsorption significantly decreased in all soil samples. As regards SMP, it was adsorbed to a much lesser extent, and the removal of soil organic matter caused an additional drastic decrease in adsorption, reaching negligible values in some samples. Desorption followed the reverse sequence of adsorption, specifically in the order DC < ENR < SMP. In the case of DC, desorption was negligible, both in samples with and without organic matter, while for ENR and SMP, desorption clearly increased for soil samples where organic matter was removed. These results may be of relevance as regards environmental quality and public health, especially to facilitate a correct use of soils and organic amendments in areas that receive the application of substances containing the investigated antibiotics.
Collapse
Affiliation(s)
- C Alvarez-Esmorís
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain.
| |
Collapse
|
13
|
Conde-Cid M, Ferreira-Coelho G, Fernández-Calviño D, Núñez-Delgado A, Fernández-Sanjurjo MJ, Arias-Estévez M, Álvarez-Rodríguez E. Single and simultaneous adsorption of three sulfonamides in agricultural soils: Effects of pH and organic matter content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140872. [PMID: 32711315 DOI: 10.1016/j.scitotenv.2020.140872] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Veterinary antibiotics reaching the environment have become a matter of global concern, since they can cause serious negative impacts on human and ecological health. Therefore, a deep understanding of their behavior and fate once they reach the soil environment is of utmost importance to design and implement appropriate measures that could reduce their potential risks. With this aim, batch-type experiments were carried out to study competitive adsorption and desorption for three sulfonamide antibiotics (sulfadiazine -SDZ-, sulfamethazine -SMT-, and sulfachloropyridazine -SCP-) in six crop soils presenting different characteristics. The results obtained showed that sulfonamides have a low retention in soils, with average adsorption percentages of 40% for SDZ, 44% for SMT and 54% for SCP, and with desorption percentages up to 36% for SDZ and SCP and up to 29% for SMT. The retention of sulfonamides was strongly influenced by the soil organic carbon content (SOC), with higher adsorption and less desorption associated to higher SOC contents. In addition, the hydrophobicity of sulfonamides also had an influence, as higher hydrophobicity resulted in higher affinity for soils, showing the affinity sequences: SDZ ~ SMT <SCP in acid soils, and SDZ ~ SCP <SMT in neutral soils. The results obtained in the ternary systems were very similar to those found in simple systems, indicating the absence of substantial competition for adsorption sites among the three sulfonamides. Despite the low competition among them, these antibiotics have high mobility in soils and, therefore, they imply a significant risk of contamination of water bodies, as well as of entering the food chain, generating serious hazards for human and environmental health. Therefore, fertilization of soils with sulfonamide polluted manures should be controlled, implementing new measurements for the pretreatment of manures before their application, thus contributing to a reduction of potential risks.
Collapse
Affiliation(s)
- M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain.
| | - G Ferreira-Coelho
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - D Fernández-Calviño
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
14
|
Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes (Basel) 2020. [DOI: 10.3390/pr8111479] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health. Taking all this into account, a literature review was conducted in order to shed light on the current knowledge about the occurrence of tetracycline and sulfonamide antibiotics in manures/slurries and agricultural soils, as well as on their fate in the environment. For that, the adsorption/desorption and the degradation (both abiotic and biotic) processes of these pollutants in soils were deeply discussed. Finally, the potential risks of deleterious effects on human and ecological health associated with the presence of these antibiotic residues were assessed. This review contributes to a deeper understanding of the lifecycle of tetracycline and sulfonamide antibiotics in the environment, thus facilitating decision-making for the application of preventive and mitigation measures to reduce its negative impacts and risks to public health.
Collapse
|