1
|
Lei Y, Pu R, Tian Y, Wang R, Naidu R, Deng S, Shen F. Novel enhanced defluorination of perfluorooctanoic acids by biochar-assisted ultrasound coupling ferrate: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130790. [PMID: 38703964 DOI: 10.1016/j.biortech.2024.130790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
An ultrasound (US)/biochar (BC)/ferrate (Fe (VI)) system was firstly proposed to enhance perfluorooctanoic acid (PFOA) defluorination. It achieved 93 % defluorination optimally, higher than the sum of 77 % (28 % and 49 % for US/BC and US/Fe (VI) respectively), implying synergistic effect. Besides, the mechanism study confirmed that, this system can not only increase the specific surface area of BC and the generation of reactive oxidant species (ROS), enriching the active sites and forming new oxygen-containing functional groups, but also promote the formation of intermediate iron species. The PFOA degradation in the US/BC/Fe (VI) was probably an adsorption-degradation process, both ROS and electron transfer promoted the defluorination. Additionally, its sustainability was also demonstrated with 14 % reduced defluorination percentage after five cycles of BC. Overall, the synergistic effect of the US/BC/Fe (VI) and its enhancing mechanism for PFOA defluorination were clarified firstly, which contributes to the development of biochar for assisting polyfluoroalkyl substances degradation.
Collapse
Affiliation(s)
- Yongjia Lei
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ruoqi Pu
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ruixiang Wang
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shihuai Deng
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Fei Shen
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
2
|
Muthulakshmi L, Mohan S, Tatarchuk T. Microplastics in water: types, detection, and removal strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84933-84948. [PMID: 37386221 DOI: 10.1007/s11356-023-28460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Microplastics are one of the most concerning groups of contaminants that pollute most of the surroundings of the Earth. The abundance of plastic materials available in the environment moved the scientific community in defining a new historical era known as Plasticene. Regardless of their minuscule size, microplastics have posed severe threats to the life forms like animals, plants, and other species present in the ecosystem. Ingestion of microplastics could lead to harmful health effects like teratogenic and mutagenic abnormalities. The source of microplastics could be either primary or secondary in which the components of microplastics are directly released into the atmosphere and the breakdown of larger units to generate the smaller molecules. Though numerous physical and chemical techniques are reported for the removal of microplastics, their increased cost prevents the large-scale applicability of the process. Coagulation, flocculation, sedimentation, and ultrafiltration are some of the methods used for the removal of microplastics. Certain species of microalgae are known to remove microplastics by their inherent nature. One of the biological treatment strategies for microplastic removal is the activated sludge strategy that is used for the separation of microplastic. The overall microplastic removal efficiency is significantly high compared to conventional techniques. Thus, the reported biological avenues like the bio-flocculant for microplastic removal are discussed in this review article.
Collapse
Affiliation(s)
- Lakshmanan Muthulakshmi
- Biomaterials and Product Development Lab, Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, 626126, India
| | - Shalini Mohan
- Biomaterials and Product Development Lab, Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, 626126, India
| | - Tetiana Tatarchuk
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Kraków, 30-387, Poland.
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
3
|
Bayode AA, Olisah C, Emmanuel SS, Adesina MO, Koko DT. Sequestration of steroidal estrogen in aqueous samples using an adsorption mechanism: a systemic scientometric review. RSC Adv 2023; 13:22675-22697. [PMID: 37502828 PMCID: PMC10369132 DOI: 10.1039/d3ra02296j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Steroidal estrogens (SEs) remain one of the notable endocrine disrupting chemicals (EDCs) that pose a significant threat to the aquatic environment in this era owing to their interference with the normal metabolic functions of the human body systems. They are currently identified as emerging contaminants of water sources. The sources of SEs are either natural or synthetic active ingredients in oral contraceptive and hormonal replacement therapy drugs and enter the environment primarily from excretes in the form of active free conjugate radicals, resulting in numerous effects on organisms in aquatic habitats and humans. The removal of SEs from water sources is of great importance because of their potential adverse effects on aquatic ecosystems and human health. Adsorption techniques have gained considerable attention as effective methods for the removal of these contaminants. A systemic review and bibliometric analysis of the application of adsorption for sequestration were carried out. Metadata for publications on SE removal utilizing adsorbents were obtained from the Web of Science (WoS) from January 1, 1990, to November 5, 2022 (107 documents) and Scopus databases from January 1, 1949, to November 5, 2022 (77 documents). In total, 137 documents (134 research and 4 review articles) were used to systematically map bibliometric indicators, such as the number of articles, most prolific countries, most productive scholars, and most cited articles, confirming this to be a growing research area. The use of different adsorbents, include activated carbon graphene-based materials, single and multi-walled carbon nanotubes, biochar, zeolite, and nanocomposites. The adsorption mechanism and factors affecting the removal efficiency, such as pH, temperature, initial concentration, contact time and adsorbent properties, were investigated in this review. This review discusses the advantages and limitations of different adsorbents, including their adsorption capacities, regenerative potential, and cost-effectiveness. Recent advances and innovations in adsorption technology, such as functionalized materials and hybrid systems, have also been highlighted. Overall, the bibliographic analysis provides a comprehensive overview of the adsorption technique for the removal of SEs from other sources, serving as a valuable resource for researchers and policymakers involved in the development of efficient and sustainable strategies to mitigate the effects of these emerging contaminants.
Collapse
Affiliation(s)
- Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Nelson Mandela University P. O Box 77000 Gqeberha 6031 South Africa
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin P.M.B. 1515 Ilorin Nigeria
| | | | - Daniel Terlanga Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
| |
Collapse
|
4
|
Liu S, Feng Z, Ma Y, Li J, Wang Y, Sun T. Hierarchically porous graphene-like biochar for efficient removal of aromatic pollutants and their structure-performance relationship: A combined experimental, MD and DFT study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121758. [PMID: 37142208 DOI: 10.1016/j.envpol.2023.121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Development of high-efficiency adsorbents and exploration of the structure-performance relationship holds exciting implications for removal of aromatic pollutants (APs) from water. Herein, hierarchically porous graphene-like biochars (HGBs) were successfully prepared by K2CO3 simultaneous graphitization and activation of Physalis pubescens husk. The HGBs possess high specific surface area (1406-2369.7 m2/g), hierarchically meso-/microporous structure and high graphitization degree. The optimized HGB-2-9 sample exhibits rapid adsorption equilibrium time (te) and high adsorption capacities (Qe) for seven widely-used persistent APs with different molecular structures (e.g., phenol: te = 7 min, Qe = 191.06 mg/g; methylparaben: te = 12 min Qe = 482.15 mg/g). HGB-2-9 also shows a wide pH (3-10) suitability and good ionic strength (0.01-0.5 M NaCl) resistance properties. The effects of the physicochemical properties of HGBs and APs on the adsorption performance were deeply investigated by the adsorption experiments, molecular dynamics (MD) and density functional theory (DFT) simulation. The results demonstrate that the large specific surface area, high graphitization degree and hierarchically porous structure of HGB-2-9 can supply more active sites on accessible surface and facilitate the transport of APs. And the aromaticity and hydrophobicity of APs play the more crucial roles during the adsorption process. Besides, the HGB-2-9 presents good recyclability and high removal efficiency for APs in various real water, which further confirms its potential for practical applications.
Collapse
Affiliation(s)
- Shujian Liu
- College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Zhongmin Feng
- College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Youliang Ma
- School of Humanities and Sciences, Ningxia Institute of Science and Technology, Shizuishan, 753000, China
| | - Jiali Li
- School of Humanities and Sciences, Ningxia Institute of Science and Technology, Shizuishan, 753000, China
| | - Yun Wang
- College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
5
|
Cao B, Qu J, Chu Y, Zhu Y, Jiang Y, Zhang X, Sun M, Jiang Z, Ma S, Zhang Y. One-step self-assembly of Fe-biochar composite for enhanced persulfate activation to phenol degradation: Different active sites-induced radical/non-radical mechanism. CHEMOSPHERE 2023; 322:138168. [PMID: 36804499 DOI: 10.1016/j.chemosphere.2023.138168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Persulfate (PS) activation by nanoscale zerovalent iron (nZVI) is promising for water purification, while is limited due to its easy agglomeration and oxidation. Herein, nZVI encapsuled in carbon matrix shell was synthesized via one-step carbothermal reduction. The core-shell structure effectively inhibited oxidation and agglomeration of nZVI core, and graphitized porous structures facilitated phenol binding with maximal adsorption capacity of 117.10 mg/g achieved by nZVI0.6-BC800. Both reactive oxygen species (SO4•-, O•H, O2•- and 1O2) and electron transfer process resulted in phenol decomposition. Owing to diversified active sites, the nZVI0.6-BC800/PS system could completely degrade phenol degradation within short time, and exhibited great adaptation to extensive pH range (3.0-9.0) and coexisting substances. Additionally, the nZVI0.6-BC800/PS system could maintain over 85% removal of phenol after three recycles or 50 days of storage, and was highly-efficient to different water environments, thus proposing rational design of iron-carbon catalyst with potential in water treatment.
Collapse
Affiliation(s)
- Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yingyu Chu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuxin Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiubo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingze Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Mehmood T, Mustafa B, Mackenzie K, Ali W, Sabir RI, Anum W, Gaurav GK, Riaz U, Liu X, Peng L. Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. CHEMOSPHERE 2023; 316:137704. [PMID: 36592840 DOI: 10.1016/j.chemosphere.2022.137704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Micro (nano)plastics pollution is a noxious menace not only for mankind but also for marine life, as removing microplastics (MPs) is challenging due to their physiochemical properties, composition, and response toward salinity and pH. This review provides a detailed assessment of the MPs pollution in different water types, environmental implications, and corresponding treatment strategies. With the advancement in nanotechnology, mitigation strategies for aqueous pollution are seen, especially due to the fabrication of nanosheets/membranes mostly utilized as a filtration process. Two-dimensional (2D) materials are increasingly used for membranes due to their diverse structure, affinity, cost-effectiveness, and, most importantly, removal efficiency. The popular 2D materials used for membrane-based organic and inorganic pollutants from water mainly include graphene and MXenes however their effectiveness for MPs removal is still in its infancy. Albeit, the available literature asserts a 70- 99% success rate in micro/nano plastics removal achieved through membranes fabricated via graphene oxide (GO), reduced graphene oxide (rGO) and MXene membranes. This review examined existing membrane separation strategies for MPs removal, focusing on the structural properties of 2D materials, composite, and how they adsorb pollutants and underlying physicochemical mechanisms. Since MPs and other contaminants commonly coexist in the natural environment, a brief examination of the response of 2D membranes to MPs removal was also conducted. In addition, the influencing factors regulate MPs removal performance of membranes by impacting their two main operating routes (filtration and adsorption). Finally, significant limitations, research gaps, and future prospects of 2D material-based membranes for effectively removing MPs are also proposed. The conclusion is that the success of 2D material is strongly linked to the types, size of MPs, and characteristics of aqueous media. Future perspectives talk about the problems that need to be solved to get 2D material-based membranes out of the lab and onto the market.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Katrin Mackenzie
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Raja Irfan Sabir
- Faculty of Management Sciences, University of Central Punjab, Lahore; Pakistan
| | - Wajiha Anum
- Regional Agricultural Research Institute, Bahawalpur, Pakistan
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Umair Riaz
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|
7
|
Wu J, Yang C, Zhao H, Shi J, Liu Z, Li C, Song F. Efficient removal of microplastics from aqueous solution by a novel magnetic biochar: performance, mechanism, and reusability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26914-26928. [PMID: 36374390 DOI: 10.1007/s11356-022-24130-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics' (MPs) pollution removal from water bodies has become an urgent task to ensure water quality safety and water ecological security on a global scale. In this work, coprecipitation was employed to investigate the adsorption of MPs by magnetic biochar (MRB) prepared from agricultural waste rice husks in an aquatic system. The results showed that MRB can adsorb up to 99.96% of MPs in water; acidic conditions were favorable for the effective MPs' adsorption reaction, and competing anions had a greater effect on adsorption. The adsorption mechanism results revealed that the adsorption of MPs by MRB was a spontaneous process, and electrostatic attraction, surface complexation, hydrogen bonding and π-π interactions were present in the adsorption process. Furthermore, after the adsorption of MPs, MRB can be recovered by thermal treatment (500 °C) and still exhibits up to 90% MPs adsorption (after four uses). This work reveals that MRB is an inexpensive, efficient, and reusable nanoscale adsorbent for MPs pollution removal in water, which may provide new ideas for microplastic pollution control in the aqueous environment.
Collapse
Affiliation(s)
- Juanjuan Wu
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Chan Yang
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Juan Shi
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Zhifeng Liu
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Chen Li
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Fengmin Song
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| |
Collapse
|
8
|
Dong M, He L, Jiang M, Zhu Y, Wang J, Gustave W, Wang S, Deng Y, Zhang X, Wang Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1679. [PMID: 36767042 PMCID: PMC9914318 DOI: 10.3390/ijerph20031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem. Here, we provided a dual perspective on removing emerging pollutants from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the associated mechanisms. The potential risks and future research directions of biochar utilization are also presented. This review aims to assist researchers interested in using biochar for emerging pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal, thereby reducing their environmental risk.
Collapse
Affiliation(s)
- Mingying Dong
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas
| | - Shuo Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
9
|
Gopinath PM, Parvathi VD, Yoghalakshmi N, Kumar SM, Athulya PA, Mukherjee A, Chandrasekaran N. Plastic particles in medicine: A systematic review of exposure and effects to human health. CHEMOSPHERE 2022; 303:135227. [PMID: 35671817 DOI: 10.1016/j.chemosphere.2022.135227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Single-use plastics (SUPs) have become an essential constituent of our daily life. It is being exploited in numerous pharmaceutical and healthcare applications. Despite their advantages and widespread use in the pharma and medical sectors, the potential clinical problems of plastics, especially the release of micro-nanoplastics (MNPs) and additives from medical plastics (e.g. bags, containers, and administrative sets) and sorption of drugs remain understudied. Certainly, the MNPs are multifaceted stressors that cause detrimental effects to the ecosystem and human health. The origin and persistence of MNPs in pharmaceutical products, their administration to humans, endurance and possible health implication, translocation, and excretion have not been reviewed in detail. The prime focus of this article is to conduct a systematic review on the leaching of MNPs and additives from pharmaceutical containers/administrative sets and their interaction with the pharmaceutical constituents. This review also explores the primary and secondary routes of MNPs entry from healthcare plastic products and their potential health hazards to humans. Furthermore, the fate of plastic waste generated in hospitals, their disposal, and associated MNPs release to the environment, along with preventive, and alternative measures are discussed herein.
Collapse
Affiliation(s)
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | - Nagarajan Yoghalakshmi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | - Srinivasan Madhan Kumar
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
10
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
11
|
Zheng B, Li B, Wan H, Lin X, Cai Y. Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128611. [PMID: 35278958 DOI: 10.1016/j.jhazmat.2022.128611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Removing microplastics (MPs) from water has been a huge challenge due to their inherent features including small size and high stability. In this research, inspired by the active adsorption and passive adhesion mechanisms of corals to MPs, a new strategy to fabricate polydopamine enhanced magnetic chitosan (PDA-MCS) aerogels was developed with a target to match the surface properties of MPs, achieving high MPs removal efficiency. PDA-MCS aerogels were highly efficient in adsorbing polyethylene terephthalate (PET) microplastics in water at pH values of 6-9, with a removal efficiency of up to 91.6%. Even after three recycles, PDA-MCS aerogels still displayed comparatively high removal efficiency (83.4%). Kinetic and isothermal experiments showed that the adsorption process was the result of electrostatic interactions and physical adhesion between aerogels and microplastics. Moreover, PDA-MCS aerogels maintained high removal efficiency under simulated environmental conditions, and the removal efficiency of PET, polyethylene (PE) and polystyrene (PS) microplastics in waters reached 97.3%, 94.6%, and 92.3%, respectively. Therefore, high-efficiency environmentally durable aerogels adsorbent materials have the potential for the removal of MPs from the aquatic environment.
Collapse
Affiliation(s)
- Buyun Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hang Wan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaofeng Lin
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
12
|
Vieira RAL, Pickler TB, Segato TCM, Jozala AF, Grotto D. Biochar from fungiculture waste for adsorption of endocrine disruptors in water. Sci Rep 2022; 12:6507. [PMID: 35443767 PMCID: PMC9021278 DOI: 10.1038/s41598-022-10165-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
The agricultural residues are ecofriendly alternatives for removing contaminants from water. In this way, a novel biochar from the spent mushroom substrate (SMS) was produced and assessed to remove endocrine disruptor from water in batch and fixed-bed method. SMS were dried, ground, and pyrolyzed. Pyrolysis was carried out in three different conditions at 250 and 450 °C, with a residence time of 1 h, and at 600 °C with a residence time of 20 min. The biochar was firstly tested in a pilot batch with 17α-ethinylestradiol (EE2) and progesterone. The residual concentrations of the endocrine disruptors were determined by HPLC. The biochar obtained at 600 °C showed the best removal efficiency results. Then, adsorption parameters (isotherm and kinetics), fixed bed tests and biochar characterization were carried out. The Langmuir model fits better to progesterone while the Freundlich model fits better to EE2. The Langmuir model isotherm indicated a maximum adsorption capacity of 232.64 mg progesterone/g biochar, and 138.98 mg EE2/g biochar. Images from scanning electrons microscopy showed that the 600 °C biochar presented higher porosity than others. In the fixed bed test the removal capacity was more than 80% for both endocrine disruptors. Thus, the biochar showed a good and viable option for removal of contaminants, such as hormones.
Collapse
Affiliation(s)
| | - Thaisa Borim Pickler
- LAPETOX - Laboratory of Toxicological Research, University of Sorocaba, Sorocaba, Brazil
| | | | - Angela Faustino Jozala
- LAMINFE - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, Brazil.
| | - Denise Grotto
- LAPETOX - Laboratory of Toxicological Research, University of Sorocaba, Sorocaba, Brazil.
| |
Collapse
|
13
|
Qing Y, Li Y, Hu D, Guo Z, Yang Y, Geng L, Li W. 2D/2D Bi 2WO 6/Protonated g-C 3N 4 step-scheme heterojunctions for enhancing the photodegradation of 17β-estradiol: promotional role of electrostatic interaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05334e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Bi2WO6/protonated g-C3N4 step-scheme heterojunction with an intimate interface though electrostatic interaction exhibited enhanced photodegradation of 17β-estradiol under visible light.
Collapse
Affiliation(s)
- Yashi Qing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxiang Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Hu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiwei Guo
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujie Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Geng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fujian 350108, China
| | - Wangliang Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Engineered Magnetic Carbon-Based Adsorbents for the Removal of Water Priority Pollutants: An Overview. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9917444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the preparation, characterization, and application of magnetic adsorbents obtained from carbon-based sources and their application in the adsorption of both inorganic and organic pollutants from water. Different preparation routes to obtain magnetic adsorbents from activated carbon, biochar, hydrochar, graphene, carbon dots, carbon nanotubes, and carbon nanocages, including the magnetic phase incorporated on the solid surface, are described and discussed. The performance of these adsorbents is analyzed for the removal of fluoride, arsenic, heavy metals, dyes, pesticides, pharmaceuticals, and other emerging and relevant water pollutants. Properties of these adsorbents and the corresponding adsorption mechanisms have been included in this review. Overall, this type of magnetic adsorbents offers an alternative for facing the operational problems associated to adsorption process in water treatment. However, some gaps have been identified in the proper physicochemical characterization of these adsorbents, the development of green and low-cost preparation methods for their industrial production and commercialization, the regeneration and final disposal of spent adsorbents, and their application in the multicomponent adsorption of water pollutants.
Collapse
|
15
|
Verma L, Azad A, Singh J. Performance of a novel iron infused biochar developed from Raphanus sativus and Artocarpus heterophyllus refuse for trivalent and pentavalent arsenic adsorption from an aqueous solution: mechanism, isotherm and kinetics study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:919-932. [PMID: 34623940 DOI: 10.1080/15226514.2021.1985078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fabrication of magnetic biochar was done by pyrolysis of waste leaves of Raphanus sativus (MRB) and Artocarpus heterophyllus (MJB) peel pretreated with FeCl3 was examined for As(III and V) adsorption from an aqueous solution. The synthesized bioadsorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size analysis (PSA), scanning electron microscope (SEM), energy dispersive x-ray (EDX), zeta potential, Vibrating sample magnetometer (VSM) and point of zero charge (pHZPC). MRB-800 exhibits greater efficiency toward the removal of both As species with qmax value 2.08 mg/g for As(III) and 2.03 mg/g for As(V). Whereas, the qmax value was 1.13 mg/g for As (III) and 1.26 mg g-1 for As (V) adsorption using MJB-800. Temkin and Freundlich isotherm were best fitted to the adsorption of As(III) and As(V) by MRB-800, respectively. Langmuir isotherm was best followed to the adsorption of As (III and V) by MJB-800. Pseudo-second-order kinetics was well simulated by the experimental data of As adsorption using both the bioadsorbents. Surface complexation and electrostatic attraction was dominant mechanism for As (III) and As (V) adsorption. Thermodynamic study shows that removal of As (III) was exothermic while the As (V) adsorption was endothermic for MRB-800 and MJB-800.
Collapse
Affiliation(s)
- Lata Verma
- Department of Environmental Science, Laboratory of Environmental Nanotechnology and Bioremediation, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Akanksha Azad
- Department of Environmental Science, Laboratory of Environmental Nanotechnology and Bioremediation, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Jiwan Singh
- Department of Environmental Science, Laboratory of Environmental Nanotechnology and Bioremediation, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
16
|
|
17
|
Feng Z, Yuan R, Wang F, Chen Z, Zhou B, Chen H. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142673. [PMID: 33071122 DOI: 10.1016/j.scitotenv.2020.142673] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/12/2023]
Abstract
In recent years, magnetic biochar (MBC) has been greatly concerned because of its magnetic separation characteristics, and has been successfully used as a catalyst in the catalytic degradation of organic pollutants. However, there is currently a lack of a more systematic summary of MBC preparation methods, and no detailed overview of the catalytic mechanism of MBC catalysts for the degradation of organic pollutants. Therefore, we carry out this work to fill the above gaps. At first, we summarize the raw materials, preparation methods, and types of MBC in detail, and emphasize the MBC prepared by iron-containing sludge. Then, the catalytic mechanisms of MBC in peroxydisulfate, peroxymonosulfate, Fenton-like, photocatalysis, and NaBH4 systems are carefully summarized, highlighting the contribution of various parts of MBC in catalysis. The degradation efficiency of organic pollutants in the above systems is evaluated. Finally, the stability and reusability of MBC catalysts are evaluated. In conclusion, this review contributes a meager force to the future development of MBC.
Collapse
Affiliation(s)
- Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Atugoda T, Vithanage M, Wijesekara H, Bolan N, Sarmah AK, Bank MS, You S, Ok YS. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. ENVIRONMENT INTERNATIONAL 2021; 149:106367. [PMID: 33497857 DOI: 10.1016/j.envint.2020.106367] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/11/2023]
Abstract
Microplastics are well known for vector transport of hydrophobic organic contaminants, and there are growing concerns regarding their potential adverse effects on ecosystems and human health. However, recent studies focussing on hydrophilic compounds, such as pharmaceuticals and personal care products (PPCPs), have shown that the compounds ability to be adsorbed onto plastic surfaces. The extensive use of PPCPs has led to their ubiquitous presence in the environment resulting in their cooccurrence with microplastics. The partitioning between plastics and PPCPs and their fate through vector transport are determined by various physicochemical characteristics and environmental conditions of specific matrices. Although the sorption capacities of microplastics for different PPCP compounds have been investigated extensively, these findings have not yet been synthesized and analyzed critically. The specific objectives of this review were to synthesize and critically assess the various factors that affect the adsorption of hydrophilic compounds such as PPCPs on microplastic surfaces and their fate and transport in the environment. The review also focuses on environmental factors such as pH, salinity, and dissolved organics, and properties of polymers and PPCP compounds, and the relationships with sorption dynamics and mechanisms. Furthermore, the ecotoxicological effects of PPCP-sorbed microplastics on biota and human health are also discussed.
Collapse
Affiliation(s)
- Thilakshani Atugoda
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Nanthi Bolan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Callaghan, NSW 2308, Australia
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Siming You
- James Watt School of Engineering, James Watt South Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
19
|
Cheng L, Ji Y, Liu X. Insights into interfacial interaction mechanism of dyes sorption on a novel hydrochar: Experimental and DFT study. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Li B, Zhang Y, Xu J, Mei Y, Fan S, Xu H. Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions. CHEMOSPHERE 2021; 267:129283. [PMID: 33338711 DOI: 10.1016/j.chemosphere.2020.129283] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The properties of biochars and their adsorption performance are highly dependent on the carbonation methods. In this study, five carbonation methods, namely, hydrothermal treatment (HT), direct carbonization (BC), carbonization of hydrochar (HBC), KHCO3 activation carbonation (KBC), and KHCO3 activation carbonation of hydrochar (KHBC), were adopted to prepare tea waste biochars. Adsorption behaviors and mechanisms toward tetracycline (TC) by biochar in the aquatic environment were investigated. The results showed that carbonation methods significantly influence the morphology, carbon structure, chemical composition, and functional groups of the biochars based on the characterization of surface area and pore volume analysis, Fourier Transform Infrared Spectroscopy, Raman spectrum, Scanning Electron Microscope, Transmission Electron Microscope, X-ray photoelectron spectroscopy, X-Ray Diffraction, and elemental analysis. Combination of hydrothermal treatment with KHCO3 activation can significantly increase the surface area and enlarge the pore structure of biochar (KHBC and KBC). The BET of KHCO3-activated BCs nearly increased 280 times (KHBC: 1350.80 m2 g-1; KBC: 1405.06 m2 g-1). BET, total pore volume and micropores volume of biochar has a positive influence on TC adsorption capacity. In addition, all adsorption processes can be well fitted by Langmuir and pseudo-second-order kinetic models. The maximum adsorption capacity of KHCO3-activated BCs nearly increased approximately 40 times (KHBC: 451.45 mg g-1; KBC: 425.17 mg g-1). The dominant mechanisms of biochar-adsorbed TC were pore-filling effect and π-π interactions, followed by hydrogen bonds and electrostatic interactions. Therefore, KHBC has the potential to act as sorbents for TC removal from aquatic environment.
Collapse
Affiliation(s)
- Bin Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yin Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Xu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yanglu Mei
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
21
|
Li D, Chai K, Yao X, Zhou L, Wu K, Huang Z, Yan J, Qin X, Wei W, Ji H. β-Cyclodextrin functionalized SBA-15 via amide linkage as a super adsorbent for rapid removal of methyl blue. J Colloid Interface Sci 2021; 583:100-112. [DOI: 10.1016/j.jcis.2020.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/08/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
|
22
|
Zhou Y, Liu S, Liu Y, Tan X, Liu N, Wen J. Efficient Removal 17-Estradiol by Graphene-Like Magnetic Sawdust Biochar: Preparation Condition and Adsorption Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228377. [PMID: 33198330 PMCID: PMC7696789 DOI: 10.3390/ijerph17228377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/17/2023]
Abstract
The occurrence of environmental endocrine disrupting chemicals (EDCs) in aquatic environments has caused extensive concern. Graphene-like magnetic sawdust biochar was synthesized using potassium ferrate (K2FeO4) to make activated sawdust biochar and applied for the removal of 17-estradiol (E2). The characterization showed that the surface morphology of five graphene-like magnetic sawdust biochars prepared with different preparation conditions were quite different. The specific surface area and pore structure increased with the increment of K2FeO4 addition. The results have shown that graphene-like magnetic sawdust biochar (1:1/900 °C) had the best removal on E2. The experimental results indicated that pseudo-first-order kinetic model and the Langmuir model could describe the adsorption process well, in which the equilibrium adsorption capacity (qe,1) of 1:1/900 °C were 59.18 mg·g−1 obtained from pseudo-first-order kinetic model and the maximum adsorption capacity (qmax) of 1:1/900 °C were 133.45 mg·g−1 obtained from Langmuir model at 298K. At the same time, lower temperatures, the presence of humic acid (HA), and the presence of NaCl could be regulated to change the adsorption reaction in order to remove E2. Adsorption capacity was decreased with the increase of solution pH because pH value not only changed the surface charge of graphene-like magnetic sawdust biochar, but also affected the E2 in the water. The possible adsorption mechanism for E2 adsorption on graphene-like magnetic sawdust biochar was multifaceted, involving chemical adsorption and physical absorption, such as H-bonding, π-π interactions, micropore filling effects, and electrostatic interaction. To sum up, graphene-like magnetic sawdust biochar was found to be a promising absorbent for E2 removal from water.
Collapse
Affiliation(s)
- Yahui Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (Y.Z.); (X.T.)
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Shaobo Liu
- College of Architecture and Art, Central South University, Changsha 410083, China
- Correspondence: (S.L.); (Y.L.)
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (Y.Z.); (X.T.)
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
- Correspondence: (S.L.); (Y.L.)
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (Y.Z.); (X.T.)
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ni Liu
- School of Tourism Management, Hunan University of Technology and Business, Changsha 410205, China;
| | - Jun Wen
- College of Agriculture, Guangxi University, Nanning 530005, China;
| |
Collapse
|