1
|
Zhang Y, Li Y, Wang N, Ma X, Sun J, Wang X, Wang J. Joint action of six-component mixtures based on concentration response curves morphological parameter in acute and long-term toxicity assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104595. [PMID: 39613123 DOI: 10.1016/j.etap.2024.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Previous studies found that the multi-component mixtures with hormesis concentration-response curves (CRCs) were divided into three types according to the combined toxicity analysis of the segment-based method and σ2(k∙ECx) (the variance of k∙ECx). In this study, the acute and long-term toxicity of six pollutants and 12 six-component mixtures were assessed using microplate toxicity analyses (MTA). The functional relationship between σ2(k·ECx) and effect ratio (ERx) was determined by means of the independent action (IA) and the ER model to systematically investigate the correlation between mixture types in acute and long-term toxicity. The results indicated that across the entire concentration range, the mixture type of acute toxicity was consistent with short time exposure (0.25 h) measured in the long-term toxicity experiment. In the inhibition effect range, the types of mixtures of acute toxicity remained consistent with the chronic toxicity (exposure for 24 h) in 11 of the 12 mixtures. This study clarified the changes in the joint action of multi-component mixtures on Aliivibrio fischeri in terms of acute and long-term toxicity. The chronic toxicity of the mixtures can be predicted from the acute toxicity results, which provides a theoretical basis for the biological toxicity evaluation of multi-component mixtures.
Collapse
Affiliation(s)
- Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Yajiao Li
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Na Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China.
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse; Key Laboratory of Environmental Engineering, Shaanxi Province; Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse; Key Laboratory of Environmental Engineering, Shaanxi Province; Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
2
|
Guerra A, Azevedo A, Amorim F, Soares J, Neuparth T, Santos MM, Martins I, Colaço A. Using a food web model to predict the effects of Hazardous and Noxious Substances (HNS) accidental spills on deep-sea hydrothermal vents from the Mid-Atlantic Ridge (MAR) region. MARINE POLLUTION BULLETIN 2024; 199:115974. [PMID: 38176164 DOI: 10.1016/j.marpolbul.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Deep-sea hydrothermal vents host unique ecosystems but face risks of incidents with Hazardous and Noxious Substances (HNS) along busy shipping lanes such as the transatlantic route. We developed an Ecopath with Ecosim (EwE) model of the Menez Gwen (MG) vent field (MG-EwE) (Mid-Atlantic Ridge) to simulate ecosystem effects of potential accidental spills of four different HNS, using a semi-Lagrangian Dispersion Model (sLDM) coupled with the Regional Ocean Modelling System (ROMS) calibrated for the study area. Food web modelling revealed a simplified trophic structure with low energy efficiency. The MG ecosystem was vulnerable to disruptions caused by all tested HNS, yet it revealed some long-term resilience. Understanding these impacts is vital for enhancing Spill Prevention, Control, and Countermeasure plans (SPCC) in remote marine areas and developing tools to assess stressors effects on these invaluable habitats.
Collapse
Affiliation(s)
- A Guerra
- IMAR Institute of Marine Research, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal; CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Azevedo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - F Amorim
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - J Soares
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; AIR Centre, TERINOV-Parque de Ciência e Tecnologia da Ilha Terceira, Canada de Belém S/N, Terra Chã, 9700-702 Angra do Heroísmo, Portugal
| | - T Neuparth
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - M M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - I Martins
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Colaço
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| |
Collapse
|
3
|
Ning W, Hu Y, Feng S, Cao M, Luo J. Ecological risk assessment and transmission of soil heavy metals in pastoral areas of the Tibetan plateau based on network environment analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167197. [PMID: 37741383 DOI: 10.1016/j.scitotenv.2023.167197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
The Qinghai-Tibet Plateau is distinguished by its diverse ecosystems and biodiversity, which are highly dependent on their soil. In this study, a comprehensive analysis was conducted to assess the ecological risks in Maqin County, located on the Qinghai-Tibet Plateau, along with the local background values of soil elements, level of element enrichment, and source appointment of soil elements. The findings show that the background soil element levels in Maqin County were greater than the average soil content values in China. The soils in the study area exhibited pollution levels ranging from weak to moderate. The positive matrix factorization (PMF) model was employed to successfully categorized soil elements into four sources: F1 (natural sources), F2 (grazing sources), F3 (volcanic and rock fracture sources), and F4 (intrusive and deep rock source). Based on the characteristics of the ecological communities and the network environmental analysis model, ecological risks were directly introduced through vegetation and soil microorganisms, with subsequent transmission to other components of the ecosystem through the food chain. The integrated risks associated with vegetation, herbivores, soil microorganisms, and carnivores were 0.0106, 0.00193, 0.0282, and 0.00132, respectively. Notably, soil microorganisms were found to be the primary contributors to the total ecological risk in the study area. Furthermore, network environmental analysis and human health risk models revealed that F1, F2, F3, and F4 accounted for 16.85 %, 8.90 %, 21.76 %, and 52.49 % of the input risk of vegetation and soil microorganisms, respectively. Particularly, F4 emerged as the largest contributor to human health risks. This study provides valuable information for the preservation of the ecological environment in pastoral areas, contributing to the global promotion of sustainable ecological practices.
Collapse
Affiliation(s)
- Wenjing Ning
- School of Environment, Nanjing University, Nanjing, China.
| | - Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
4
|
Rebelo D, Antunes SC, Rodrigues S. The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem. J Xenobiot 2023; 13:604-614. [PMID: 37873815 PMCID: PMC10594489 DOI: 10.3390/jox13040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
The growing concern over the environmental impacts of industrial chemicals on aquatic ecosystems has prompted increased attention and regulation. Aromatic amines have drawn scrutiny due to their potential to disturb aquatic ecosystems. 4-chloroaniline and 3,4-dichloroaniline are chlorinated derivatives of aniline used as intermediates in the synthesis of pharmaceuticals, dyes, pesticides, cosmetics, and laboratory chemicals. While industrial applications are crucial, these compounds represent significant risks to aquatic environments. This article aims to shed light on aromatic amines' ecological and ecotoxicological impacts on aquatic ecosystems, given as examples 4-chloroaniline and 3,4-dichloroaniline, highlighting the need for stringent regulation and management to safeguard water resources. Moreover, these compounds are not included in the current Watch List of the Water Framework Directive, though there is already some information about aquatic ecotoxicity, which raises some concerns. This paper primarily focuses on the inherent environmental problem related to the proliferation and persistence of aromatic amines, particularly 4-chloroaniline and 3,4-dichloroaniline, in aquatic ecosystems. Although significant research underscores the hazardous effects of these compounds, the urgency of addressing this issue appears to be underestimated. As such, we underscore the necessity of advancing detection and mitigation efforts and implementing improved regulatory measures to safeguard the water bodies against these potential threats.
Collapse
Affiliation(s)
- Daniela Rebelo
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Sara C. Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Sara Rodrigues
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Wang N, Zhang H, Ma X, Zhang J, Sun J, Wang X, Zhou J, Wang J, Ge C. Joint action of binary mixtures based on parameter k·EC x from concentration-response curves in long-term toxicity assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103917. [PMID: 35779704 DOI: 10.1016/j.etap.2022.103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A previous acute toxicity study of binary mixtures showed that the combined toxicity can be predicted with the parameter k∙ECx. To systematically investigate the ability of k∙ECx to predict the chronic combined toxicity of binary mixtures, the toxicity of six contaminants and five binary mixtures was determined by long-term microplate toxicity analysis (L-MTA) using Aliivibrio fischeri as the test organism. The independent action model (IA) and the relative model deviation ratio (rMDR) were employed to determine the relationship between the Δ(k∙ECx)% and rMDRx. The results showed that these two factors conformed to the exponential function in long-term toxicity. Owing to the time-dependence of toxicity, the mixture type of chronic toxicity changes to the relative type of acute toxicity. If the acute toxicity of binary mixtures changes their mode of joint action throughout the concentration range, the chronic toxicity will also change their mode of joint action, and vice versa. This study clarified the change rules of the joint action of binary mixtures in acute and chronic toxicity which can promote research on chronic toxicity of binary mixtures.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Huanle Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environment Engineering, Shaanxi, Province, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Jingkun Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environment Engineering, Shaanxi, Province, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of arts and sciences, Baoji, Shaanxi 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd, Dongying 257300, Shandong, China
| |
Collapse
|
6
|
Lv CJ, Hao B, Yasin A, Yue X, Ma PC. Molecular and structural design of polyacrylonitrile-based membrane for oil-water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Impact of P-Chloroaniline on Oxidative Stress and Biomacromolecules Damage in the Clam Ruditapes philippinarums: A Simulate Toxicity Test of Spill Incident. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095092. [PMID: 35564486 PMCID: PMC9105863 DOI: 10.3390/ijerph19095092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/25/2023]
Abstract
As a hazardous chemical, p-chloroaniline (PCA) shows intensive adsorption and accumulation after entering the aquatic ecosystem, which can be enriched in organisms and cause damage. With the objective of achieving an integrated and mechanistic view of the toxic effects of PCA in the marine sentinel organism Ruditapes philippinarum, Manila clams were exposed to different concentration of PCA (0.5, 2 and 5 mg/L) for 15 days. Focusing on the gills, first targeting the toxic and digestive gland, the metabolic detoxification organ, we detected dose- and time-related changes inantioxidase activities and biomacromolecular damages in treated clams. Glutathione S-transferase (GST) activity and glutathione (GSH) contents were significantly induced, and superoxide dismutase (SOD) activity increased at the beginning of exposure and then decreased. The malondialdehyde (MDA) and protein methylation (PC) contents which represent lipid peroxidation and carbonylation of proteins, increased first with exposure time and then decreased in the digestive gland. DNA strand break levels were consistently higher than those in the control group. The digestive gland showed more sensitivity to the stress of PCA than the gills. GST and MDA in the gill and GST, GSH, SOD, DNA strand break level in the digestive gland showed significant correlation with PCA exposure, which indicated that these parameters can be used as sensitive biomarkers to indicate toxic effects from chloraniline leakage.
Collapse
|
8
|
Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|