1
|
Xing J, Wang Q, Yang L, Liu Y, Wang P, Rene ER, Faizan M, Joseph A, Tang J, Wang Y, Zhu N. Influence of crop residue-induced Fe-DOC complexation on nitrate reduction in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172510. [PMID: 38641119 DOI: 10.1016/j.scitotenv.2024.172510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Although complexation between dissolved organic matter (DOM) and ubiquitous Fe is known to have a major influence on electron transferring ability in redoximorphic soil, it was unclear whether and how this complexation affected nitrate reduction and N2O productivity. The nitrate reduction of paddy soil in the presence of crop residues returning under flooding conditions was explored in this study. The rate of nitrate reduction in control soil was 0.0677 d-1, while it improved 1.99 times in treatment soil with Chinese milk vetch (CMV) straw returning. During a 28-day incubation period, N2O productivity decreased 0.08-0.91 ppb in CMV soil and 0.43-0.50 ppb in rice straw soil compared with control. The presence of crop residue increased DOC content and Fe (III) reduction rate, which aided in the formation of Fe (II)-DOC complexation. Meanwhile, the addition of CMV increased the content of DOC by 5.14-78.77 mg/kg and HCl extractable Fe (II) by 35.12-1221.03 mg/kg. Crop residues returning to soil increased the relative abundance of iron reductive and electroactive genera, as well as denitrifying genera with more copies of denitrification genes (Archangiaceae, Gemmatimonadaceae, and Burkholderiaceae). The synergistic effect of Fe-DOC complexation, electroactive genera, and denitrifying genera contributed to up-regulated expression of napA and narG (5.84 × 106 and 3.39 × 107 copies increased in the CMV soil compared to the control) numbers and equally accelerated reduction of nitrate to nitrite, while further nitrite reduction was primarily attributed to the abiotic reaction by Fe (II). From a bio-electrochemical point of view, this work provided new insight into the nitrate reduction of paddy soil impacted by Fe-DOC complexation.
Collapse
Affiliation(s)
- Jun Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Qiwu Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Luyu Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yizhou Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mohammad Faizan
- Maulana Azad National Urdu University, Hyderabad 500032, Telangana, India
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Jun Tang
- Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
2
|
Xie H, Zhao W, Li J, Li J. Degradation of different wastewater by a biological sponge iron system: microbial growth and influencing factors. RSC Adv 2024; 14:17318-17325. [PMID: 38813119 PMCID: PMC11134168 DOI: 10.1039/d4ra02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
The bio-ZVI process has undergone widespread development in wastewater treatment in recent years. However, there has been limited examination of the growth and degradation characteristics of functional microorganisms within the system. In the present research, strains were isolated and identified from the bio-ZVI system constructed by sponge iron (encoded as SFe-M). The consistency of operating conditions in treating different wastewater was explored. Three SFe-acclimated microorganisms exhibiting characteristics of degrading organic pollutants and participating in the nitrogen removal process were isolated. The adaptation time of these microorganisms prolonged as the substrate toxicity increased, while the pollutant degradation was related to their metabolic rate in the logarithmic phase. All these functional bacteria exhibited the ability to treat wastewater in a wide pH range (5-8). However, the improper temperature (such as 10 °C and 40 °C) significantly inhibited their growth, and the optimal working temperature was identified as 30 °C. The iron dosage had a significant impact on these function bacteria, ranging from 1 g L-1 to 150 g L-1. It was inferred that the SFe-acclimated microorganisms are capable of resisting the poison of excessive iron, that is, they all have strong adaptability. The results provide compelling evidence for further understanding of the degradation mechanism involved in the bio-ZVI process.
Collapse
Affiliation(s)
- Huina Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Wei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jing Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
3
|
Liang C, Wei Z, Bester K. Transformation mechanisms of the antidepressant citalopram in a moving bed biofilm reactor: Substrate-depended pathways, eco-toxicities and enantiomeric profiles. WATER RESEARCH 2024; 252:121245. [PMID: 38335750 DOI: 10.1016/j.watres.2024.121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Citalopram (CIT) is one of the most consumed antidepressants and frequently detected in aquatic environments worldwide. Conventional wastewater treatment cannot remove this neuronal active pharmaceutical efficiently. Past studies showed that moving bed biofilm reactors (MBBRs) can degrade CIT but the exact transformation pathways and toxicity reduction remained unclear. In this study, the effects of substrate stimulation on CIT transformation in an MBBR were systematically investigated. The results showed that a co-metabolic stimulation by acetate increased the transformation rate by 54 % and 24 % at high (300 μg/L) and environmental concentration (1.8 μg/L) of CIT, respectively. Conversely, the complex substrates in raw wastewater reduced the reaction rates by 44 %, suggesting a competitive inhibition on the enzymatic sites. The substrate stimulation changed the enantiomeric fraction (EF) of CIT from racemic (EF=0.5) to 0.60 at the high CIT concentrations, while those at lower concentrations resulted in an EF of 0.33, indicating that probably different enantioselective enzymes degraded CIT at high concentrations than at low concentrations, i.e., the presence of 300 µg/L CIT was possibly sufficient to induce the synthesis of different enantioselective enzymes, than those originally present. Through non-target and target analysis, in total 19 transformation products (TPs) including 7 TPs that were hitherto not mentioned in the literature were identified. Among these were quaternary amines, alkenes and conjugate TPs. The major transformation pathways were a) nitrile hydrolysis (up to 43 %), b) amide hydrolysis, and c) N-oxidation. Dosing acetate up-regulated significantly the amide hydrolysis, N-oxidation and conjugation pathways but inhibited the N-demethylation and α-carbon hydroxylation pathways. The in-silico toxicity assessment of CIT and its TPs suggested the overall eco-toxic potential of TPs was reduced by MBBR. Furthermore, the degradation under carbon-limited (famine) conditions favored the formation of the more toxic carboxamide, N-desmethyl and alkene TPs, while carbon-rich conditions, promoted the production of the less toxic carboxylic acid, N-oxide and ester TPs. Therefore, this study demonstrated that a) the co-metabolic stimulation of CIT metabolization by dosing a simple carbon source or b) inhibition of CIT metabolization by complex substrates; c) substrate stimulation made a difference on CIT transformation rates, enantiomeric profiles, pathways and toxic potentials. Overall, a simple-carbon co-metabolic stimulated MBBR was an efficient up-regulation strategy to minimize hazardous CIT and CIT-TPs as much as possible.
Collapse
Affiliation(s)
- Chuanzhou Liang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Zhiyu Wei
- Hubei Fisheries Science Research Institute, Donghu Road 145, Wuhan, Hubei, 430071, China
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
4
|
Cui X, You J, Liao K, Ding L, Hu H, Ren H. Carbon Source in Tertiary Denitrification Regulates Dissolved Organic Nitrogen in Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4648-4661. [PMID: 38324528 DOI: 10.1021/acs.est.3c06554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
With global eutrophication and increasingly stringent nitrogen discharge restrictions, dissolved organic nitrogen (DON) holds considerable potential to upgrade advanced wastewater denitrification because of its large contribution to low-nitrogen effluents and stronger stimulation effect for algae. Here, we show that DON from the postdenitrification systems dominates effluent eutrophication potential under different carbon sources. Methanol resulted in significantly lower DON concentrations (0.84 ± 0.03 mg/L) compared with the total nitrogen removal-preferred acetate (1.11 ± 0.02 mg/L) (p < 0.05, ANOVA). With our well-developed mathematical model (R2 = 0.867-0.958), produced DON instead of shared (persist in both influent and effluent) and/or removed DON was identified as the key component for effluent DON variation (Pearson r = 0.992, p < 0.01). The partial least-squares path modeling analysis showed that it is the microbial community (r = 0.947, p < 0.01) rather than the predicted metabolic functions (r = 0.040, p > 0.1) that affected produced DON. Carbon sources rebuild the microorganism-DON interaction by affecting the structure of microbial communities with different abilities to generate and recapture produced DON to finally regulate effluent DON. This study revalues the importance of carbon source selection and overturns the current rationality of pursuing only the total nitrogen removal efficiency by emphasizing DON.
Collapse
Affiliation(s)
- Xian Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
5
|
Zhang X, Song X, Cheng X, Huang Z, Dong D, Li X. Enhanced denitrification of biodegradable polymers using Bacillus pumilus in aerobic denitrification bioreactors: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 394:130240. [PMID: 38160849 DOI: 10.1016/j.biortech.2023.130240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Nitrate accumulation is an important issue that affects animal health and causes eutrophication. This study combined biodegradable polymers with degrading bacteria to lead to high denitrification efficiency. The results showed polycaprolactone had the highest degradation and carbon release rate (0.214 mg/g∙d) and nitrogen removal was greatest when the Bacillus pumilus and Halomonas venusta ratio was 1:2. When the hydraulic retention time was extended to 12 h, the nitrate removal rate for H. venusta with B. pumilus and polycaprolactone increased by 48 %. Furthermore, the group with B. pumilus contained more Proteobacteria (77.34 %) and denitrifying functional enzymes than the group without B. pumilus. These findings indicated B.pumilus can enhance the degradation of biodegradable polymers especially polycaprolactone to improve the denitrification of the aerobic denitrification bacteria H.venusta when treating maricultural wastewater.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Xiefa Song
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Xiaojing Cheng
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Zhitao Huang
- Norwegian Institute for Water Research (NIVA), Thormøhlengate 53 D, 5006 Bergen, Norway
| | - Dengpan Dong
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
6
|
Zhu T, Ding J, Liu Y, Li X, Wang Z, Liu Y. The effect of organic sources on the electron distribution and N 2O emission in sulfur-driven autotrophic denitrification biofilters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166126. [PMID: 37562622 DOI: 10.1016/j.scitotenv.2023.166126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Sulfur-driven autotrophic denitrification (SAD) is considered as an effective alternative to traditional heterotrophic denitrification (HD) due to its cheap, low sludge production and non-toxicity. Nitrous oxide (N2O) as an intermediate product inevitably was generated at the limited supply of electron donor or unbalanced electron distribution condition during the denitrification process. Recently, autotrophic denitrification biofilters were conclusively implemented for advanced nitrogen removal in wastewater treatment plant (WWTP). However, residual organic sources after wastewater treatment could affect the electron distribution among denitrifying reductases and few studies are known about this issue. In this study, several lab-scale biofilters packed with elemental sulfur slices were applied to explore the electron distribution characteristics of autotrophic denitrification through the combination of different nitrogen oxides (NOx). The results clearly delineated that the different combination of nitrogen oxides had a remarkable effect on the electron distribution. In any case, the electrons likely flow toward nitrate reductase (Nar) under a single nitrogen oxide combination, followed by nitrite reductase (Nir) and nitrous oxide reductase (Nos). The concurrent presence of multiple electron acceptors resulted in most electrons flowing toward Nar, and least toward Nos. Compared to traditional SAD, the reduction rate of nitrogen oxide in the sulfur-driven autotrophic denitrification with influent of organic source (OSAD) was greatly improved. The maximum value of the true specific rates of NO3- in OSAD process was 9.43 mg-N/g-VSS/h. It was increased by 8.26 folds higher than that in traditional SAD. The electrons were more easily distributed to Nos with the addition of sodium acetate, which further promoted the N2O reduction. This study will provide theoretical support for controlling N2O release in SAD biofilters.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiazeng Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xufeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zhiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
7
|
Ahmed SM, Rind S, Rani K. Systematic review: External carbon source for biological denitrification for wastewater. Biotechnol Bioeng 2023; 120:642-658. [PMID: 36420631 DOI: 10.1002/bit.28293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Nitrogen mitigation is serious environmental issue around the globe. Several methods for wastewater treatment have been introduced, but biological denitrification has been recommended, particularly with addition of the best external carbon source. The key sites of denitrification are wetlands; it can be carried out with different methods. To highlight the aforementioned technology, this paper deals to review the literature to evaluate biological denitrification and to demonstrate cost effective external carbon sources. The results of systematic review disclose the denitrification process and addition of different external carbon sources. The online literature exploration was accomplished using the most well-known databases, that is, science direct and the web of science database, resulting 625 review articles and 3084 research articles, published in peer-reviewed journals between 2015 and 2021 were identified in first process. After doing an in-depth literature survey and exclusion criteria, we started to shape the review from selected review and research articles. A number of studies confirmed that both nitrification and denitrification are significant for biological treatment of wastewater. The studies proved that the carbon source is the main contributor and is a booster for the denitrification. Based on the literature reviewed it is concluded that biological denitrification with addition of external carbon source is cost effective and best option in nitrogen mitigation in a changing world. Our study recommends textile waste for recovery of carbon source.
Collapse
Affiliation(s)
- Sanjrani Manzoor Ahmed
- College of Environmental Science and Engineering, Donghua University, Shanghai, China.,HANDS-Institute of Development Studies, Karachi, Pakistan
| | - Saeeda Rind
- Department of Chemistry, University of Sindh Jamshoro, Jamshoro, Pakistan
| | - Keenjhar Rani
- Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
8
|
Single-stage or two-stages bio-electrochemical treatment process of drainage from soilless tomato cultivation with alternating current. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Technological Parameters of Rotating Electrochemical and Electrobiological Disk Contactors Depending on the Effluent Quality Requirements. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soilless tomato cultivation wastewater, with typically low COD, high concentrations of phosphorus, and oxidized forms of nitrogen, may be effectively treated in a rotating electrochemical disk contactor (RECDC) and in a bioelectrochemical reactor (BER), such as a rotating electrobiological disk contactor (REBDC). The aim of this study was to determine the technological parameters of both reactors, i.e., electric current density (J) and hydraulic retention time (HRT), depending on the effluent quality requirements. The study was conducted with four one-stage RECDCs and with four one-stage REBDCs, at four hydraulic retention times, i.e., 4, 8, 12, and 24 h, and electric current densities of 0.63, 1.25, 2.50, 5.00, and 10.00 A/m2. It was demonstrated that soilless tomato cultivation wastewater could be effectively treated in electrochemical and electrobiological disk contactors, and then discharged to sewage system facilities. In a RECDC, the highest denitrification (53.4%) and dephosphatation (99.8%) performance was achieved at J = 10.0 A/m2 and HRT = 24 h. If the effluents are to be discharged to natural reservoirs, their effective treatment is only feasible in a REBDC. The bioelectrochemical disk contactor ensured over 90% dephosphatation effectiveness. At HRT = 24 h and all electric current densities studied, the concentrations of pollutants in the effluent met requirements set for industrial wastewater discharged into natural waters and the ground. By applying J = 2.5 A/m2 and HRT = 24 h in the REBDC, it was possible to achieve a phosphorus concentration below 3.0 mg P/L and concentrations of ammonia nitrogen and nitrites lower than the permissible levels for treated industrial wastewater introduced to waters and to the ground. Given the nitrate concentration (exceeding 30 mg N/L), an external carbon source is recommended to aid a treatment process that uses a technological system with a REBDC. Technological schemes were proposed for wastewater treatment plants (WWTPs) with a RECDC and a REBDC, for discharging treated wastewater to natural waters, the ground, and sewage systems.
Collapse
|
10
|
Jiang L, Ji F, Liao Y, Mao Y, Shen Q, Zhuo Y, Zhang Q. Denitrification performance and mechanism of denitrification biofilm reactor based on carbon-nitrate counter-diffusional. BIORESOURCE TECHNOLOGY 2022; 348:126804. [PMID: 35131456 DOI: 10.1016/j.biortech.2022.126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
This study researched denitrification performance and mechanism of denitrification biofilm reactor with different HRTs and carbon sources dosages. Experimental group (EG) had better nitrate and COD removal performance than control group (CG) with different HRTs or carbon doses, and the maximum nitrate-to-nitrite transformation ratio (NTR) of them reached 7.91 ± 1.60% and 17.50 ± 1.92%, respectively. Because organic carbon sources were added to the carrier's interior in EG, forming high local concentrations in biofilms and counter-diffusional with nitrate. By contrast, carbon sources and nitrate were provided from the aqueous phase in CG. Thus, the EG system has more active regions of the biofilm than CG. In addition, EG had higher proportions of microorganisms and enzymes related to denitrification and carbon metabolism. The most dominant phylum, genus, and species were Proteobacteria, Thaurea, and Thauera_sp._27, respectively. The transcript of acetyl-CoA synthetase (K01895) and denitrification (M00529) was mainly originated from unclassified_g__Pseudomonas and unclassified_g__Thauera, respectively.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Yong Liao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanxiang Mao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yiyuan Zhuo
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qian Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
11
|
Chen C, Zhang X, Liu C, Wu Y, Zheng G, Chen Y. Advances in downstream processes and applications of biological carboxylic acids derived from organic wastes. BIORESOURCE TECHNOLOGY 2022; 346:126609. [PMID: 34954356 DOI: 10.1016/j.biortech.2021.126609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Recovering carboxylic acids derived from organic wastes from fermentation broth is challenging. To provide a reference for future study and industrial application, this review summarized recent advances in recovery technologies of carboxylic acids including precipitation, extraction, adsorption, membrane-based processes, etc. Meanwhile, applications of recovered carboxylic acids are summarized as well to help choose suitable downstream processes according to purity requirement. Integrated processes are required to remove the impurities from the complicated fermentation broth, at the cost of loss and expense. Compared with chemical processes, biological synthesis is better options due to low requirements for the substrates. Generally, the use of toxic agents, consumption of acid/alkaline and membrane fouling hamper the sustainability and scale-up of the downstream processes. Future research on novel solvents and materials will facilitate the sustainable recovery and reduce the cost of the downstream processes.
Collapse
Affiliation(s)
- Chuang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
12
|
Alleviating the membrane fouling potential of the denitrification filter effluent by regulating the COD/N ratio and carbon source in the process of wastewater reclamation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Dan NH, Le Luu T. High organic removal of landfill leachate using a continuous flow sequencing batch biofilm reactor (CF-SBBR) with different biocarriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147680. [PMID: 34004532 DOI: 10.1016/j.scitotenv.2021.147680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate contains many pollutants that have a negative effect on the environment when improperly discharged. Thus the treatment of landfill leachate is a crucial issue, especially in the bigger cities in developing countries. In this study, landfill leachate is treated using a continuous flow sequencing biofilm batch reactor (CF-SBBR) with different biocarriers (non-carrier (NC), kaldness K1 (K1), mutag biochip 30™ (MB), and sponge polyurethane (SP)). The results show that the best COD, TOC, and NH4+-N removal efficiencies were 79.6 ± 0.8%, 78.1 ± 1.9% and 77.5 ± 3.9% in the MB biocarriers tank with an aeration/mixing ratio of 1.3, a cycle time of 9 h and an organic loading rate (OLR) of 1.74 kgCOD/m3.d. The TN removal efficiencies was decreased when there was an increase in the biocarrier's surface area (NC > K1 > MB > SP). At the highest it was 46.1 ± 6.4%, where the aeration/mixing ratio was 1.3, the cycle time was 9 h, and the OLR was 1.52 kgCOD/m3.d. The higher the surface area of the biocarriers, the greater the anti-shock organic loading capacity of the biocarriers due to the formation of biofilm layers. The microbial communities in the CF-SBBR tanks were abundant with common phylum bacteria as in a conventional activated sludge system. Anammox candidatus bacteria was found to total 0.5%. This study concluded that CF-SBBR is an efficient method to treat landfill leachate.
Collapse
Affiliation(s)
- Nguyen Hong Dan
- Institute for Environment and Resources, Vietnam National University of Ho Chi Minh City, Viet Nam
| | - Tran Le Luu
- Master Program in Water Technology, Reuse, and Management, Vietnamese German University, 2-Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province 820000, Viet Nam.
| |
Collapse
|
14
|
Muratçobanoğlu H, Gökçek ÖB, Mert RA, Zan R, Demirel S. The impact of reduced graphene oxide (rGO) supplementation on cattle manure anaerobic digestion: Focusing on process performance and microbial syntrophy. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Application of Internal Carbon Source from Sewage Sludge: A Vital Measure to Improve Nitrogen Removal Efficiency of Low C/N Wastewater. WATER 2021. [DOI: 10.3390/w13172338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological nitrogen removal from wastewater is widely used all over the world on account of high efficiency and relatively low cost. However, nitrogen removal efficiency is not optimized when the organic matter has inadequate effect for the lack of a sufficient carbon source in influent. Although addition of an external carbon source (e.g., methanol and acetic acid) could solve the insufficient carbon source problem, it raises the operating cost of wastewater treatment plants (WWTPs). On the other hand, large amounts of sludge are produced during biological sewage treatment, which contain high concentrations of organic matter. This paper reviews the emerging technologies to obtain an internal organic carbon resource from sewage sludge and their application on improving nitrogen removal of low carbon/nitrogen wastewater of WWTPs. These are methods that could solve the insufficient carbon problem and excess sludge crisis simultaneously. The recovery of nitrogen and phosphorus from treated sludge before recycling as an internal carbon source should also be emphasized, and the energy and time consumed to treat sludge should be reduced in practical application.
Collapse
|
16
|
The Kinetics of Pollutant Removal through Biofiltration from Stormwater Containing Airport De-Icing Agents. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aimed to determine the kinetics of pollutant removal in biofilters with LECA filling (used as a buffer to prevent de-icing agents from being released into the environment with stormwater runoff). It demonstrated a significant effect of temperature and a C/N ratio on the rate of nitrification, denitrification, and organic compound removal. The nitrification rate was the highest (0.32 mg N/L·h) at 25 °C and C/N = 0.5, whereas the lowest (0.18 mg N/L·h) at 0 °C and C/N = 2.5 and 5.0. Though denitrification rate is mainly affected by the available quantity of organic substrate, it actually decreased as the C/N increased and was positively correlated with the temperature levels. Its value was found to be the highest (0.31 mg N/L·h) at 25 °C and C/N = 0.5, and the lowest (0.18 mg N/L·h) at 0 °C and C/N = 5.0. As the C/N increased, so did the content of organic compounds in the treated effluent. The lowest organic removal rates were noted for C/N = 0.5, ranging between 11.20 and 18.42 mg COD/L·h at 0 and 25 °C, respectively. The highest rates, ranging between 27.83 and 59.43 mg COD/L·h, were recorded for C/N = 0.5 at 0 and 25 °C, respectively.
Collapse
|
17
|
Korzeniewska E, Piekarska K, Harnisz M. Advances in energy systems and environmental engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141499. [PMID: 32798880 DOI: 10.1016/j.scitotenv.2020.141499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Ewa Korzeniewska
- University of Warmia and Mazury in Olsztyn, The Faculty of Geoengineering, Department of Engineering of Water Protection, and Environmental Microbiology, Poland.
| | - Katarzyna Piekarska
- Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
| | - Monika Harnisz
- University of Warmia and Mazury in Olsztyn, The Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, Poland
| |
Collapse
|
18
|
Abstract
Analysis of the current knowledge has revealed the lack of a method for increasing the cost-effectiveness of wastewater and septage treatment in plants overloaded by contamination. This was the premise for undertaking research on the process of septage pre-treatment in a subsurface vertical flow constructed wetland (SS-VF) prior to its input into the biological section of a municipal treatment plant. In previous research the authors have indicated that this allows for a significant reduction in the value of pollution indicators. The objective of this paper is to assess the cost-effectiveness of this process by means of an optimization model. The decision variable was the coefficient of septage stream distribution into the quantity directed to the SS-VF bed in relation to its total quantity. The optimization criterion was the minimization of the expected annual cost of wastewater and septage treatment. Verification of the model has shown that it is reasonable to subject all septage to the pre-treatment in a SS-VF bed for small wastewater treatment plant (WWTPs) located in rural areas. The bigger the septage pollution load is, the greater the reduction in the treatment costs. The proposed solution is less cost-effective in urban areas, where the construction of a SS-VF bed requires land purchase and additional costs of its adjustment. Optimization results largely depend on the cost function, so it is important to build it on reliable local data.
Collapse
|