1
|
Lu Y, Wang F, Min J, Kronzucker HJ, Hua Y, Yu H, Zhou F, Shi W. Biological mitigation of soil nitrous oxide emissions by plant metabolites. GLOBAL CHANGE BIOLOGY 2024; 30:e17333. [PMID: 38798169 DOI: 10.1111/gcb.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Plant metabolites significantly affect soil nitrogen (N) cycling, but their influence on nitrous oxide (N2O) emissions has not been quantitatively analyzed on a global scale. We conduct a comprehensive meta-analysis of 173 observations from 42 articles to evaluate global patterns of and principal factors controlling N2O emissions in the presence of root exudates and extracts. Overall, plant metabolites promoted soil N2O emissions by about 10%. However, the effects of plant metabolites on N2O emissions from soils varied with experimental conditions and properties of both metabolites and soils. Primary metabolites, such as sugars, amino acids, and organic acids, strongly stimulated soil N2O emissions, by an average of 79%, while secondary metabolites, such as phenolics, terpenoids, and flavonoids, often characterized as both biological nitrification inhibitors (BNIs) and biological denitrification inhibitors (BDIs), reduced soil N2O emissions by an average of 41%. The emission mitigation effects of BNIs/BDIs were closely associated with soil texture and pH, increasing with increasing soil clay content and soil pH on acidic and neutral soils, and with decreasing soil pH on alkaline soils. We furthermore present soil incubation experiments that show that three secondary metabolite types act as BNIs to reduce N2O emissions by 32%-45%, while three primary metabolite classes possess a stimulatory effect of 56%-63%, confirming the results of the meta-analysis. Our results highlight the potential role and application range of specific secondary metabolites in biomitigation of global N2O emissions and provide new biological parameters for N2O emission models that should help improve the accuracy of model predictions.
Collapse
Affiliation(s)
- Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangjia Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ju Min
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yao Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoming Yu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Feng Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Jiangsu Province Engineering Research Center of Watershed Geospatial Intelligence, College of Geography and Remote Sensing, Hohai University, Nanjing, China
- Southwest United Graduate School, Kunming, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
2
|
Shaaban M, Khalid MS, Hu R, Zhou M. Effects of water regimes on soil N 2O, CH 4 and CO 2 emissions following addition of dicyandiamide and N fertilizer. ENVIRONMENTAL RESEARCH 2022; 212:113544. [PMID: 35643309 DOI: 10.1016/j.envres.2022.113544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Water regimes strongly impact soil C and N cycling and the associated greenhouse gases (GHGs, i.e., CO2, CH4 and N2O). Therefore, a study was conducted to examine the impacts of flooding-drying of soil along with application of nitrogen (N) fertilizer and nitrification inhibitor dicyandiamide (DCD) on GHGs emissions. This study comprised four experimental treatments, including (i) control (CK), (ii) dicyandiamide, 20 mg kg-1 (DCD), (iii) nitrogen fertilizer, 300 mg kg-1 (N) and (iv) DCD + N. All experimental treatments were kept under flooded condition at the onset of the experiment, and then converted to 60% water filled pore space (WFPS). At flooding stage, N2O emissions were lower as compared to 60% WFPS. The highest cumulative N2O emission was 0.98 mg N2O-N kg-1 in N treated soil due to high substrates of mineral N contents, but lowest (0.009 mg N2O-N kg-1) in the DCD treatment. The highest cumulative CH4 emissions (80.54 mg CH4-C kg-1) were observed in the N treatment, while uptake of CH4 was observed in the DCD treatment. As flooded condition converted to 60% WFPS, CO2 emissions gradually increased in all experimental treatments, but the maximum cumulative CO2 emission was 477.44 mg kg-1 in the DCD + N treatment. The maximum dissolved organic carbon (DOC) contents were observed in N and DCD + N treatments with the values of 57.12 and 58.92 mg kg-1, respectively. Microbial biomass carbon (MBC) contents were higher at flooding while lower at transition phase, and increased at the initiation of 60% WFPS stage. However, MBC contents declined at the later stage of 60% WFPS. The maximum MBC contents were 202.12 and 192.41 mg kg-1 in N and DCD + N treatments, respectively. Results demonstrated that water regimes exerted a dramatic impact on C and N dynamics, subsequently GHGs, which were highly controlled by DCD at both flooding and 60% WFPS conditions.
Collapse
Affiliation(s)
- Muhammad Shaaban
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041, Chengdu, China
| | | | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Minghua Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041, Chengdu, China.
| |
Collapse
|
3
|
Adu-Poku D, Ackerson NOB, Devine RNOA, Addo AG. Climate mitigation efficiency of nitrification and urease inhibitors: impact on N2O emission–A review. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Nugrahaeningtyas E, Lee DJ, Song JI, Kim JK, Park KH. Potential Application of Urease and Nitrification Inhibitors to
Mitigate Emissions from the Livestock Sector: A Review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:603-620. [PMID: 35969707 PMCID: PMC9353359 DOI: 10.5187/jast.2022.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Human activities have caused an increase in greenhouse gas emissions, resulting
in climate change that affects many factors of human life including its effect
on water and food quality in certain areas with implications for human health.
CH4 and N2O are known as potent non-CO2
GHGs. The livestock industry contributes to direct emissions of CH4
(38.24%) and N2O (6.70%) through enteric fermentation and manure
treatment, as well as indirect N2O emissions via NH3
volatilization. NH3 is also a secondary precursor of particulate
matter. Several approaches have been proposed to address this issue, including
dietary management, manure treatment, and the possibility of inhibitor usage.
Inhibitors, including urease and nitrification inhibitors, are widely used in
agricultural fields. The use of urease and nitrification inhibitors is known to
be effective in reducing nitrogen loss from agricultural soil in the form of
NH3 and N2O and can further reduce CH4 as a
side effect. However, the effectiveness of inhibitors in livestock manure
systems has not yet been explored. This review discusses the potential of
inhibitor usage, specifically of N-(n-butyl) thiophosphoric triamide,
dicyandiamide, and 3,4-dimethylpyrazole phosphate, to reduce emissions from
livestock manure. This review focuses on the application of inhibitors to
manure, as well as the association of these inhibitors with health, toxicity,
and economic benefits.
Collapse
Affiliation(s)
- Eska Nugrahaeningtyas
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| | - Dong-Jun Lee
- Department of Animal Environment, National
Institute of Animal Science, Wanju 55365, Korea
| | - Jun-Ik Song
- Division of Animal Husbandry, Yonam
College, Cheonan 31005, Korea
| | - Jung-Kon Kim
- Department of Animal Environment, National
Institute of Animal Science, Wanju 55365, Korea
- Corresponding author: Jung-Kon Kim,
Department of Animal Environment, National Institute of Animal Science, Wanju
55365, Korea. Tel: +82-63-238-7407, E-mail:
| | - Kyu-Hyun Park
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
- Corresponding author: Kyu-Hyun Park,
Department of Animal Industry Convergence, Kangwon National University,
Chuncheon 24341, Korea. Tel: +82-33-250-8621, E-mail:
| |
Collapse
|
5
|
Lombardi B, Loaiza S, Trujillo C, Arevalo A, Vázquez E, Arango J, Chirinda N. Greenhouse gas emissions from cattle dung depositions in two Urochloa forage fields with contrasting biological nitrification inhibition (BNI) capacity. GEODERMA 2022; 406:115516. [PMID: 35039687 PMCID: PMC8609157 DOI: 10.1016/j.geoderma.2021.115516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/14/2023]
Abstract
Grazing-based production systems are a source of soil greenhouse gas (GHG) emissions triggered by excreta depositions. The adoption of Urochloa forages (formerly known as Brachiaria) with biological nitrification inhibition (BNI) capacity is a promising alternative to reduce nitrous oxide (N2O) emissions from excreta patches. However, how this forage affects methane (CH4) or carbon dioxide (CO2) emissions from excreta patches remains unclear. This study investigated the potential effect of soils under two Urochloa forages with contrasting BNI capacity on GHG emissions from cattle dung deposits. Additionally, the N2O and CH4 emission factors (EF) for cattle dung under tropical conditions were determined. Dung from cattle grazing star grass (without BNI) was deposited on both forage plots: Urochloa hybrid cv. Mulato and Urochloa humidicola cv. Tully, with a respectively low and high BNI capacity. Two trials were conducted for GHG monitoring using the static chamber technique. Soil and dung properties and GHG emissions were monitored in trial 1. In trial 2, water was added to simulate rainfall and evaluate GHG emissions under wetter conditions. Our results showed that beneath dung patches, the forage genotype influenced daily CO2 and cumulative CH4 emissions during the driest conditions. However, no significant effect of the forage genotype was found on mitigating N2O emissions from dung. We attribute the absence of a significant BNI effect on N2O emissions to the limited incorporation of dung-N into the soil and rhizosphere where the BNI effect occurs. The average N2O EFs was 0.14%, close to the IPCC 2019 uncertainty range (0.01-0.13% at 95% confidence level). Moreover, CH4 EFs per unit of volatile solid (VS) averaged 0.31 g CH4 kgVS-1, slightly lower than the 0.6 g CH4 kgVS-1 developed by the IPCC. This implies the need to invest in studies to develop more region-specific Tier 2 EFs, including farm-level studies with animals consuming Urochloa forages to consider the complete implications of forage selection on animal excreta based GHG emissions.
Collapse
Affiliation(s)
- Banira Lombardi
- CIFICEN (CONICET – UNICEN – CICPBA), IFAS, Tandil, Argentina
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Sandra Loaiza
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Pontificia Universidad Javeriana, Cali, Colombia
| | - Catalina Trujillo
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Ashly Arevalo
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Eduardo Vázquez
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- University of Bayreuth, Department of Soil Biogeochemistry and Soil Ecology, Bayreuth, Germany
| | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Ngonidzashe Chirinda
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Mohammed VI Polytechnic University (UM6P), AgroBioSciences (AgBS), Agricultural Innovations and Technology Transfer Centre (AITTC), Benguerir, Morocco
| |
Collapse
|
6
|
Baptistella JLC, de Andrade SAL, Favarin JL, Mazzafera P. Urochloa in Tropical Agroecosystems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|