1
|
Gimenes Vernasqui L, de Oliveira Santiago Santos G, Isidro J, Oliveira Silva T, de Vasconcelos Lanza MR, Saez C, Gomes Ferreira N, Rodrigo Rodrigo MA. New diamond coatings for a safer electrolytic disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117871-117880. [PMID: 37875760 DOI: 10.1007/s11356-023-30407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
In this work, a new coating of boron-doped diamond ultra-nanocrystalline (U-NBDD), tailored to prevent massive formation of perchlorates during disinfection, is evaluated as electrode for the reclaiming of treated secondary wastewater by the electrochemically assisted disinfection process. Results obtained are compared to those obtained by using a standard electrode (STD) that was evaluated as a standard in previous research showing outstanding performance for this application. First tests were carried out to evaluate the chlorine speciation obtained after the electrolysis of synthetic chloride solutions at two different ranges of current densities. Concentrations of hypochlorite obtained using the U-NBDD anode at 25 mA cm-2 were 1.5-fold higher, outperforming STD anode; however, at 300 mA cm-2, an overturn on the behavior of anodes occurs where the amount of hypochlorite produced on STD anode was 1.5-fold higher. Importantly, at low current density the formation of chlorates and perchlorates is null using U-NBDD. Then, the disinfection of the real effluent of the secondary clarifier of a municipal wastewater treatment facility is assessed, where inactivation of Escherichia coli is achieved at low charge applied per volume electrolyzed (0.08 A h L-1) at 25 mA cm-2 using the U-NBDD. These findings demonstrate the appropriateness of the strategy followed in this work to obtain safer electro-disinfection technologies for the reclaiming of treated wastewater.
Collapse
Affiliation(s)
- Laís Gimenes Vernasqui
- Laboratório Associado de Sensores E Materiais, Instituto Nacional de Pesquisas Espaciais (INPE), Av. Dos Astronautas, São José Dos Campos, SP, 1758, 12227 010, Brazil
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Gessica de Oliveira Santiago Santos
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Julia Isidro
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Taynara Oliveira Silva
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Marcos Roberto de Vasconcelos Lanza
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Cristina Saez
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Neidenei Gomes Ferreira
- Laboratório Associado de Sensores E Materiais, Instituto Nacional de Pesquisas Espaciais (INPE), Av. Dos Astronautas, São José Dos Campos, SP, 1758, 12227 010, Brazil
| | - Manuel Andres Rodrigo Rodrigo
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain.
| |
Collapse
|
2
|
Pertegal V, Riquelme E, Lozano-Serra J, Cañizares P, Rodrigo MA, Sáez C, Lacasa E. Cleaning technologies integrated in duct flows for the inactivation of pathogenic microorganisms in indoor environments: A critical review of recent innovations and future challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118798. [PMID: 37591101 DOI: 10.1016/j.jenvman.2023.118798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Pathogenic microorganisms are a major concern in indoor environments, particularly in sensitive facilities such as hospitals, due to their potential to cause nosocomial infections. This study evaluates the concentration of airborne bacteria and fungi in the University Hospital Complex of Albacete (Spain), comparing the results with recent literature. Staphylococcus is identified as the most prevalent bacterial genus with a percentage distribution of 35%, while Aspergillus represents the dominant fungal genus at 34%. The lack of high Technology Readiness Levels (TRL 6, TRL 7) for effective indoor air purification requires research efforts to bridge this knowledge gap. A screening of disinfection technologies for pathogenic airborne microorganisms such as bacteria and fungi is conducted. The integration of filtration, irradiation or and (electro)chemical gas treatment systems in duct flows is discussed to enhance the design of the air-conditioning systems for indoor air purification. Concerns over microbial growth have led to recent studies on coating commercial fibrous air filters with antimicrobial particles (silver nanoparticles, iron oxide nanowires) and polymeric materials (polyaniline, polyvinylidene fluoride). Promising alternatives to traditional short-wave UV-C energy for disinfection include LED and Far-UVC irradiation systems. Additionally, research explores the use of TiO2 and TiO2 doped with metals (Ag, Cu, Pt) in filters with photocatalytic properties, enabling the utilization of visible or solar light. Hybrid photocatalysis, combining TiO2 with polymers, carbon nanomaterials, or MXene nanomaterials, enhances the photocatalytic process. Chemical treatment systems such as aerosolization of biocidal agents (benzalkonium chloride, hydrogen peroxide, chlorine dioxide or ozone) with their possible combination with other technologies such as adsorption, filtration or photocatalysis, are also tested for gas disinfection. However, the limited number of studies on the use of electrochemical technology poses a challenge for further investigation into gas-phase oxidant generation, without the formation of harmful by-products, to raise its TRL for effectively inactivating airborne microorganisms in indoor environments.
Collapse
Affiliation(s)
- Víctor Pertegal
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071, Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area. University Hospital Complex of Albacete, C/ Hermanos Falcó 37, 02006, Albacete, Spain
| | - Julia Lozano-Serra
- Clinical Parasitology and Microbiology Area. University Hospital Complex of Albacete, C/ Hermanos Falcó 37, 02006, Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071, Albacete, Spain.
| |
Collapse
|
3
|
A New Method Based on a Zero Gap Electrolysis Cell for Producing Bleach: Concept Validation. MEMBRANES 2022; 12:membranes12060602. [PMID: 35736310 PMCID: PMC9230961 DOI: 10.3390/membranes12060602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023]
Abstract
Commercial bleach (3.6 wt% active chlorine) is prepared by diluting highly concentrated industrial solutions of sodium hypochlorite (about 13 wt% active chlorine) obtained mainly by bubbling chlorine gas into dilute caustic soda. The chlorine and soda used are often obtained by electrolyzing a sodium chloride solution in two-compartment cells (chlorine-soda processes). On a smaller scale, small units used for swimming pool water treatment, for example, allow the production of low-concentration bleach (0.3 to 1 wt% active chlorine) by use of a direct electrolysis of sodium chloride brine. The oxidation and degradation reaction of hypochlorite ion (ClO−) at the anode is the major limiting element of this two-compartment process. In this study, we have developed a new process to obtain higher levels of active chlorine up to 3.6%, or 12° chlorometric degree. For this purpose, we tested a device consisting of a zero-gap electrolysis cell, with three compartments separated by a pair of membranes that can be porous or ion-exchange. The idea is to generate in the anode compartment hypochlorous acid (HClO) at high levels by continuously adjusting its pH to a value between 4.5 and 5.5. In the cathodic compartment, caustic soda is obtained, while the central compartment is supplied with brine. The hypochlorous acid solution is then neutralized with a concentrated solution of NaOH to obtain bleach. In this work, we studied several membrane couples that allowed us to optimize the operating conditions and to obtain bleach with contents close to 1.8 wt% of active chlorine. The results obtained according to the properties of the membranes, their durability, and the imposed electrochemical conditions were discussed.
Collapse
|
4
|
Herraiz-Carboné M, Cotillas S, Lacasa E, Vasileva M, Sainz de Baranda C, Riquelme E, Cañizares P, Sáez C. Disinfection of polymicrobial urines by electrochemical oxidation: Removal of antibiotic-resistant bacteria and genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128028. [PMID: 34923384 DOI: 10.1016/j.jhazmat.2021.128028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In this work, data obtained from the University Hospital Complex of Albacete (Spain) were selected as a case study to carry out the disinfection experiments. To do this, different configurations of electrochemical reactors were tested for the disinfection of complex urines. Results showed that 4-6 logs bacterial removal were achieved for every bacterium tested when working with a microfluidic flow-through reactor after 180 min (0.423 Ah dm-3). The MIKROZON® cell reached a total disinfection after 60 min (1.212 Ah dm-3), causing severe damages induced in the cell walls observed in SEM images. The concentration profiles of the electrogenerated disinfectants in solution could explain the differences observed. Additionally, a mean decrease in the ARGs concentration ranked as follows: blaKPC (4.18-logs) > blaTEM (3.96-logs) > ermB (3.23-logs) using the MIKROZON® cell. This electro-ozonizer could be considered as a suitable alternative to reduce the risk of antibiotic resistance spread. Hence, this study provides an insight into different electrochemical reactors for the disinfection of complex hospital urine matrices and contributes to reduce the spread of antibiotic resistance through the elimination of ARGs. A topic of great importance nowadays that needs to be further studied.
Collapse
Affiliation(s)
- Miguel Herraiz-Carboné
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Salvador Cotillas
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Marina Vasileva
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Caridad Sainz de Baranda
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
5
|
Rodríguez-Peña M, Barrios Pérez J, Lobato J, Saez C, Barrera-Díaz C, Rodrigo M. Scale-up in PEM electro-ozonizers for the degradation of organics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Isidro J, Sáez C, Llanos J, Lobato J, Cañizares P, Matthée T, Rodrigo MA. Adapting the low-cost pre-disinfection column PREDICO for simultaneous softening and disinfection of pore water. CHEMOSPHERE 2022; 287:132334. [PMID: 34563766 DOI: 10.1016/j.chemosphere.2021.132334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
In previous works, a low-cost predisinfection column that combined coagulation-flocculation and GAC filtration was proposed for combination with electrodisinfection in the successful treatment of highly faecal polluted surface water. In this work, this column is adapted for the treatment of pore water by transforming the coagulation chamber into a chemical reactor with lime and replacing the GAC of the filter with ion exchange resins. This adapted system can soften water, remove nitrate and condition water for very efficient electrochemical disinfection, where 4 logs and 3 logs in the removal of E. coli and P. aeruginosa, respectively, were reached using commercial electrochemical cells, i.e., CabECO ® or MIKROZON®. The availability and low cost of the technology are strong points for usage in poor areas of developing countries.
Collapse
Affiliation(s)
- J Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - C Sáez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain.
| | - J Llanos
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - J Lobato
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - P Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - T Matthée
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524, Itzehoe, Germany
| | - M A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| |
Collapse
|
7
|
Rodríguez-Peña M, Barrios Pérez J, Llanos J, Saez C, Barrera-Díaz C, Rodrigo M. Is ozone production able to explain the good performance of CabECO® technology in wastewater treatment? Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Rodríguez-Peña M, Barrios Pérez J, Llanos J, Saez C, Barrera-Díaz C, Rodrigo M. Electrochemical generation of ozone using a PEM electrolyzer at acidic pHs. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
|
10
|
Herraiz-Carboné M, Cotillas S, Lacasa E, Cañizares P, Rodrigo MA, Sáez C. Enhancement of UV disinfection of urine matrixes by electrochemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124548. [PMID: 33246823 DOI: 10.1016/j.jhazmat.2020.124548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
This work focuses on the removal of antibiotic-resistant bacteria (ARB) contained in hospital urines by UV disinfection enhanced by electrochemical oxidation to overcome the limitations of both single processes in the disinfection of this type of effluents. UV disinfection, electrolysis, and photoelectrolysis of synthetic hospital urine intensified with K. pneumoniae were studied. The influence of the current density and the anode material was assessed on the disinfection performance of combined processes and the resulting synergies and/or antagonisms of coupling both technologies were also evaluated. Results show that the population of bacteria contained in hospital urine is only reduced by 3 orders of magnitude during UV disinfection. Electrolysis leads to complete disinfection of hospital urine when working at 50 A m-2 using Boron Doped Diamond (BDD) and Mixed Metal Oxides (MMO) as anodes. The coupling of electrolysis to the UV disinfection process leads to the highest disinfection rates, attaining a complete removal of ARB for all the current densities and anode materials tested. The use of MMO anodes leads to higher synergies than BDD electrodes. Results confirm that UV disinfection can be enhanced by electrolysis for the removal of ARB in urine, considering both technical and economic aspects.
Collapse
Affiliation(s)
- Miguel Herraiz-Carboné
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Salvador Cotillas
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| |
Collapse
|
11
|
Rodríguez-Peña M, Pérez JB, Llanos J, Saez C, Barrera-Díaz C, Rodrigo M. Understanding ozone generation in electrochemical cells at mild pHs. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|