1
|
Świerszcz S, Czarniecka-Wiera M, Szymura TH, Szymura M. From invasive species stand to species-rich grassland: Long-term changes in plant species composition during Solidago invaded site restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120216. [PMID: 38290260 DOI: 10.1016/j.jenvman.2024.120216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Biological invasions degrade ecosystems, negatively affecting human well-being and biodiversity. Restoration of invaded agricultural ecosystems is among specific goals of European Union Biodiversity Strategy. Successful restoration of invaded lands is a long-term process that requires monitoring to assess the effects of interventions. Here, we present the results of a long-term experiment (8 years) on restoration of semi-natural grassland on abandoned arable field overgrown by invasive Solidago species (S. gigantea and S. canadensis). We examined effect of different invaders removal methods (rototilling, turf stripping, herbicide application) and seed application practices (commercial seed mixture, fresh hay) on changes in species composition and taxonomic diversity of restored vegetation. Our results showed a positive effect of grassland restoration on taxonomic diversity and species composition, manifested by a decrease in Solidago cover and an increase in cover and richness of target graminoids and forbs characteristic of grassland. The seed source had a longer lasting and still observable effect on the vegetation composition than the Solidago removal treatments, which ceased to differ significantly in their influence after the first few years. Applying fresh hay as a seed source increased the cover of grassland species such as Arrhenatherum elatius and Poa pratensis. For commercial seed mixture, we observed the high cover of Lolium perenne and Schedonorus pratensis (introduced with seed mixture) at the beginning and the slow decrease along the experiment course. The most striking effect was the fresh hay with herbicide application, which resulted in the lowest Solidago cover and the highest cover of target graminoids. Nonetheless, with years the non-chemical methods, including no treatment, gives comparable to herbicide effectiveness of restoration. Overall, during the experiment, alpha diversity increased, while beta and gamma diversity reached a species maximum in the third year, and then decreased. In conclusion, this study gives guidance to successful restoration of species-rich grasslands on sites invaded by Solidago. It should be emphasised that short-term effect differ considerably from long-term outputs, especially highlighting the importance of seed source, as well as effectiveness of environmentally friendly methods such as regular mowing to control the invader.
Collapse
Affiliation(s)
- Sebastian Świerszcz
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24a, 50-363, Wrocław, Poland; Botanical Garden, Center for Biological Diversity Conservation, Polish Academy of Sciences, Prawdziwka 2, 02-976, Warszawa, Poland.
| | - Marta Czarniecka-Wiera
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24a, 50-363, Wrocław, Poland
| | - Tomasz H Szymura
- Botanical Garden, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Magdalena Szymura
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24a, 50-363, Wrocław, Poland
| |
Collapse
|
2
|
Yang S, Yuan Z, Ye B, Zhu F, Chu Z, Liu X. Impacts of landscape pattern on plants diversity and richness of 20 restored wetlands in Chaohu Lakeside of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167649. [PMID: 37813269 DOI: 10.1016/j.scitotenv.2023.167649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The recovery of wetland function and biodiversity conservation aroused considerable interest in the past decades. Although many advances have been achieved in revealing disturbing factors on plants diversity, the knowledge of biodiversity manipulation, landscape configuration and ecosystem process in restored wetlands remains incomplete. To address this issue, the landscape of 20 restored wetlands' vegetation was classified into five vegetation formations including: upland plants, wet grassland, emergent plants, floating plants and submerged plants. Meanwhile, the configuration of landscape, plants' function traits and the structure of plants communities of each wetland were analyzed. A total of 142 herbaceous plants were identified from 399 samples of 20 lakeside wetlands. The top five predominant species were Typha orientalis, Alternanthera philoxeroides, Phragmites australis, Echinochloa caudata, and Erigeron canadensis. The highest of diversity index was observed in upland plants with Shannon-Wiener index (H) of 0.92 while higher richness of plants was obtained in wet grassland with species of 88. In dry year, the immigration of upland xerophyte and obligated aquatic species to facultative area increased the biodiversity of the ecotone. Meanwhile, this change may also aggravate the diffusion risk of exotic invasive species Erigeron canadensis. Additionally, the results indicated that number and evenness of landscape outweighed Shannon diversity index (SHDI) of wetlands in shaping the richness and diversity of wetland plants. Whereas, the high value of maximum proportion of landscape (Pmax) have reduced the landscape evenness and species richness. A suggested Pmax of <0.5 was benefit for the stability and biodiversity of restored wetlands.
Collapse
Affiliation(s)
- Shenglin Yang
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhen Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bibi Ye
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Feng Zhu
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhaosheng Chu
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaowei Liu
- School of Biology, food and Environment, Hefei University, Hefei 230601, China.
| |
Collapse
|
3
|
Perera PCD, Chmielowiec C, Szymura TH, Szymura M. Effects of extracts from various parts of invasive Solidago species on the germination and growth of native grassland plant species. PeerJ 2023; 11:e15676. [PMID: 37529210 PMCID: PMC10389070 DOI: 10.7717/peerj.15676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Allelopathy is an important factor influencing whether an invasive plant species can become successfully established in a new range through disrupting the germination and growth of native plant species. Goldenrods (Solidago species) are one of the most widespread invasive taxa in Central Europe of North American origin. Owing to their high environmental impact and wide distribution range, invasive Solidago species should be controlled in Europe, and the areas invaded by them should be restored. Numerous studies have reported the allelopathic effects of Solidago gigantea and Solidago canadensis, but the results are inconsistent regarding differences in the allelopathic effects of particular plant parts and in the sensitivity to Solidago allelopathic effects among native species as well as between the two invasive species themselves. In this study, we aimed to analyse the effect of water extracts from S. canadensis and S. gigantea parts (roots, rhizomes, stems, leaves, and inflorescences) on the germination and initial growth of seedlings of 13 grassland species that typically grow in Central Europe. The tested grassland species differed in susceptibility to Solidago allelopathy, with the most resistant species being Schedonorus pratensis, Lolium perenne, Trifolium pratense, Daucus carota and Leucanthemum vulgare. The inhibitory effect of 10% water extracts from leaves and flowers were stronger than those from rhizomes, roots, and stems without leaves, regardless of the Solidago species. Our study results imply that reducing the allelopathic effect of Solidago during habitat restoration requires removal of the aboveground parts, including fallen leaves. The allelopathic effects of roots and rhizomes seem to be of secondary importance.
Collapse
Affiliation(s)
| | - Cezary Chmielowiec
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Magdalena Szymura
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Wu H, Dong S, Rao B. Latitudinal trends in the structure, similarity and beta diversity of plant communities invaded by Alternanthera philoxeroides in heterogeneous habitats. FRONTIERS IN PLANT SCIENCE 2022; 13:1021337. [PMID: 36275507 PMCID: PMC9583019 DOI: 10.3389/fpls.2022.1021337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Variations in latitudinal gradients could lead to changes in the performance and ecological effects of invasive plants and thus may affect the species composition, distribution and interspecific substitution of native plant communities. However, variations in structure, similarity and beta (β) diversity within invaded communities across latitudinal gradients in heterogeneous habitats remain unclear. In this study, we conducted a two-year field survey along 21°N to 37°N in China, to examine the differential effects of the amphibious invasive plant Alternanthera philoxeroides on native plant communities in terrestrial and aquatic habitats. We compared the differences in the invasion importance value (IV), species distribution, community similarity (Jaccard index and Sorenson index) and β diversity (Bray-Curtis index and βsim index) between terrestrial and aquatic communities invaded by A. philoxeroides, as well as analyzed their latitudinal trends. We found that the IV of A. philoxeroides and β diversity in aquatic habitats were all significantly higher than that of terrestrial, while the terrestrial habitat had a higher community similarity values. The aquatic A. philoxeroides IV increased with increasing latitude, while the terrestrial IV had no significant latitudinal trend. With increasing latitude, the component proportion of cold- and drought-tolerant species in the terrestrial communities increased, and the dominant accompanying species in the aquatic communities gradually changed from hygrophytes and floating plants to emerged and submerged plants. In addition, the aquatic communities had lower community similarity values and higher β diversity in higher latitudinal regions, while terrestrial communities had the opposite parameters in these regions. Our study indicates that the bioresistance capacities of the native communities to invasive A. philoxeroides in heterogeneous habitats are different; A. philoxeroides invasion leads to higher community homogenization in terrestrial habitats than in aquatic habitats, and terrestrial communities experience more severe homogenization in higher latitudinal regions. These findings are crucial for predicting the dynamics of invasive plant communities under rapid global change.
Collapse
Affiliation(s)
- Hao Wu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Sijin Dong
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Benqiang Rao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
5
|
Raduła MW, Szymura TH, Szymura M, Swacha G. Macroecological drivers of vascular plant species composition in semi-natural grasslands: A regional study from Lower Silesia (Poland). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155151. [PMID: 35413350 DOI: 10.1016/j.scitotenv.2022.155151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In agricultural landscapes of Europe, species-rich semi-natural grasslands provide numerous ecosystem services, such as forage production, ground and surface water regulation, and carbon sequestration. In the face of the declining area of grasslands, information about the macroecological drivers of grasslands diversity is an important element of studies on their ecology and management. Here, we tested the effect of factors representing environmental gradients, landscape structure, human pressure, habitat continuity in time, and spatial structure on species composition of vascular plants in semi-natural grasslands. The analysis was performed using a multivariate approach for 689 vegetation plots distributed across ~20,000 km2 in the Lower Silesia region (Poland, Central Europe). We found that species composition was significantly influenced by factors representing all studied groups. The most influential factors were temperature, long-term habitat continuity, and topography. Moreover, we captured the correlation between habitat conditions and habitat continuity. Old grasslands (existing since the 1940s) usually occurred in wet habitats, and medium grasslands (existing since the 1980s) existed in highlands in most cases. We highlighted the potential of freely available environmental databases, as well as historical topographic maps, in the exploration of patterns of species composition at a large spatial extent. The result show also the usefulness of vegetation databases in recognition of grassland complexes contributing the regional biodiversity.
Collapse
Affiliation(s)
- Małgorzata W Raduła
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Wrocław, Poland.
| | - Tomasz H Szymura
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Wrocław, Poland
| | - Magdalena Szymura
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | |
Collapse
|
6
|
Kotowska D, Pärt T, Skórka P, Auffret AG, Żmihorski M. Scale‐dependence of landscape heterogeneity effects on plant invasions. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Dorota Kotowska
- Institute of Nature Conservation Polish Academy of Sciences, Mickiewicza 33 Kraków Poland
| | - Tomas Pärt
- Department of Ecology Swedish University of Agricultural Sciences SE Uppsala Sweden
| | - Piotr Skórka
- Institute of Nature Conservation Polish Academy of Sciences, Mickiewicza 33 Kraków Poland
| | - Alistair G. Auffret
- Department of Ecology Swedish University of Agricultural Sciences SE Uppsala Sweden
| | - Michał Żmihorski
- Mammal Research Institute Polish Academy of Sciences, Stoczek 1, 17‐230 Białowieża Poland
| |
Collapse
|
7
|
Perera PCD, Szymura TH, Zając A, Chmolowska D, Szymura M. Drivers of Solidago species invasion in Central Europe-Case study in the landscape of the Carpathian Mountains and their foreground. Ecol Evol 2021; 11:12429-12444. [PMID: 34594510 PMCID: PMC8462131 DOI: 10.1002/ece3.7989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 12/03/2022] Open
Abstract
AIM The invasion process is a complex, context-dependent phenomenon; nevertheless, it can be described using the PAB framework. This framework encompasses the joint effect of propagule pressure (P), abiotic characteristics of the environment (A), and biotic characteristics of both the invader and recipient vegetation (B). We analyzed the effectiveness of proxies of PAB factors to explain the spatial pattern of Solidago canadensis and S. gigantea invasion using invasive species distribution models. LOCATION Carpathian Mountains and their foreground, Central Europe. METHODS The data on species presence or absence were from an atlas of neophyte distribution based on a 2 × 2 km grid, covering approximately 31,200 km2 (7,752 grid cells). Proxies of PAB factors, along with data on historical distribution of invaders, were used as explanatory variables in Boosted Regression Trees models to explain the distribution of invasive Solidago. The areas with potentially lower sampling effort were excluded from analysis based on a target species approach. RESULTS Proxies of the PAB factors helped to explain the distribution of both S. canadensis and S. gigantea. Distributions of both species were limited climatically because a mountain climate is not conducive to their growth; however, the S. canadensis distribution pattern was correlated with proxies of human pressure, whereas S. gigantea distribution was connected with environmental characteristics. The varied responses of species with regard to distance from their historical distribution sites indicated differences in their invasion drivers. MAIN CONCLUSIONS Proxies of PAB are helpful in the choice of explanatory variables as well as the ecological interpretation of species distribution models. The results underline that human activity can cause variation in the invasion of ecologically similar species.
Collapse
Affiliation(s)
| | - Tomasz H. Szymura
- Department of Ecology, Biogeochemistry and Environmental ProtectionUniversity of WrocławWrocławPoland
| | - Adam Zając
- Institute of BotanyFaculty of Biology and Earth SciencesJagiellonian University in KrakówKrakówPoland
| | - Dominika Chmolowska
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakówPoland
| | - Magdalena Szymura
- Institute of Agroecology and Plant ProductionWrocław University of Environmental and Life SciencesWrocławPoland
| |
Collapse
|
8
|
Xu X, Liu H, Jiao F, Gong H, Lin Z. Nonlinear relationship of greening and shifts from greening to browning in vegetation with nature and human factors along the Silk Road Economic Belt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142553. [PMID: 33092839 DOI: 10.1016/j.scitotenv.2020.142553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Understanding the trends in vegetation evolution and their driving factors is critical to revealing changes in ecosystem's structure and function. However, less is known about the nonlinear relationship between greening trends and greening to browning shifts in vegetation and its driving factors. Based on ensemble empirical mode decomposition (EEMD) and Boosted Regression Tree (BRT) methods, we investigated the nonlinear relationships of the greening trends and greening to browning shifts in vegetation to climate change, elevation, and human activities along the Silk Road Economic Belt (SREB). Results indicated that: (1) For vegetation with greening trends, although the total importance of climate-related variables was greater than human activities (59.57% and 35.33%, respectively), Land use changes (14.91%) and CO2 (9.41%) were more important than the other nature-related variables. In addition, volumetric soil moisture (8.72%), precipitation of warmest quarter (6.50%), and daily snow water equivalent (5.75%) were also very important. For vegetation with greening to browning shifts, the total contributions of climate-related variables were also larger than human activities (69.10% and 19.36%, respectively). Moreover, elevation (11.54%), vapor pressure deficit (9.85%), annual mean temperature (6.84%), min temperature of the coldest month (5.98%), soil moisture (5.16%), and annual precipitation (5.11%) might be the main reasons. (2) Increased cropland and grassland, along with the land conversions from shrub land/sparse vegetated to forest could promote vegetation greening. Increased rates of CO2, volumetric soil moisture, warmest quarter precipitation, and daily snow water equivalent could also promote it. For vegetation with greening to browning shifts, low-altitude areas, increased vapor pressure deficit, decreased cold temperature, and drought could promote vegetation shift greening to browning. The nonlinear analysis can correctly reveal the actual trends in vegetation and its responses to driving factors, which will further provide adaptation strategies to protect ecology.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; College of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, China
| | - Huiyu Liu
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; College of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, China.
| | - Fusheng Jiao
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; College of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, China
| | - Haibo Gong
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; College of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, China
| | - Zhenshan Lin
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; College of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|