1
|
Perez M, Aroh O, Sun Y, Lan Y, Juniper SK, Young CR, Angers B, Qian PY. Third-Generation Sequencing Reveals the Adaptive Role of the Epigenome in Three Deep-Sea Polychaetes. Mol Biol Evol 2023; 40:msad172. [PMID: 37494294 PMCID: PMC10414810 DOI: 10.1093/molbev/msad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The roles of DNA methylation in invertebrates are poorly characterized, and critical data are missing for the phylum Annelida. We fill this knowledge gap by conducting the first genome-wide survey of DNA methylation in the deep-sea polychaetes dominant in deep-sea vents and seeps: Paraescarpia echinospica, Ridgeia piscesae, and Paralvinella palmiformis. DNA methylation calls were inferred from Oxford Nanopore sequencing after assembling high-quality genomes of these animals. The genomes of these worms encode all the key enzymes of the DNA methylation metabolism and possess a mosaic methylome similar to that of other invertebrates. Transcriptomic data of these polychaetes support the hypotheses that gene body methylation strengthens the expression of housekeeping genes and that promoter methylation acts as a silencing mechanism but not the hypothesis that DNA methylation suppresses the activity of transposable elements. The conserved epigenetic profiles of genes responsible for maintaining homeostasis under extreme hydrostatic pressure suggest DNA methylation plays an important adaptive role in these worms.
Collapse
Affiliation(s)
- Maeva Perez
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
- Department of Biological Sciences, Université de Montréal, Montréal, Canada
| | - Oluchi Aroh
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
| | - Stanley Kim Juniper
- School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada
| | | | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montréal, Canada
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
2
|
Lamka GF, Harder AM, Sundaram M, Schwartz TS, Christie MR, DeWoody JA, Willoughby JR. Epigenetics in Ecology, Evolution, and Conservation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.871791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigenetic variation is often characterized by modifications to DNA that do not alter the underlying nucleotide sequence, but can influence behavior, morphology, and physiological phenotypes by affecting gene expression and protein synthesis. In this review, we consider how the emerging field of ecological epigenetics (eco-epi) aims to use epigenetic variation to explain ecologically relevant phenotypic variation and predict evolutionary trajectories that are important in conservation. Here, we focus on how epigenetic data have contributed to our understanding of wild populations, including plants, animals, and fungi. First, we identified published eco-epi literature and found that there was limited taxonomic and ecosystem coverage and that, by necessity of available technology, these studies have most often focused on the summarized epigenome rather than locus- or nucleotide-level epigenome characteristics. We also found that while many studies focused on adaptation and heritability of the epigenome, the field has thematically expanded into topics such as disease ecology and epigenome-based ageing of individuals. In the second part of our synthesis, we discuss key insights that have emerged from the epigenetic field broadly and use these to preview the path toward integration of epigenetics into ecology. Specifically, we suggest moving focus to nucleotide-level differences in the epigenome rather than whole-epigenome data and that we incorporate several facets of epigenome characterization (e.g., methylation, chromatin structure). Finally, we also suggest that incorporation of behavior and stress data will be critical to the process of fully integrating eco-epi data into ecology, conservation, and evolutionary biology.
Collapse
|
3
|
Harney E, Paterson S, Collin H, Chan BH, Bennett D, Plaistow SJ. Pollution induces epigenetic effects that are stably transmitted across multiple generations. Evol Lett 2022; 6:118-135. [PMID: 35386832 PMCID: PMC8966472 DOI: 10.1002/evl3.273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
It has been hypothesized that the effects of pollutants on phenotypes can be passed to subsequent generations through epigenetic inheritance, affecting populations long after the removal of a pollutant. But there is still little evidence that pollutants can induce persistent epigenetic effects in animals. Here, we show that low doses of commonly used pollutants induce genome‐wide differences in cytosine methylation in the freshwater crustacean Daphnia pulex. Uniclonal populations were either continually exposed to pollutants or switched to clean water, and methylation was compared to control populations that did not experience pollutant exposure. Although some direct changes to methylation were only present in the continually exposed populations, others were present in both the continually exposed and switched to clean water treatments, suggesting that these modifications had persisted for 7 months (>15 generations). We also identified modifications that were only present in the populations that had switched to clean water, indicating a long‐term legacy of pollutant exposure distinct from the persistent effects. Pollutant‐induced differential methylation tended to occur at sites that were highly methylated in controls. Modifications that were observed in both continually and switched treatments were highly methylated in controls and showed reduced methylation in the treatments. On the other hand, modifications found just in the switched treatment tended to have lower levels of methylation in the controls and showed increase methylation in the switched treatment. In a second experiment, we confirmed that sublethal doses of the same pollutants generate effects on life histories for at least three generations following the removal of the pollutant. Our results demonstrate that even low doses of pollutants can induce transgenerational epigenetic effects that are stably transmitted over many generations. Persistent effects are likely to influence phenotypic development, which could contribute to the rapid adaptation, or extinction, of populations confronted by anthropogenic stressors.
Collapse
Affiliation(s)
- Ewan Harney
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Institute of Evolutionary Biology (CSIC‐UPF) CMIMA Building Barcelona 08003 Spain
| | - Steve Paterson
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Hélène Collin
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Brian H.K. Chan
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Faculty of Biology, Medicine and Health The University of Manchester Manchester M13 9PT United Kingdom
| | - Daimark Bennett
- Molecular and Physiology Cell Signalling, Institute of Systems, Molecular and Integrative Biology University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Stewart J. Plaistow
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| |
Collapse
|
4
|
Martinez Acosta VG, Arellano-Carbajal F, Gillen K, Tweeten KA, Zattara EE. It Cuts Both Ways: An Annelid Model System for the Study of Regeneration in the Laboratory and in the Classroom. Front Cell Dev Biol 2021; 9:780422. [PMID: 34912808 PMCID: PMC8667080 DOI: 10.3389/fcell.2021.780422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanisms supporting regeneration and successful recovery of function have fascinated scientists and the general public for quite some time, with the earliest description of regeneration occurring in the 8th century BC through the Greek mythological story of Prometheus. While most animals demonstrate the capacity for wound-healing, the ability to initiate a developmental process that leads to a partial or complete replacement of a lost structure varies widely among animal taxa. Variation also occurs within single species based on the nature and location of the wound and the developmental stage or age of the individual. Comparative studies of cellular and molecular changes that occur both during, and following, wound healing may point to conserved genomic pathways among animals of different regenerative capacity. Such insights could revolutionize studies within the field of regenerative medicine. In this review, we focus on several closely related species of Lumbriculus (Clitellata: Lumbriculidae), as we present a case for revisiting the use of an annelid model system for the study of regeneration. We hope that this review will provide a primer to Lumbriculus biology not only for regeneration researchers but also for STEM teachers and their students.
Collapse
Affiliation(s)
| | | | - Kathy Gillen
- Department of Biology, Kenyon College, Gambier, OH, United States
| | - Kay A Tweeten
- Department of Biology, St. Catherine University, St. Paul, MN, United States
| | - Eduardo E Zattara
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, CONICET-Universidad Nacional del Comahue, Buenos Aires, Argentina
- Department of Invertebrate Zoology, The Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
- Department of Biology, Indiana Molecular Biology Institute, Indiana University, Bloomington, IN, United States
| |
Collapse
|
5
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Augustyniak M, Tarnawska M, Dziewięcka M, Kafel A, Rost-Roszkowska M, Babczyńska A. DNA damage in Spodoptera exigua after multigenerational cadmium exposure - A trade-off between genome stability and adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141048. [PMID: 32758757 DOI: 10.1016/j.scitotenv.2020.141048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Human activity is a serious cause of extensive changes in the environment and a constant reason for the emergence of new stress factors. Thus, to survive and reproduce, organisms must constantly implement a program of adaptation to continuously changing conditions. The research presented here is focused on tracking slow changes occurring in Spodoptera exigua (Lepidoptera: Noctuidae) caused by multigenerational exposure to sub-lethal cadmium doses. The insects received food containing cadmium at concentrations of 5, 11, 22 and 44 μg per g of dry mass of food. The level of DNA stability was monitored by a comet assay in subsequent generations up to the 36th generation. In the first three generations, the level of DNA damage was high, especially in the groups receiving higher doses of cadmium in the diet. In the fourth generation, a significant reduction in the level of DNA damage was observed, which could indicate that the desired stability of the genome was achieved. Surprisingly, however, in subsequent generations, an alternating increase and decrease was found in DNA stability. The observed cycles of changing DNA stability were longer lasting in insects consuming food with a lower Cd content. Thus, a transient reduction in genome stability can be perceived as an opportunity to increase the number of genotypes that undergo selection. This phenomenon occurs faster if the severity of the stress factor is high but is low enough to allow the population to survive.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Alina Kafel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|