1
|
Shan T, Wang B, Tu W, Huang F, Yang W, Xiang M, Luo X. Adsorption and biodegradation of butyl xanthate in mine water by Pseudomonas sp. immobilized on yak dung biochar. ENVIRONMENTAL RESEARCH 2025; 264:120300. [PMID: 39515552 DOI: 10.1016/j.envres.2024.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The butyl xanthate (BX) in mining wastewater poses significant environmental challenges due to its toxicity and persistence. This study aimed to evaluate the effectiveness of Pseudomonas sp. immobilized on yak dung biochar (Ps.@YDBC600) for BX degradation, emphasizing the synergistic effects of biochar adsorption and microbial degradation. BX removal efficiency of free Pseudomonas sp. cells was assessed under various environmental conditions, with optimal degradation observed at 30 °C and an initial pH of 5.0. Yak dung biochar prepared at 600 °C (YDBC600) was selected due to its high surface area, porosity, and favorable adsorption properties, enhancing the immobilization and activity of Pseudomonas sp. The absorption of BX by biochar followed a two-compartment first-order kinetic model and primarily involved hydrogen bonding, hydrophobic interactions, and pore filling. The primary crystalline mineral component of YDBC600 and Ps.@YDBC600 before and after the adsorption and degradation of BX was SiO₂. The Ps.@YDBC600 was shown to significantly enhance BX removal efficiency compared to free Pseudomonas sp. cells or biochar alone. Molecular studies indicated that biochar facilitated BX degradation by providing a stable environment for Pseudomonas sp. and optimizing metabolic resource allocation. The primary by-products, including CS₂, HS-, ROCOS-, ROCSSH and (ROCSS)₂ were effectively minimized (each by-product was reduced more than 80%), reducing secondary pollution. These findings demonstrated the potential of Pseudomonas sp. immobilized on biochar as an effective approach for treating BX-contaminated mining wastewater, offering a sustainable approach to environmental remediation and management.
Collapse
Affiliation(s)
- Tingqian Shan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China.
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Wenguang Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Mengyang Xiang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China
| |
Collapse
|
2
|
Zhang Y, Wang B, Hassan M, Zhang X. Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122407. [PMID: 39265490 DOI: 10.1016/j.jenvman.2024.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Water eutrophication caused by nitrogen (N) and phosphorus (P) has become a global environmental issue. Biochar is a competent adsorbent for removing N and P from wastewater. However, compared with commercial activated carbon, biochar has relatively limited adsorption capacity. To broaden the field scale application of biochar, biochar coupled with multiple technologies (BC-MTs) (such as microorganisms, electrochemistry, biofilm, phytoremediation, etc.) have been extensively developed for environmental remediation. Nevertheless, due to the fluctuations and differences in biochar types, coupling methods, and wastewater types, various techniques show different removal mechanisms and performance, hindering the promotion and application of BC-MTs. A systematic review of the research progress of BC-MTs is highly necessary to gain a better understanding of the current research status and progress, as well as to promote the application of these techniques. In this paper, the application of pristine and modified biochar in adsorbing N and P in wastewater is critically reviewed. Then the removal performance, influencing factors, mechanisms, and the environmental applications of BC-MTs in wastewater are systematically summarized. In addition, the cost analysis and risk assessment of BC-MTs in environmental applications are conducted. Finally, suggestions and prospects for future research and practical application are put forward.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
3
|
Liu Y, Gao L, Wang C, Fu Z, Chen R, Jiang W, Yin C, Mao Z, Wang Y. Biochar combined with humic acid improves the soil environment and regulate microbial communities in apple replant soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116958. [PMID: 39217896 DOI: 10.1016/j.ecoenv.2024.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Apple replant disease (ARD) negatively affects plant growth and reduces yields in replanted orchards. In this study, biochar and humic acid were applied to apple replant soil. We aimed to investigate whether biochar and humic acid could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms, changing soil microbial community structure, and improving the soil environment. This experiment included five treatments: apple replant soil (CK), apple replant soil with methyl bromide fumigation (FM), replant soil with biochar addition (2 %), replant soil with humic acid addition (1.5 ‰), and replant soil with biochar combined with humic acid. Seedling biomass, the activity of antioxidant enzymes in the leaves and roots, and soil environmental variables were measured. Microbial community composition and structure were analyzed using ITS gene sequencing. Biochar and humic acid significantly reduced the abundance of Fusarium and promoted the recovery of replant soil microbial communities. Biochar and humic acid also increased the soil enzymes activity (urease, invertase, neutral phosphatase, and catalase), the plant height, fresh weight, dry weight, the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), and root indexes of apple seedlings increased in replant soil. In sum, We can use biochar combined with humic acid to alleviate apple replant disease.
Collapse
Affiliation(s)
- Yinghao Liu
- College of Chemistry and Material Science Shandong Agricultural University/Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an, Shandong 271018, PR China; Sanya Nanfan Research Institute of Hainan University, National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, Hainan province, PR China
| | - Liping Gao
- College of Chemistry and Material Science Shandong Agricultural University/Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an, Shandong 271018, PR China
| | - Can Wang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zunzun Fu
- College of Chemistry and Material Science Shandong Agricultural University/Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an, Shandong 271018, PR China
| | - Ran Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Weitao Jiang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhiquan Mao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University/Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
4
|
Tan J, Hu Y, Ding C, Li Y, Gu Y, Li Z, Lin H. Strong adsorption enhanced nitrogen removal from landfill leachate by PVA/CMC/WPU pellets immobilized microorganisms. JOURNAL OF WATER PROCESS ENGINEERING 2024; 63:105480. [DOI: 10.1016/j.jwpe.2024.105480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Wang W, Fan Q, Gong T, Zhang M, Li C, Zhang Y, Li H. Superb green cycling strategies for microbe-Fe 0 neural network-type interaction: Harnessing eight key genes encoding enzymes and mineral transformations to efficiently treat PFOA. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134143. [PMID: 38554507 DOI: 10.1016/j.jhazmat.2024.134143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
To address time-consuming and efficiency-limited challenges in conventional zero-valent iron (ZVI, Fe0) reduction or biotransformation for perfluorooctanoic acid (PFOA) treatment, two calcium alginate-embedded amendments (biochar-immobilized PFOA-degrading bacteria (CB) and ZVI (CZ)) were developed to construct microbe-Fe0 high-rate interaction systems. Interaction mechanisms and key metabolic pathways were systematically explored using metagenomics and a multi-process coupling model for PFOA under microbe-Fe0 interaction. Compared to Fe0 (0.0076 day-1) or microbe (0.0172 day-1) systems, the PFOA removal rate (0.0426 day-1) increased by 1.5 to 4.6 folds in the batch microbe-Fe0 interaction system. Moreover, Pseudomonas accelerated the transformation of Fe0 into Fe3+, which profoundly impacted PFOA transport and fate. Model results demonstrated microbe-Fe0 interaction improved retardation effect for PFOA in columns, with decreased dispersivity a (0.48 to 0.20 cm), increased reaction rate λ (0.15 to 0.22 h-1), distribution coefficient Kd (0.22 to 0.46 cm3∙g-1), and fraction f´(52 % to 60 %) of first-order kinetic sorption of PFOA in microbe-Fe0 interaction column system. Moreover, intermediates analysis showed that microbe-Fe0 interaction diversified PFOA reaction pathways. Three key metabolic pathways (ko00362, ko00626, ko00361), eight functional genes, and corresponding enzymes for PFOA degradation were identified. These findings provide insights into microbe-Fe0 "neural network-type" interaction by unveiling biotransformation and mineral transformation mechanisms for efficient PFOA treatment.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Qifeng Fan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
6
|
Ping J, Liu J, Dong Y, Song W, Xie L, Song H. Biochar inoculated with Rhodococcus biphenylivorans altered microecological regulation by promoting quorum sensing and electron transfer: Up-regulation of related genes and enhancement of phenol and ammonia degradation. BIORESOURCE TECHNOLOGY 2024; 397:130498. [PMID: 38432542 DOI: 10.1016/j.biortech.2024.130498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Bioaugmentation is an efficient method for improving the efficiency of coking wastewater removal. Nevertheless, how different immobilization approaches affect the efficiency of bioaugmentation remains unclear, as does the corresponding mechanism. With the assistance of immobilized bioaugmentation strain Rhodococcus biphenylivorans B403, the removal of synthetic coking wastewater was investigated (drying agent, alginate agent, and absorption agent). The reactor containing the absorption agent exhibited the highest average removal efficiency of phenol (99.74 %), chemical oxygen demand (93.09 %), and NH4+-N (98.18 %). Compared to other agents, the covered extracellular polymeric substance on the absorption agent surface enhanced electron transfer and quorum sensing, and the promoted quorum sensing benefited the activated sludge stability and microbial regulation. The phytotoxicity test revealed that the wastewater's toxicity was greatly decreased in the reactor with the absorption agent, especially under high phenol concentrations. These findings showed that the absorption agent was the most suitable for wastewater treatment bioaugmentation.
Collapse
Affiliation(s)
- Jiapeng Ping
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; School of Life Science, Hubei University, Wuhan 430062, China
| | - Yuji Dong
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Wenxuan Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Liuan Xie
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Huiting Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
Zhang M, Wang W, Gong T, Wu Y, Chen G. Cutting-edge technologies and relevant reaction mechanism difference in treatment of long- and short-chain per- and polyfluoroalkyl substances: A review. CHEMOSPHERE 2024; 354:141692. [PMID: 38490606 DOI: 10.1016/j.chemosphere.2024.141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants. Compared with short-chain PFAS, long-chain PFAS are more hazardous. Currently, little attention has been paid to the differences in reaction mechanisms between long-chain and short-chain PFAS. This pressing concern has prompted studies about eliminating PFAS and revealing the mechanism difference. The reaction rate and reaction mechanism of each technology was focused on, including (1) adsorption, (2) ion exchange (IX), (3) membrane filtration, (4) advanced oxidation, (5) biotransformation, (6) novel functional material, and (7) other technologies (e.g. ecological remediation, hydrothermal treatment (HT), mechanochemical (MC) technology, micro/nanobubbles enhanced technology, and integrated technologies). The greatest reaction rate k of photocatalysis for long- and short-chain PFAS high up to 63.0 h-1 and 19.7 h-1, respectively. However, adsorption, membrane filtration, and novel functional material remediation were found less suitable or need higher operation demand for treating short-chain PFAS. Ecological remediation is more suitable for treating natural waterbody for its environmentally friendly and fair reaction rate. The other technologies all showed good application potential for both short- and long-chain PFAS, and it was more excellent for long-chain PFAS. The long-chain PFAS can be cleavaged into short-chain PFAS by C-chain broken, -CF2 elimination, nucleophilic substitution of F-, and HF elimination. Furthermore, the application of each type of technology was novelly designed; and suggestions for the future development of PFAS remediation technologies were proposed.
Collapse
Affiliation(s)
- Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yulin Wu
- Shanghai Geotechnical Investigations and Design Institute Engineering Consulting (Group) Co. Ltd., China
| | - Guangyao Chen
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Bolan S, Hou D, Wang L, Hale L, Egamberdieva D, Tammeorg P, Li R, Wang B, Xu J, Wang T, Sun H, Padhye LP, Wang H, Siddique KHM, Rinklebe J, Kirkham MB, Bolan N. The potential of biochar as a microbial carrier for agricultural and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163968. [PMID: 37164068 DOI: 10.1016/j.scitotenv.2023.163968] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoculants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization technology have been proposed.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, United States
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University (TIIAME), Tashkent 100000, Uzbekistan; Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Priit Tammeorg
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Rui Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, People's Republic of China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Ting Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
9
|
Dorner M, Lokesh S, Yang Y, Behrens S. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158381. [PMID: 36055499 DOI: 10.1016/j.scitotenv.2022.158381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Prevailing global increases in population, urbanization, and agricultural production are causing increased pressures on water resources, especially as the use of chemicals in agriculture, industry, and medicine provide new challenges for water treatment and reuse. Organohalogen compounds are persistent contaminants that often evade current wastewater treatment technologies, resulting in their accumulation in the environment and posing a serious threat to ecosystem health. Recent advances in understanding pyrogenic carbons as electron shuttling and storing materials have exposed their potential for enhancing the dehalogenation and overall degradation of organohalide contaminants in soil, sediment, surface water, and wastewater systems. Biochar is a porous carbonaceous material produced during the thermochemical decomposition of biomass feedstock in the presence of little or no oxygen (pyrolysis). Interest in biochar for application towards environmental remediation is largely based on its three distinct benefits: I) carbon sequestration to offset greenhouse gas emissions, II) adsorption of (in-) organic contaminants and nutrients, and III) a strong electron exchange capacity. Due to the innate complexity of biochar materials, several electron transfer mechanisms exist by which biochar may mediate contaminant degradation. These electron transfer pathways include electron-accepting and donating cycles through redox-active functional groups and direct electron transfer via conductive carbon matrices. These mechanisms are responsible for biochar's participation in multiple redox-driven biogeochemical transformations with proven consequences for effective organohalogen remediation. This literature review summarizes the current knowledge on the mechanisms and processes through which biochar can directly or indirectly mediate the transformation of organohalogen compounds under various environmental conditions. Perspectives and research directions for future application of biochars for targeted remediation strategies are also discussed.
Collapse
Affiliation(s)
- Mariah Dorner
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Srinidhi Lokesh
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
10
|
Chen Y, Wu Q, Tang Y, Liu Z, Ye L, Chen R, Yuan S. Application of biochar as an innovative soil ameliorant in bioretention system for stormwater treatment: A review of performance and its influencing factors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1232-1252. [PMID: 36358058 DOI: 10.2166/wst.2022.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an emerging environment functional material, biochar has become a research hotspot in environmental fields because of its excellent ecological and environmental benefits. Recently, biochar has been used as an innovative soil ameliorant in bioretention systems (BRS) to effectively enhance pollutant removal efficiency for BRS. This paper summarizes and evaluates the performance and involved mechanisms of biochar amendment in BRS with respect to the removal of nutrients (TN (34-47.55%) and PO43--P (47-99.8%)), heavy metals (25-100%), pathogenic microorganisms (Escherichia coli (30-98%)), and organic contaminants (77.2-100%). For biochar adsorption, the pseudo-second-order and Langmuir models are the most suitable kinetic and isothermal adsorption models, respectively. Furthermore, we analyzed and elucidated some factors that influence the pollutant removal performance of biochar-amended BRS, such as the types of biochar, the preparation process and physicochemical properties of biochar, the aging of biochar, the chemical modification of biochar, and the hydraulic loading, inflow concentration and drying-rewetting alternation of biochar-amended BRS. The high potential for recycling spent biochar in BRS as a soil ameliorant is proposed. Collectively, biochar can be used as an improved medium in BRS. This review provides a foundation for biochar selection in biochar-amended BRS. Future research and practical applications of biochar-amended BRS should focus on the long-term stability of treatment performances under field conditions, chemical modification with co-impregnated nanomaterials in biochar surface, and the durability, aging, and possible negative effects of biochar.
Collapse
Affiliation(s)
- Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiong Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lilan Ye
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Renyu Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
11
|
Li R, Wang B, Niu A, Cheng N, Chen M, Zhang X, Yu Z, Wang S. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155563. [PMID: 35504384 DOI: 10.1016/j.scitotenv.2022.155563] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Microbial immobilization technology (MIT) has been rapidly developed and used to remove pollutants from water/wastewater in recent years, owing to its high stability, rapid reaction rate, and high activity. Microbial immobilization carrier with low cost and high removal efficiency is the key of MIT. Biochar is considered to be an efficient carrier for microbial immobilization because of its high porosity and good adsorption effect, which can provide a habitat for microorganisms. The use of biochar immobilized microorganisms to treat different pollutants in wastewater is a promising treatment method. Compared with the other biological treatment technology, biochar immobilized microorganisms can improve microbial abundance, repeated utilization ratio, microbial metabolic capacity, etc. However, current research on this method is still in its infancy. Little attention has been paid to the interaction mechanisms between biochar and microorganisms, and many studies are only carried out in the laboratory. There are still problems such as difficult recovery after use and secondary pollution caused by residual pollutants after biochar adsorption, which need further clarification. To have comprehensive digestion and an in-depth understanding of biochar immobilized microorganisms technology in wastewater treatment, the wastewater treatment methods based on biochar are firstly summarized in this review. Then the mechanisms of immobilized microorganisms were explored, and the applications of biochar immobilized microorganisms in wastewater were systematically reviewed. Finally, suggestions and perspectives for future research and practical application are put forward.
Collapse
Affiliation(s)
- Rui Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Aping Niu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ning Cheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Zebin Yu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment & Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
12
|
Li J, Liu Q, Sun S, Zhang X, Zhao X, Yu J, Cui W, Du Y. Degradation characteristics of crude oil by a consortium of bacteria in the existence of chlorophenol. Biodegradation 2022; 33:461-476. [PMID: 35729449 DOI: 10.1007/s10532-022-09992-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
In order to enhance the degradation effect of microorganisms on crude oil in the existence of chlorophenol compounds, oil-degrading bacteria C4 (Alcaligenes faecails), C5 (Bacillus sp.) and 2,4-dichlorophenol (2,4-DCP) degrading bacteria L3 (Bacillus marisflavi), L4 (Bacillus aquimaris) were isolated to construct a highly efficient consortium named (C4C5 + L3L4). When the compound bacteria agent combination by VC4: VC5: VL3: VL4 = 1:2:2:1, the crude oil degradation efficiency of 7 days was stable at 50.63% ~ 55.43% under different conditions. Degradation mechanism was analyzed by FTIR, GC-MS and IC technology and the following conclusions showed that in the system of adding consortium (C4C5 + L3L4), the heavy components were converted into saturated and unsaturated components. The bacterial consortium could first degrade medium and long chain alkanes into short chain hydrocarbons and then further degrade. And the dechlorination efficiency of 2,4-DCP in the degradation system reached 73.83%. The results suggested that the potential applicability and effectiveness of the selected bacteria consortium for the remediation of oil-contaminated water or soil with the existence of chlorophenol compound.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China. .,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Shuo Sun
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Xiuxia Zhang
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Xiuying Zhao
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Junlong Yu
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Wu Cui
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Yi Du
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| |
Collapse
|
13
|
Wang W, Gong T, Li H, Liu Y, Dong Q, Zan R, Wu Y. The multi-process reaction model and underlying mechanisms of 2,4,6-trichlorophenol removal in lab-scale biochar-microorganism augmented ZVI PRBs and field-scale PRBs performance. WATER RESEARCH 2022; 217:118422. [PMID: 35413559 DOI: 10.1016/j.watres.2022.118422] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
This work developed calcium alginate (CA) embedded zero-valent iron (ZVI@CA) and CA embedded biochar (BC) immobilized microorganism (BC&Cell@CA) gel beads as alternative to conventional Fe0 permeable reactive barriers for treating groundwater contaminated with 2,4,6-trichlorophenol (2,4,6-TCP). Lab-scale and field-scale biochar-microorganism augmented PRBs (Bio-PRBs) were constructed and tested. The underlying mechanisms were revealed by a multi-source data calibrated multi-process reaction model, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-throughput sequencing. Moreover, calibrated advection-dispersion (a) coupled with the two-site sorption (Kd) and chemical-biological multi-process reaction (λ) model were used for revealing 2,4,6-TCP transport behavior and optimizing Bio-PRBs. Compared to that in the ZVI@CA (0.004 h-1) system, the reaction rate (0.011 h-1) of 2,4,6-TCP increased by 175% in the combined chemical-biological batch system. Moreover, chemical-biological augmentation significantly improved the retardation effect of Bio-PRBs for 2,4,6-TCP. It came from that chemical-biological augmentation significantly decreased the dispersivity a (0.53 to 0.20 cm), and increased the distribution coefficient Kd (2.20 to 19.00 cm3 mg-1), the reaction rate λ (2.40 to 3.60 day-1), and the fraction (30% to 80%) of first-order kinetic sorption of 2,4,6-TCP in the lab-scale one-dimensional Bio-PRBs. Moreover, versatile functional bacteria Desulfitobacterium was crucial in the transformation of Fe (III) iron oxides. The diversity and richness of archaea in the reaction solution were improved by ZVI@CA gel beads addition. Furthermore, the field-scale reaction system was designed to remediate the chlorinated organic compounds and Benzene Toluene Ethylbenzene & Xylene contaminated groundwater in a pesticide factory site. The field test results demonstrated it is a promising technology to construct vertical reaction columns or horizontal Bio-PRBs for the efficient remediation of actually contaminated groundwater.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yiming Liu
- Department of Geography, McGill University, Montreal, QC H3A 0G4, Canada
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yulin Wu
- Shanghai Geotechnical Investigations and Design Institute (SGIDI) Engineering Consulting (Group) Co. Ltd., China
| |
Collapse
|
14
|
Zhang H, Wang X, Li Y, Zuo K, Lyu C. A novel MnOOH coated nylon membrane for efficient removal of 2,4-dichlorophenol through peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125526. [PMID: 34030406 DOI: 10.1016/j.jhazmat.2021.125526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a highly toxic water contaminant. In this study, we demonstrate a novel catalytic filtration membrane by coating MnOOH nanoparticles on nylon membrane (MnOOH@nylon) for improved removal of 2,4-DCP through a synergetic "trap-and-zap" process. In this hybrid membrane, the underlying nylon membrane provides high adsorption affinity for 2,4-DCP. While the immobilized MnOOH nanoparticles on the membrane surface provide catalytic property for peroxymonosulfate activation to produce reactive oxygen species (ROS), which migrate with the fluid to the underlying nylon membrane pore channels and react with the adsorbed 2,4-DCP with a much higher rate (0.9575 mg L-1 min-1) than that in the suspended MnOOH particle system (0.1493 mg L-1 min-1). The forced flow in the small voids of the MnOOH nanoparticle coating layer (< 200 nm) and channels of nylon membrane (~220 nm) is critical to improve the 2,4-DCP adsorption, ROS production, and 2,4-DCP degradation. The hybrid MnOOH@nylon membrane also improves the stability of the MnOOH nanoparticles and the resistibility to competitive anions, due to much higher concentration ratio of the adsorbed 2,4-DCP and produced ROS versus background competitive ions in the membrane phase. This study provides a generally applicable approach to achieve high removal of target contaminants in catalytic membrane processes.
Collapse
Affiliation(s)
- Hourui Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Xiansheng Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Yicheng Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Kuichang Zuo
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston 77005, USA.
| | - Cong Lyu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China.
| |
Collapse
|