1
|
Ou B, Hu X, Yu W, Meng F, Li W, Liang S, Yuan S, Duan H, Hou H, Xiao K. Critical evaluation of extracellular polymeric substances extraction methods: Extraction efficiency, molecular characteristics, and heavy metals binding properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178345. [PMID: 39756304 DOI: 10.1016/j.scitotenv.2024.178345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Extracellular polymeric substances (EPS) significantly influence the properties and performance of waste activated sludge. Various pretreatment protocols with different extraction efficiency and characteristics of EPS have been reported, which markedly impact subsequent treatment and disposal of sewage sludge. This study systematically assesses the EPS properties from twelve extraction pretreatment methods. The organic and inorganic matters content, cell lysis, basic physicochemical property, molecular weight distribution, and fluorescence properties of extracted EPS were determined. Physical extraction methods (Centrifugation, Heat, and Ultrasound) were relatively mild, resulting in lower extraction of organic matter contents from EPS (< 6 mg total organic carbon /g volatile solids). Biological extraction methods (Enzyme and Enzyme-NaOH) exhibited high EPS extraction efficiency however led to significant cell lysis, thereby contaminating the extracted EPS with intracellular substances. In addition, heating and biological extraction methods excessively degraded EPS, resulting in a large amount of small molecular weight matters (≤ 103 Da) generation. Chemical extraction methods offered efficient EPS extraction with the different degrees of cell lysis, but it would introduce chemical reagent residues in EPS. Among those extraction methods, EPS extracted by cation exchange resin (CER) method had uniform and abundant molecular weight matters and fluorescence matters distribution. After dialysis, the residual Na and other metal elements could be significantly removed. Then, the fluorescence quenching effect of Cu(II) and Zn(II) at 400 μM on the Bound-EPS after dialysis increased up to the maximum value of 65 % and 30 %, respectively, compared to that without dialysis. It indicates that dialysis coupled with CER extracted EPS has a well extraction efficiency and can maintain the original state of EPS for the subsequent investigation.
Collapse
Affiliation(s)
- Bei Ou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xueyang Hu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China.
| | - Fanhao Meng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wen Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Huabo Duan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Huijie Hou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Keke Xiao
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
2
|
Shi W, Tian Z, Luan X, Wang Y, Chi Y, Zhang H, Zhang Y, Yang M. Porous polyurethane biocarriers could enhance system nitrification resilience under high organic loading by retaining key functional bacteria. WATER RESEARCH 2024; 272:122950. [PMID: 39674142 DOI: 10.1016/j.watres.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Resilience to increasing organic loading rates (OLRs) is the key to maintaining stable performance in treating industrial wastewater. First, this study compared the stability, particularly the nitrification performance, of two lab-scale moving bed biofilm reactors (MBBRs) filled with porous polyurethane biocarriers with two conventional activated sludge reactors (ASRs) in the treatment of synthetic coking wastewater under OLRs increasing from 0.3 kg to 1.5 kg COD m-3 day-1. In comparison with the ASRs, which could only achieve complete nitrification (99.31 % ± 0.43 %) at an OLR of 0.7 kg COD m-3 day-1, the MBBRs could achieve efficient NH4+-N removal (99.45 % ± 0.21 %) at an OLR as high as 1.3 kg COD m-3 day-1. Even at an OLR of 1.5 kg COD m-3 day-1 where nitrification was inhibited, the porous polyurethane biocarriers in the MBBRs still maintained a highly diversified bacterial community (Shannon index, 4.34 ± 0.31) by retaining the slow-growing nitrifying bacteria and phenol-degrading bacteria, including Methyloversatilis and Acinetobacter, whose phenol degradation functions were confirmed by metagenome-assembled genome extraction and analysis, while the ASRs lost diversity (Shannon index, 1.41 ± 0.45) due to the sequential occurrence of filamentous and viscous sludge bulking. The advantage of the MBBR was further verified in a full-scale coking wastewater treatment system, where a reactor series filled with 4.35 % porous polyurethane biocarriers exhibited better NH4+-N removal of 99.57 % ± 0.34 % compared to 96.85 % ± 2.56 % for a conventional one under an OLR of 0.54 ± 0.12 kg COD m-3 day-1. The results could contribute to the development of more effective and resilient treatment systems for industrial wastewater.
Collapse
Affiliation(s)
- Wen Shi
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao Luan
- China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yun Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Honghu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Samal SK, Sahoo D, Acharya D. Alterations in structural components of extracellular polymeric substance of epilithic bacteria Brevundimonas faecalis BC1 growing on monumental rock under thermal stress. BIOFOULING 2024; 40:948-963. [PMID: 39625160 DOI: 10.1080/08927014.2024.2432970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
In this study, a comparison of biofilm formation, extracellular polymeric substances (EPS) production, protein and polysaccharides estimation, and protein profiling through SDS-PAGE, FTIR, GC-MS, ESI-MS, SEM, and AFM analysis were done for EPS from epilithic bacteria Brevundimonas faecalis BC1 obtained from monumental rock under normal room temperature and heat stressed condition. Heat stress (60 ± 2 °C) that simulates hot monumental rock surfaces during the summer season caused bacteria BC1 to produce more EPS (8.56 g/L), biofilm, protein and polysaccharides, extra SDS-PAGE protein bands of different molecular weight than their control counterpart. FTIR and GC-MS analysis showed extra polysaccharide formation in the EPS under heat stress and ESI-MS analysis clearly showed differences in structural components of EPS from two different sources. Consistently, SEM and AFM showed more branching structural components with dentate spikes in the EPS obtained from a heat-stressed source than from its counterpart, suggesting their protective role toward heat stress and adhesive potential for biofilm.
Collapse
Affiliation(s)
| | - Debadas Sahoo
- Post-Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odisha, India
| | | |
Collapse
|
4
|
He S, Zhao L, Feng L, Zhao W, Liu Y, Hu T, Li J, Zhao Q, Wei L, You S. Mechanistic insight into the aggregation ability of anammox microorganisms: Roles of polarity, composition and molecular structure of extracellular polymeric substances. WATER RESEARCH 2024; 254:121438. [PMID: 38467096 DOI: 10.1016/j.watres.2024.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
The chemical characteristics of extracellular polymeric substances (EPS) of anammox bacteria (AnAOB) play a crucial role in the rapid enrichment of AnAOB and the stable operation of wastewater anammox processes. To clarify the influential mechanisms of sludge EPS on AnAOB aggregation, multiple parameters, including the polarity distribution, composition, and molecular structure of EPS, were selected, and their quantitative relationship with AnAOB aggregation was analyzed. Compared to typical anaerobic sludge (anaerobic floc and granular sludge), the anammox sludge EPS exhibited higher levels of tryptophan-like substances (44.82-56.52 % vs. 2.57-39.81 %), polysaccharides (40.02-53.49 mg/g VSS vs. 30.22-41.69 mg/g VSS), and protein structural units including α-helices (20.70-23.98 % vs. 16.48-19.32 %), β-sheets (37.43-42.98 % vs. 25.78-36.72 %), and protonated nitrogen (Npr) (0.065-0.122 vs. 0.017-0.061). In contrast, it had lower contents of β-turns (20.95-27.39 % vs. 28.17-39.04 %). These biopolymers were found to originate from different genera of AnAOB. Specifically, the α-helix-rich proteins were mainly derived from Candidatus Kuenenia, whereas the extracellular proteins related to tryptophan and Npr were closely associated with Candidatus Brocadia. Critically, these EPS components could drive anammox aggregation through interactions. Substantial amounts of tryptophan-like substances facilitated the formation of β-sheet structures and the exposure of internal hydrophobic clusters, which benefited the anammox aggregation. Meanwhile, extracellular proteins with high Npr content played a pivotal role in the formation of mixed protein-polysaccharide gel networks with the electronegative regions of polysaccharides, which could be regarded as the key component in the maintenance of anammox sludge stability. These findings provide a comprehensive understanding of the multifaceted roles of EPS in driving anammox aggregation and offer valuable insights into the development of EPS regulation strategies aimed at optimizing the anammox process.
Collapse
Affiliation(s)
- Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingxin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Yang B, Liang W, Bin L, Chen W, Chen X, Li P, Wen S, Huang S, Tang B. Insights into the life-cycle of aerobic granular sludge in a continuous flow membrane bioreactor by tracing its heterogeneous properties at different stages. WATER RESEARCH 2023; 243:120419. [PMID: 37536250 DOI: 10.1016/j.watres.2023.120419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
This work gave insights into the life-cycle of aerobic granular sludge (AGS) by tracing its heterogeneity in the basic properties at different stages in a closed system (a continuous flow membrane bioreactor, MBR), including physical and chemical characteristics and microbial communities. The results indicate that the entire life-cycle consists of the following four stages, namely, the initial, growing, mature and cleaved stages, where multiple AGS properties synergistically affect the rheological properties of the AGS over its life-cycle. The storage modulus (G') of AGS reached its maximum value at the mature stage, whose value was significantly and positively correlated with the protein (PN) in extracellular polymeric substances (EPS) and granule size, specifically the peak area of granule size distribution, but this value was strongly and negatively correlated with the roughness. The AGS at the mature stage would be more vulnerable to be destroyed than that at other stages under the condition of higher shear strain, such as γ = 50%, which was associated with larger granule size and fewer polysaccharide (PS)-related functional groups (especially in the soluble microbial products (SMPs) in the outermost layer of AGS), and the decrease in PS was correlated with a higher relative abundance of Chloroflexi. Additionally, the value of shear strain that AGS was subjected to had a good linear correlation (R2=0.993) with the Young's modulus, which indicated the ability of AGS to resist deformation improved with increasing values of shear strain.
Collapse
Affiliation(s)
- Biao Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weifeng Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xinyi Chen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shanglong Wen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Liu S, Yin M, Sun L, Jiao Y, Zheng Y, Yan L. Iron-loaded sludge biochar alleviates the inhibitory effect of tetracycline on anammox bacteria: Performance and mechanism. CHEMOSPHERE 2023; 333:138987. [PMID: 37209845 DOI: 10.1016/j.chemosphere.2023.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The anaerobic ammonia oxidation (anammox) process is sensitive to environmental pollutants, such as antibiotics. In this study, the harmful effect of tetracycline (TC) on the performance of an anammox reactor and the mitigation of TC inhibition by iron-loaded sludge biochar (Fe-BC) were studied by analyzing extracellular polymeric substances (EPS), microbial community structure and functional genes. The total inorganic nitrogen (TIN) removal rate of the TC reactor was reduced by 5.86% compared to that of the control group, while that of the TC + Fe-BC reactor improved by 10.19% compared to that of the TC reactor. Adding Fe-BC increased the activity of anammox sludge by promoting the secretion of EPS (including protein, humic acids and c-Cyts). The results of the enzymolysis experiment showed that protein can improve the activity of anammox sludge, while the ability of polysaccharide to improve the activity of anammox was related to the treated enzymes. In addition, Fe-BC alleviated the inhibitory effect of TC by mediating the anammox electron transfer process. Furthermore, Fe-BC increased the absolute abundance of hdh and hzsB by 2.77 and 1.18 times compared to the TC reactor and improved the relative abundance of Candidatus Brocadia in the absence of TC. The addition of Fe-BC is an effective way to alleviate the inhibitory effect of TC on the anammox process.
Collapse
Affiliation(s)
- Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
He Z, Xu Y, Yang Y, Zhu P, Jin Z, Zhang D, Pan X. Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121665. [PMID: 37080520 DOI: 10.1016/j.envpol.2023.121665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advanced techniques, including atomic force microscopy-based Lorentz contact resonance (AFM-LCR) spectroscopy, AFM-based nanoscale infrared (AFM-IR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, to reveal the structural, mechanical, and chemical properties of the interface on the nanoscale. Ureolytic bacteria produced bio-CaCO3 to fill in pore space and to bind cement tailings particles, which prevented the formation of leachate containing heavy metals. After cementation, a strong 40-300 nm thin interface was formed between the taillings and bio-CaCO3 particles. Unlike chemically synthesized CaCO3, bio-CaCO3 is strongly negatively charged, which gives it better adhesion ability. Fourier transform infrared (FTIR), AFM-IR, and 29Si ssNMR spectra indicated that the Si-OH and Si-O-Si groups on the silicate surface were converted to deprotonated silanol groups (≡Si-O-) at a high pH and they formed strong chemical bonds of Si-O-Ca on the interface through a Ca ion bridge. In addition, hydrogen bonding with Si-OH also played a role at the cementation interface. These findings provide the nano-scale interfacial structure and mechanism of bio-CaCO3 cementing silicate tailings and accelerate the development of tailings disposal technology.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yiting Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yingli Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhengzhong Jin
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
8
|
Cui N, Feng Y, He X, Gu H, Zhao P. Extracellular polymeric substance profiling and biophysical analysis reveal influence factors of spontaneous flocculation in rich lipid alga Heveochlorella sp. Yu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157655. [PMID: 35908705 DOI: 10.1016/j.scitotenv.2022.157655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Microalgae harvest and lipid accumulation were important factors influencing commercialized development of microalgae biodiesel. Spontaneous flocculation was an ideal method in microalgae harvest, but few rich lipid microalgae could be harvested by spontaneous flocculation. Rich lipid alga Heveochlorella sp. Yu has a characteristic of spontaneous flocculation to be harvested. Heveochlorella sp. Yu has high lipid productivity (105.24 mg L-1 d-1) and fine spontaneous flocculation efficiency (82.93 %, 2 h) on early stationary phase (day 9). The polysaccharides consisting of glucose, mannose, galactose, rhamnose and fructose (8.67:4.90:3.27:2.16:1) in loose-bound extracellular polymeric substance (LB-EPS) might make great contribution in microalgae flocculation. Meanwhile, the zeta potential close to zero was also beneficial to microalgae flocculation. Besides, the adhesion free energy related with cells adhesion was detected by thermomechanical analysis. Afterward, Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was utilized to quantitatively evaluate short-range interactions involved in the spontaneous aggregation among cells. Collectively, biophysical analyses indicated that content and composition of EPS, Zeta potential, thermodynamic parameter and total interaction based on XDLVO theory were closely connected with spontaneous flocculation in microalga Yu. Our study provided a harvest-simplified process of rich microalgae, which proposes a new idea for commercial development of microalgae biodiesel.
Collapse
Affiliation(s)
- Na Cui
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongjie Feng
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ximeng He
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hong Gu
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhao
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
9
|
Zhang QQ, Liu N, Liu JZ, Yu Y, Fu WJ, Zhao JQ, Jin RC. Decoding the response of complete autotrophic nitrogen removal over nitrite (CANON) performance and microbial succession to hydrazine and hydroxylamine: Linking performance to mechanism. BIORESOURCE TECHNOLOGY 2022; 363:127948. [PMID: 36108938 DOI: 10.1016/j.biortech.2022.127948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The influence of hydrazine (N2H4) and hydroxylamine (NH2OH) on performance and microbial community structures of complete autotrophic nitrogen removal over nitrite (CANON) process were assessed in this study. Experimental results demonstrated that CANON process was successfully started up and got total nitrogen removal efficiency (TNRE) of 53.6 % ± 9.8 % and 56.4 % ± 6.5 % under 1.0 and 0.5 mg L-1 N2H4 and NH2OH, respectively. N2H4 and NH2OH promoted activity of ammonia-oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB), and inhibited activity of nitrite-oxidizing bacteria (NOB). Meanwhile, the stable operation of CANON process could be maintained without N2H4 auxiliary. While, performance assisted by NH2OH was fluctuated without NH2OH addition, suggesting that both N2H4 and NH2OH had a persistent and reversible inhibition on NOB. This study reveals new insights into influence of N2H4 and NH2OH on CANON performance.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China.
| | - Ning Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Jin-Ze Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yan Yu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Wen-Jing Fu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Jian-Qiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Chen Z, Qiu S, Li M, Xu S, Ge S. Effect of free ammonia shock on Chlorella sp. in wastewater: Concentration-dependent activity response and enhanced settleability. WATER RESEARCH 2022; 226:119305. [PMID: 36332297 DOI: 10.1016/j.watres.2022.119305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The unstable microbial activity and unsatisfactory settling performance impede the development and implementation of microalgal wastewater treatment, especially in high-ammonium wastewater in the presence of free ammonia (FA). The shock of FA due to the nutrient fluctuation in wastewater was demonstrated as the primary stress factor suppressing microalgal activities. Recent study has clearly revealed the inhibition mechanism of FA at a specific high level (110.97 mg/L) by inhibiting the genetic information processing, photosynthesis, and nutrient metabolism. However, the effects of various FA shock concentrations on microalgal activities and settling performance remain unknown, limiting the wastewater bioremediation efficiencies improvement and the process development. Herein, a concentration-dependent shock FA (that was employed on microalgae during their exponential growth stages) effect on microalgal growth and photosynthesis was observed. Results showed that the studied five FA shock concentrations ranging from 25 to 125 mg/L significantly inhibited biomass production by 14.7-57.0%, but sharp reductions in photosynthesis with the 36.0-49.0% decreased Fv/Fm values were only observed when FA concentration was above 75.0 mg/L. On the other hand, FA shock enhanced microalgal settling efficiency by 12.8-fold, which was believed to be due to the stimulated intra- and extracellular protein contents and thereby the enhanced extracellular polymer substances (EPS) secretion. Specifically, FA shock induced 40.2 ± 2.3% higher cellular protein content at the cost of the decreased carbohydrates (22.6 ± 1.3%) and fatty acid (39.0 ± 0.8%) contents, further improving the protein secretion by 1.21-fold and the EPS production by 40.2 ± 2.3%. These FA shock-induced variations in intra- and extracellular biomolecules were supported by the up-regulated protein processing and export at the assistance of excessive energy generated from fatty acid degradation and carbohydrates consumption. In addition, FA shock significantly decreased the biomass nutritional value as indicated by the 1.86-fold lower essential amino acid score and nearly 50% reduced essential to non-essential amino acids ratio, while slightly decreased the biodiesel quality. This study is expected to enrich the knowledge of microalgal activities and settling performance in response to fluctuant ammonium concentrations in wastewater and to promote the development of microalgal wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
11
|
Yang F, Li H, Wang S, Zhao F, Fang F, Guo J, Long M, Shen Y. Differences in exopolysaccharides of three microbial aggregates. ENVIRONMENTAL TECHNOLOGY 2022; 43:2909-2921. [PMID: 33769231 DOI: 10.1080/09593330.2021.1909658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Different microbial aggregates show substantial differences in morphology, and extracellular polymer substances have been confirmed to play a key role in the formation of aggregates. In this study, three different microbial aggregates and their exopolysaccharides were compared. The results show that the granular sludge was largest in size and the most compact in shape. Biofilms with a certain thickness had the next greatest density, and flocculent sludge, with the smallest particle size, was the loosest. The extended Derjaguin-Landau-Verwey-Overbeek analysis shows that hydrogen bonding, hydrophobic and electrostatic interactions affect the aggregation of microorganisms. A comparison of exopolysaccharides shows that granular sludge exopolysaccharides show the highest hydrophobicity (38.08%) and lowest surface charge (-20.5 mV), followed by biofilm exopolysaccharides (27.9% and -24.8 mV respectively). The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy show that the contents of hydrophilic and hydrophobic functional groups and charged functional groups of exopolysaccharides affect the above properties of exopolysaccharides, thereby affecting microbial aggregation. In addition, the hydrogen bond content of exopolysaccharides in granular sludge (19.3%), biofilm (19.2%) and activated sludge (18.9%) decreased sequentially. This also affects the cross-linking of microbial exopolysaccharides to form hydrogels. Finally, the results of confocal laser scanning microscopy showed that, different from the other two aggregates, the extracellular α-polysaccharides of granular sludge are mainly distributed in the nucleus, which is more conducive to aggregation. The research results of this thesis provide a new understanding of the differences in the aggregation morphology of different aggregates from the perspective of exopolysaccharides.
Collapse
Affiliation(s)
- Fan Yang
- College of Environment and Ecology, Chongqing University, Chongqing, People's Republic of China
| | - Hanxiang Li
- College of Environment and Ecology, Chongqing University, Chongqing, People's Republic of China
| | - Shuai Wang
- College of Environment and Ecology, Chongqing University, Chongqing, People's Republic of China
| | - Fan Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, People's Republic of China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, People's Republic of China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, People's Republic of China
| | - Man Long
- College of Environment and Ecology, Chongqing University, Chongqing, People's Republic of China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Key Laboratory of Catalysis & New Environmental Materials, Chongqing Technology and Business University, Chongqing, People's Republic of China
- Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, People's Republic of China
| |
Collapse
|
12
|
Moretto C, Castellane TCL, Leonel TF, Campanharo JC, de Macedo Lemos EG. Bioremediation of heavy metal-polluted environments by non-living cells from rhizobial isolates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46953-46967. [PMID: 35178627 DOI: 10.1007/s11356-022-18844-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Rhizosphere bacteria, for example, rhizobia, can play several roles, and one of the most important, the protection of plant roots against toxic conditions and other environmental stresses. In this work, the action of Cu2+ and Cr6+ on cell growth and EPS production of four strains of rhizobia, Rhizobium tropici (LBMP-C01), Ensifer sp. (LBMP-C02 and LBMP-C03), and Rhizobium sp. LBMP-C04, were tested. The results confirmed the strong effect of Cu2+ and Cr6+ on bacterial exopolysaccharides (EPS) synthesis, and how cells can adsorb these metals, which may be a key factor in the interactions between rhizosphere bacteria and host plants in heavy metal-contaminated soils. Here, we emphasize the importance of proving the potential of treating bacterial cells and their extracellular EPS to promote the bio-detoxification of terrestrial and aquatic systems contaminated by heavy metals in a highly sustainable, economic, and ecological way.
Collapse
Affiliation(s)
- Cristiane Moretto
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, UNESP - Univ Estadual Paulista, Rodovia Prof. Paulo Donato Castellane km 135, CEP, Jaboticabal, SP, 14884-900, Brazil
| | - Tereza Cristina Luque Castellane
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, UNESP - Univ Estadual Paulista, Rodovia Prof. Paulo Donato Castellane km 135, CEP, Jaboticabal, SP, 14884-900, Brazil.
| | - Tatiane Fernanda Leonel
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, UNESP - Univ Estadual Paulista, Rodovia Prof. Paulo Donato Castellane km 135, CEP, Jaboticabal, SP, 14884-900, Brazil
| | - Joao Carlos Campanharo
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, UNESP - Univ Estadual Paulista, Rodovia Prof. Paulo Donato Castellane km 135, CEP, Jaboticabal, SP, 14884-900, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, UNESP - Univ Estadual Paulista, Rodovia Prof. Paulo Donato Castellane km 135, CEP, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
13
|
Yang F, Qu J, Huang X, Chen Y, Yan P, Guo J, Fang F. Phosphorus deficiency leads to the loosening of activated sludge: The role of exopolysaccharides in aggregation. CHEMOSPHERE 2022; 290:133385. [PMID: 34942214 DOI: 10.1016/j.chemosphere.2021.133385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Whether phosphorus deficiency in influent will affect the aggregation and sedimentation of activated sludge needs to be further clarified. This paper systematically studied the structure, aggregation and settlement of activated sludge, and the composition, properties and chemical structure of extracellular polymers and microbial community structure of sludge under different influent phosphorus contents to determine the causes of sludge aggregation and structural deterioration. The results show that phosphorus deficiency in influent leads to a decrease in the aggregation capacity and a loose structure of activated sludge, and the reduction of hydrophobic interactions is the main factor of sludge aggregation and structural deterioration. The content, functional groups and protein secondary structure of extracellular protein were almost unchanged. An increase in the content and hydrophilicity of extracellular polysaccharide (PS) results in a decrease in sludge hydrophobicity. Under phosphorus deficiency, the changes in microbial species related to PS secretion were the reasons for the increase in PS content and hydrophilicity. The negative effects of PS content and hydrophilicity on sludge aggregation and structure are important findings of this work and are expected to be useful for better understanding the restoration of activated sludge performance in the treatment of phosphorus-deficient wastewater.
Collapse
Affiliation(s)
- Fan Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jianwei Qu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaoxiao Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
14
|
Sengupta D, Datta S, Biswas D, Banerjee S, Das S. Prospective bioremediation of toxic heavy metals in water by surfactant exopolysaccharide of Ochrobactrum pseudintermedium using cost-effective substrate. Int Microbiol 2021; 24:441-453. [PMID: 33987705 DOI: 10.1007/s10123-021-00182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022]
Abstract
Globally, the underlying peril of cumulative toxicity of heavy metals in water bodies contaminated by industrial effluents is a matter of great concern to the environmentalists. Heavy metals like lead, cadmium, and nickel are particularly liable for this. Such toxic water is not only hazardous to human health but also harmful to aquatic animals. Remedial measures are being taken by physico-chemical techniques, but most of them are neither eco-friendly nor cost-effective. Biological means like bioaccumulation of heavy metals by viable bacteria are often tedious. In the present study, biosorption of heavy metals is successfully expedited by surfactant exopolysaccharide (SEPS) of Ochrobactrum pseudintermedium C1 as a simple, safe, and economically sustainable option utilizing an easily available and cost-effective substrate like molasses extract. Its efficacy in bioremediation of toxic heavy metals like cadmium, nickel, and lead have been studied by UV-Vis spectrophotometry and verified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). FTIR and zeta potential studies have also been carried out to explore this novel biosorption potential. Results are conclusive and promising. Moreover, this particular SEPS alone can remediate all these three toxic heavy metals in water. For futuristic applications, it might be a prospective and cost-effective resource for bioremediation of toxic heavy metals in aqueous environment.
Collapse
Affiliation(s)
- Dipanjan Sengupta
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Sriparna Datta
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India.
| | - Dipa Biswas
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Shrayasi Banerjee
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Souvik Das
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India
| |
Collapse
|
15
|
He JY, Zhang HL, Wang H, Hu YQ, Zhang Y. Characteristics of the extracellular products of pure oxygen aerated activated sludge in batch mode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1946-1957. [PMID: 33905364 DOI: 10.2166/wst.2021.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of pure oxygen aeration on compositional characteristics of soluble microbial products (SMP) and extracellular polymeric substances (EPS) of the activated sludge acclimated in a sequential batch reactor (SBR) were explored in batch mode. The structure of the extracellular products would change with different aeration methods or aeration rates. The proportion of SMP of most oxygen aerated sludge was less than 10%, while that in air aerated sludge was as high as 30-40%. The proportion of TB-EPS decreased from 56.95% to 30.63%, and the proportion of LB-EPS increased obviously with the increase of oxygen aeration rate. The contents of the protein (PN) and the polysaccharide (PS) of extracellular products with oxygen aeration were significantly different, and the PN was much higher than PS (p < 0.05). The zeta potential of each component in activated sludge was negative, gradually decreasing with the progress of biological treatment. The fluorescence peaks in SMP, LB-EPS and TB-EPS with pure oxygen aeration were attributed to tryptophan PN-like and humic acid-like fractions. The results showed that the proportion of the components in the extracellular products could be regulated by adjusting the aeration rate and aeration mode, so as to optimize the treatment process of activated sludge.
Collapse
Affiliation(s)
- Jia-Ying He
- School of the Environment, Nanjing Normal University, Nanjing 210023, China E-mail: ; † These two authors contributed equally to this paper
| | - Hong-Ling Zhang
- Nanjing Institute of Environmental Science, MEP, Nanjing 210000, China; † These two authors contributed equally to this paper
| | - Hong Wang
- School of the Environment, Nanjing Normal University, Nanjing 210023, China E-mail:
| | - Ya-Qi Hu
- School of the Environment, Nanjing Normal University, Nanjing 210023, China E-mail:
| | - Yong Zhang
- School of the Environment, Nanjing Normal University, Nanjing 210023, China E-mail: ; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China and Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| |
Collapse
|
16
|
Wang S, Liu Z, Yang M, Zhou Y, Yang M, Long M, Fang F, Guo J. The differences in characteristics of extracellular polymeric substances of flocs and anammox granules impacted aggregation. Bioprocess Biosyst Eng 2021; 44:1711-1720. [PMID: 33768321 DOI: 10.1007/s00449-021-02554-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Extracellular polymeric substances (EPS) are considered crucial components in the formation of microbial aggregates such as biofilms, flocs and granules. However, the role of EPS in sludge aggregation is still unclear. In this study, the differences in EPS characteristics of anammox granular sludge (AG), anammox floc sludge (AF) and activated floc sludge (AS) were investigated to clarify its role in granular aggregation. The results showed that the flocculation ability of EPS extracted from AG (62.8 ± 2.3%) was notably higher than that of EPS extracted from AF (35.7 ± 1.7%) and AS (17.3 ± 1.5%). The zeta potential and hydrophobicity of EPS showed the same tendency. In addition, the PN/PS ratio of AG, AF and AS were 7.66, 4.62 and 3.93, respectively. FTIR, XPS and 3D-EEM fluorescence spectra results revealed that anammox granular sludge has a higher ratio of hydrophobic groups, α-helixs/(β-sheets and random coils), intermolecular hydrogen bonds, and aromatic amino acids, and a lower ratio of electronegative groups. Anammox granular sludge exhibited high aggregation ability, because its EPS had higher zeta potential, hydrophobicity and intermolecular hydrogen bond ratio. This work provides a better understanding of the high aggregation ability of anammox granules and a theoretical basis for improving granules proportion and retention ability of microbes in reactor system.
Collapse
Affiliation(s)
- Shuai Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zihan Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mingming Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.,Yangtze Ecology and Environment Co., Ltd, Wuhan, 430062, China
| | - Yang Zhou
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mansu Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Man Long
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
17
|
Shi Y, Liu Y. Evolution of extracellular polymeric substances (EPS) in aerobic sludge granulation: Composition, adherence and viscoelastic properties. CHEMOSPHERE 2021; 262:128033. [PMID: 33182133 DOI: 10.1016/j.chemosphere.2020.128033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Aerobic granular sludge (AGS) is a promising wastewater treatment innovation, but its instability hinders its broader applications. Understanding the granulation process is vital to address this issue. Extracellular polymeric substances (EPS) play an essential role in sludge granulation. However, one crucial aspect of EPS, the adhesive and viscoelastic properties, has been neglected in AGS studies. In this study, we set up two reactors fed with COD/N ratios of 100: 5 (R1) and 100: 10 (R2) for comparison, to investigate the adhesive and viscoelastic properties of sludge EPS during the sludge granulation. We found that R2 showed a more rapid sludge granulation with more stable granules formed, contained a higher abundance of amoA gene, and had a higher production of polysaccharides than R1. We also found a sharp decrease in polysaccharide production and β-sheets abundance accompanied by granule size decrease in R1 on Day 80, indicating their essential roles in sludge granulation and granule stability. QCM-D (quartz crystal microbalance with dissipation monitoring) results showed that EPS became less adhesive and inclined to form unstable layers on the mineral surfaces along with the sludge granulation process. In contrast, they showed the opposite behavior and became more adhesive on the PVDF sensors. Our results suggested that higher polysaccharides, a higher β-sheets band in proteins, and lower mineral surface-adhesive and viscoelastic properties benefited the aerobic sludge granulation process and the granule maintenance.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.
| |
Collapse
|
18
|
Zhang X, Xia Y, Wang C, Li J, Wu P, Ma L, Wang Y, Wang Y, Da F, Liu W, Xu L. Enhancement of nitrite production via addition of hydroxylamine to partial denitrification (PD) biomass: Functional genes dynamics and enzymatic activities. BIORESOURCE TECHNOLOGY 2020; 318:124274. [PMID: 33096441 DOI: 10.1016/j.biortech.2020.124274] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the activity of partial denitrification (PD) biomass/key enzymes, functional gene expressions in response to 0 ~ 50 mg/L hydroxylamine (NH2OH) addition. Results indicated that NH2OH contributed to nitrite (NO2--N) production, facilitating the maximum increase of nitrate (NO3--N) to NO2--N transformation ratio to 80.47 ± 2.82%, leading to 2.56-fold NO2--N higher than those of control. The observed transient inhibitory effect on NO3--N reduction process was attributed by high-level NH2OH (35 ~ 50 mg/L). Enzymatic assays revealed the enhanced activity of both NO3--N and NO2--N reductase while the former showed obvious superiority which led to high NO2--N accumulation. These results were further confirmed by the corresponding functional genes (narG, napA, nirS and nirK). Besides, negative influence of NH2OH addition was limited to PD aggregates, due to the increasing secretion of extracellular polymeric substances (EPS) as well as proteins/polysaccharides ratios in tightly-bound structure of EPS.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Yunkang Xia
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Jiajia Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China.
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuguang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Yao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Fanghua Da
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China
| |
Collapse
|