1
|
Wu X, Wang J, Yuan Z, Wang S. Polycyclic aromatic compounds (PACs) in tree barks and tree cores of a national large-scale coal-fired power base of China: Sources, atmospheric toxicities, and pollution histories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163045. [PMID: 36963675 DOI: 10.1016/j.scitotenv.2023.163045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic compounds (PACs) are important hazardous air pollutants in China due to the country's coal-dominant energy structure. In order to reveal the pollution characteristics, sources, toxicity, and pollution historical trends of PACs in the atmosphere of the middle reach of the Huaihe River (MRHR), a large-scale coal-fired power base of China, tree barks and tree cores were collected and employed as passive air samplers and historical trend recorders, and 76 PACs were identified for the first time. ΣPACs in tree barks ranged from 170 to 3800 ng g-1 (mean = 700 ± 720 ng g-1), with the high concentrations observed mainly in the coal-mining and coal-bearing area. 16 priority PAHs (PriPAHs) were the predominant substances and accounted for 59 ± 8.3 % of ΣPACs. The combustion of coal and fuel oil was the most significant source of PACs, accounting for 43 % of ΣPACs, followed by the combustion of biomass (30 %) and non-combustion sources (27 %). Based on a bark-air partitioning model, volumetric air concentrations for ΣPACs were calculated to be 450-11,000 ng m-3 (mean = 1600 ± 2000 ng m-3). The BaP-toxic equivalent concentrations (TEQBaP) of ΣPACs (mean = 9.7 ± 15 ng m-3) were significantly higher than the Chinese guideline (1 ng m-3) and were mostly caused by coal & fuel oil combustion (55 ± 13 %). High molecular weight PACs were detected in lower percentages in tree cores than in tree barks, indicating that PACs in the particle phase were difficult to enter the tree core. Major PACs decreased in tree core samples between 2000 and 2020 as pollution control efforts improved, however, some PACs showed different trends when influenced by point sources.
Collapse
Affiliation(s)
- Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jie Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| |
Collapse
|
2
|
Song J, Xiong X, Yin H, Xiong Y, Fang S. Distribution and pollution characteristics of organophosphate esters: reflected by tree rings of arbor species. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3805-3816. [PMID: 36577857 DOI: 10.1007/s10653-022-01457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 06/01/2023]
Abstract
Organophosphate esters (OPEs) are emerging pollutants. Currently, research on OPEs in tree rings is still limited. In this study, tree rings of five arbor species from Sichuan Province, China, were sampled to study the occurrence and distribution of six OPEs, which were quantitatively analyzed by gas chromatography-mass spectrometry (GC-MS). The total concentrations of OPEs in all samples ranged from 189.79 (Fir species) to 341.23 ng/g (Toona sinensis), with average concentration of 284.77 ± 46.66 ng/g. So, arbor could be used as good passive samplers for OPEs. The levels of OPEs among five arbor species showed no significant difference (p = 0.668 > 0.05), suggesting that the pollution status of OPEs in a region or country could be roughly assessed by any arbor tree species. In this study area, tris(2-butoxyethyl) phosphate (TBEP) was the dominant OPEs followed by tri(2-chloroethyl) phosphate (TCEP). Tris(2-ethylhexyl) phosphate (TEHP) and tri-n-butyl phosphate (TnBP) showed relatively stable concentrations in each arbor species, while the other four OPEs including TBEP, triphenyl phosphate (TPhP), tri(chloropropyl) phosphate (TCPP) and TCEP had significantly different concentrations. Interestingly, the absorption and accumulation of OPEs by tree rings of arbor species were quite different from that of inorganic elements reported by other studies.
Collapse
Affiliation(s)
- Jiaojiao Song
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Chengdu, 610225, China
| | - Xiaoyu Xiong
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Chengdu, 610225, China
| | - Hongling Yin
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Chengdu, 610225, China.
| | - Yuanming Xiong
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Chengdu, 610225, China
| | - Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Chengdu, 610225, China
| |
Collapse
|
3
|
Wang C, Wang X, Gong P, Wang X. Evaluation of the spatiotemporal variations of organochlorine pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the forests of the Himalaya and Hengduan mountains using tree bark and tree core samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160306. [PMID: 36403843 DOI: 10.1016/j.scitotenv.2022.160306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
There have been few reports of the large-scale spatial distribution and long-term historical variations of pollutants in high-altitude forests. Tree bark and tree core samples were collected from forests in the Himalaya and Hengduan mountains to determine the spatiotemporal variations of persistent organic pollutants. The average concentrations of dichlorodiphenyl trichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in tree bark samples were 9.09, 0.10, 0.13, 0.11and 26 ng/g dry weight, respectively, and 1.30, 0.02, 0.17, 0.07 and 186 ng/g dry weight, respectively, in tree core samples. Higher levels of these pollutants were observed in the forests on the southern slopes of the Himalaya (Nepal) and the southern part of the Hengduan mountains (Yunnan, China). Lower concentrations of these pollutants were found in the interior of the Tibetan Plateau on the northern slopes of the Himalaya as a result of the blocking effect of these mountain ranges. The concentrations of DDTs and HCHs in Himalayan tree cores showed increasing trends from 1956 to 1975 when they were used as pesticide extensively worldwide, especially in India. Peak concentrations of DDTs, HCHs and PAHs in tree cores of Qamdo located in Hengduan Mountains were observed in 2013, which were consistent with the history of industrial and agricultural development in Sichuan. This study provides new insights into the impact of atmospheric pollutants in South and Southeast Asia.
Collapse
Affiliation(s)
- Chuanfei Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyan Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Gong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Horb EC, Wentworth GR, Makar PA, Liggio J, Hayden K, Boutzis EI, Beausoleil DL, Hazewinkel RO, Mahaffey AC, Sayanda D, Wyatt F, Dubé MG. A decadal synthesis of atmospheric emissions, ambient air quality, and deposition in the oil sands region. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:333-360. [PMID: 34676977 PMCID: PMC9299045 DOI: 10.1002/ieam.4539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 05/20/2023]
Abstract
This review is part of a series synthesizing peer-reviewed literature from the past decade on environmental monitoring in the oil sands region (OSR) of northeastern Alberta. It focuses on atmospheric emissions, air quality, and deposition in and downwind of the OSR. Most published monitoring and research activities were concentrated in the surface-mineable region in the Athabasca OSR. Substantial progress has been made in understanding oil sands (OS)-related emission sources using multiple approaches: airborne measurements, satellite measurements, source emission testing, deterministic modeling, and source apportionment modeling. These approaches generally yield consistent results, indicating OS-related sources are regional contributors to nearly all air pollutants. Most pollutants exhibit enhanced air concentrations within ~20 km of surface-mining activities, with some enhanced >100 km downwind. Some pollutants (e.g., sulfur dioxide, nitrogen oxides) undergo transformations as they are transported through the atmosphere. Deposition rates of OS-related substances primarily emitted as fugitive dust are enhanced within ~30 km of surface-mining activities, whereas gaseous and fine particulate emissions have a more diffuse deposition enhancement pattern extending hundreds of kilometers downwind. In general, air quality guidelines are not exceeded, although these single-pollutant thresholds are not comprehensive indicators of air quality. Odor events have occurred in communities near OS industrial activities, although it can be difficult to attribute events to specific pollutants or sources. Nitrogen, sulfur, polycyclic aromatic compounds (PACs), and base cations from OS sources occur in the environment, but explicit and deleterious responses of organisms to these pollutants are not as apparent across all study environments; details of biological monitoring are discussed further in other papers in this special series. However, modeling of critical load exceedances suggests that, at continued emission levels, ecological change may occur in future. Knowledge gaps and recommendations for future work to address these gaps are also presented. Integr Environ Assess Manag 2022;18:333-360. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Erin C. Horb
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | - Gregory R. Wentworth
- Resource Stewardship DivisionAlberta Environment and ParksEdmontonAlbertaCanada
- Present address: Environmental Protection BranchEnvironment and Climate Change CanadaEdmontonAlbertaCanada
| | - Paul A. Makar
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | - John Liggio
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | - Katherine Hayden
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | | | | | | | - Ashley C. Mahaffey
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | - Diogo Sayanda
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | | | | |
Collapse
|
5
|
Wang X, Wang C, Gong P, Wang X, Zhu H, Gao S. Century-long record of polycyclic aromatic hydrocarbons from tree rings in the southeastern Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125152. [PMID: 33540264 DOI: 10.1016/j.jhazmat.2021.125152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Limited studies have been carried out on the historical variations of atmospheric polycyclic aromatic hydrocarbons (PAHs), especially in remote regions of the world. In this study, century-long record of PAHs (1916-2018) were reconstructed from tree rings in the remote southeastern Tibetan Plateau (TP). The total concentrations of 15 PAHs varied from 27.5 to 6.05 × 102 ng/g dry weight (dw), with a mean value of 1.40 × 102 ng/g dw. Higher levels of PAHs were observed during World War Ⅱ and the Peaceful Liberation of Tibet, and increasing trends were observed starting from rapid industrialization in India. Both the isomer ratios and the positive matrix factorization model results indicated biomass and coal combustion were the dominant sources of PAHs. The carcinogenic risk of PAHs to local residents was assessed, which might have been negligible in most past periods and lower than in other regions of the world. Nevertheless, since the beginning of the 21st century, the cancer risk has been increasing year by year, indicating more actions are needed to reduce emissions of PAHs. This study provides an idea for reconstructing the pollution history of PAHs at the global scale.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, School of Science, Beijing 100049, China
| | - Chuanfei Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China; South-East Tibetan Plateau Station for Integrated Observation and Research of Alpine Environment, Chinese Academy of Sciences, Nyingchi 860119, China.
| | - Ping Gong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, School of Science, Beijing 100049, China
| | - Haifeng Zhu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Shaopeng Gao
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Muir DCG, Galarneau E. Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116425. [PMID: 33460875 DOI: 10.1016/j.envpol.2021.116425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
In this review, global change processes have been linked to polycyclic aromatic compounds (PACs) in Canada and a first national budget of sources and sinks has been derived. Sources are dominated by wildfire emissions that affect western and northern regions of Canada disproportionately due to the location of Pacific and boreal forests and the direction of prevailing winds. Wildfire emissions are projected to increase under climate warming along with releases from the thawing of glaciers and permafrost. Residential wood combustion, domestic transportation and industry contribute the bulk of anthropogenic emissions, though they are substantially smaller than wildfire emissions and are not expected to change considerably in coming years. Other sources such as accidental spills, deforestation, and re-emission of previous industrial deposition are expected to contribute anthropogenic and biogenic PACs to nearby ecosystems. PAC sinks are less well-understood. Atmospheric deposition is similar in magnitude to anthropogenic sources. Considerable knowledge gaps preclude the estimation of environmental transformations and transboundary flows, and assessing the importance of climate change relative to shifts in population distribution and energy production is not yet possible. The outlook for PACs in the Arctic is uncertain due to conflicting assessments of competing factors and limited measurements, some of which provide a baseline but have not been followed up in recent years. Climate change has led to an increase in primary productivity in the Arctic Ocean, but PAC-related impacts on marine biota appear to be modest. The net effect of changes in ecological exposure from changing emissions and environmental conditions throughout Canada remains to be seen. Evidence suggests that the PAC budget at the national scale does not represent impacts at the local or regional level. The ability to assess future trends depends on improvements to Canada's environmental measurement strategy and biogeochemical modelling capability.
Collapse
Affiliation(s)
- Derek C G Muir
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, L7S1A1, Canada.
| | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada
| |
Collapse
|