1
|
Gu X, Chen G, Lin Y, Wang W, Wang M. Drivers of the spatiotemporal patterns of the mangrove crab metacommunity in a tropical bay. Ecol Evol 2023; 13:e10191. [PMID: 37325721 PMCID: PMC10266579 DOI: 10.1002/ece3.10191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Revealing community patterns and driving forces is essential in community ecology and a prerequisite for effective management and conservation efforts. However, the mangrove ecosystem and its important fauna group such as the crabs, still lack multi-processes research under metacommunity framework, resulting in evidence and theorical application gaps. To fill these gaps, we selected China's most representative mangrove bay reserve in tropical zone as a stable experimental system and conducted a seasonal investigation (July 2020, October 2020, January 2021, and April 2021) of mangrove crabs. We performed a multi-approach analysis using both pattern-based and mechanistic method to distinguish the processes driving the mangrove crab metacommunity. Our results showed that the crab metacommunity exhibits a Clementsian pattern in the bay-wide mangrove ecosystem but is influenced by both local environmental heterogeneity and spatial processes, thus representing a combined paradigm of species sorting and mass effect. Moreover, the long-distance spatial constraints are more pronounced compared to the local environmental factors. This is reflected in the greater importance of the broad-scale Moran's Eigenvector Maps, the distance-decay pattern of similarity, and the difference in beta diversity dominated by the turnover component. This pattern changes throughout the year, mainly due to changes in dominant functional groups caused by the stress of changes in water salinity and temperature induced by air temperature and precipitation. This research provides multi-dimension research data and relevant analysis, offering clear evidence for understanding the patterns and related driving forces of crab metacommunity in tropical bay mangroves, and verifies the applicability of some general laws in the system. Future studies can address more diverse spatiotemporal scales, gaining a clearer understanding to serve the conservation of mangrove ecosystems and economically important fishery species.
Collapse
Affiliation(s)
- Xuan Gu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & EcologyXiamen UniversityXiamenChina
- Zhangjiang Estuary Mangrove Wetland Ecosystem Station, National Observation and Research Station for the Taiwan Strait Marine EcosystemXiamen UniversityZhangzhouChina
- Engineering Research Center of Fujian Province for Coastal Wetland Protection and Ecological Recovery, College of the Environment & EcologyXiamen UniversityXiamenChina
| | - Guogui Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & EcologyXiamen UniversityXiamenChina
- State Key Laboratory of Water Environmental Simulation, School of EnvironmentBeijing Normal UniversityBeijingChina
- Research and Development Center for Watershed Environmental Eco‐Engineering, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| | - Yufeng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & EcologyXiamen UniversityXiamenChina
- Zhangjiang Estuary Mangrove Wetland Ecosystem Station, National Observation and Research Station for the Taiwan Strait Marine EcosystemXiamen UniversityZhangzhouChina
- Engineering Research Center of Fujian Province for Coastal Wetland Protection and Ecological Recovery, College of the Environment & EcologyXiamen UniversityXiamenChina
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & EcologyXiamen UniversityXiamenChina
- Zhangjiang Estuary Mangrove Wetland Ecosystem Station, National Observation and Research Station for the Taiwan Strait Marine EcosystemXiamen UniversityZhangzhouChina
- Engineering Research Center of Fujian Province for Coastal Wetland Protection and Ecological Recovery, College of the Environment & EcologyXiamen UniversityXiamenChina
| | - Mao Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & EcologyXiamen UniversityXiamenChina
- Zhangjiang Estuary Mangrove Wetland Ecosystem Station, National Observation and Research Station for the Taiwan Strait Marine EcosystemXiamen UniversityZhangzhouChina
- Engineering Research Center of Fujian Province for Coastal Wetland Protection and Ecological Recovery, College of the Environment & EcologyXiamen UniversityXiamenChina
| |
Collapse
|
2
|
Truchet DM, Buzzi NS, Moulatlet GM, Capparelli MV. Macroecotoxicological approaches to emerging patterns of microplastic bioaccumulation in crabs from estuarine and marine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161912. [PMID: 36731577 DOI: 10.1016/j.scitotenv.2023.161912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Despite the increasing plastic discharge into the environment, few articles have dealt with the macroecological implications of microplastics (MPs) bioaccumulation on organisms. We performed a meta-analysis of MPs accumulation in true crabs and pseudocrabs worldwide and made use of macroecotoxicological approaches to know if: I) functional traits influence the bioaccumulation of MPs in the tissues of crabs; II) there is a latitudinal pattern of MPs bioaccumulation; III) there are tissues that can accumulate more MPs; IV) crabs can sort particles according to size, color, shape and type. Our results showed that functional traits influence the accumulation of MPs. Smaller crabs in size and weight and with shorter lifespans tended to exhibit more plastic particles. According to the environment, estuarine crabs from the intertidal and muddy substrates held more MPs. Also, burrowers exhibited significantly more particles in the tissues than omnivorous crabs. Besides, we recorded that crabs from low latitudes tended to exhibit more plastic particles, probably because of the mangroves' location that acts as traps for MPs. Non-human-consumed crabs accumulated significantly more MPs than human-consumed ones. Considering the tissues, gills were prone to accumulate more debris than the digestive tract, but without significant differences. Finally, colorless fibers of 1-5 mm of PA, PP and PET were the predominant characteristics of MPs, suggesting that crabs accumulated denser types but did not sort plastic according to color. These results indicate that functional traits might influence the accumulation of MPs and that there are coastal regions and geographical areas where crabs tend to accumulate more MPs. Analyzing MPs accumulation patterns with macroecological tools can generate information to identify the most affected species and define priorities for monitoring and implementing actions toward reducing plastic use globally.
Collapse
Affiliation(s)
- Daniela M Truchet
- Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, B7602AYL Mar del Plata, Argentina
| | - Natalia S Buzzi
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS), CCT- CONICET, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca, Buenos Aires, Argentina
| | - Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico.
| |
Collapse
|
3
|
Mégevand L, Kreienbühl P, Theuerkauff D, Lignot JH, Sucré E. Individual metabolism and behaviour as complementary endpoints to better understand mangrove crab community variations linked to wastewater inputs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113487. [PMID: 35405528 DOI: 10.1016/j.ecoenv.2022.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Mangrove forests are impacted by a large range of anthropogenic activities that challenge their functioning. For example, domestic wastewater (WW) discharges are known to increase vegetation growth but recent studies indicate that they have negative effects on benthic macrofauna, especially on mangrove crabs, these ecosystem engineers playing a key role on the functioning of the mangrove. In experimental areas regularly receiving WW at low tide (Mayotte Island, Indian Ocean), a drastic decrease in burrowing crab density has been reported. In this context, the individual behavioural and physiological responses of the fiddler crab Paraleptuca chlorophthalmus exposed to short-term (6 h) pulse of WW and ammonia-N (as a potential proxy of WW) were investigated. This species is one of the most sensitive to WW within the mangrove crab community. For the behavioural experiment, crabs could choose between the aquatic and aerial environment. Individual metabolic rate (O2 consumption) was monitored after 6 h of exposure in WW or ammonia-N. Aerobic and anaerobic metabolic markers (citrate synthase and lactate dehydrogenase activities, respectively) were also evaluated. Results indicate that crabs exposed to WW are more active and mobile than controls after 3 h. Crabs actively emersed from WW and reduced their activity and mobility after 6 h. A higher metabolic rate in WW occurred immediately (t = 0 h), 3 and 6 h after WW exposure, with also, a burst in aerobic bacterial consumption in WW, but no effect of ammonia-N. No effect of WW or ammonia-N was observed on enzymatic aerobic and anaerobic metabolic markers. Therefore, short-term pulses with domestic polluted wastewater trigger quick behavioural and metabolic responses that could be deleterious if prolonged. These results could contribute to the understanding of the community-scale changes observed in benthic macrofauna after several years of regular domestic pollution pulses.
Collapse
Affiliation(s)
- Laura Mégevand
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France.
| | - Pauline Kreienbühl
- Centre Universitaire de Formation et de Recherche de Mayotte (CUFR), 97660 Dembeni, Mayotte, France.
| | - Dimitri Theuerkauff
- Station de Recherche Océanographiques et Sous-marines STARESO, Punta Revellata, 20260 Calvi, France.
| | - Jehan-Hervé Lignot
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France.
| | - Elliott Sucré
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France; Centre Universitaire de Formation et de Recherche de Mayotte (CUFR), 97660 Dembeni, Mayotte, France.
| |
Collapse
|
4
|
Mégevand L, Theuerkauff D, L’Épine C, Hermet S, Corse E, L’Honoré T, Lignot JH, Sucré E. Diluted Seawater and Ammonia-N Tolerance of Two Mangrove Crab Species. New Insights to Understand the Vulnerability of Pristine Islands Ecosystems Organisms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.839160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mangrove ecosystems are the primary receptors of anthropogenic pollution in tropical areas. Assessing the vulnerability of these ecosystems can be expressed, among other indicators, by studying the health of ‘ecosystem engineers’. In this study, mangrove forests facing opposing anthropogenic pressures were studied (i) in the uninhabited island of Europa (Mozambique Channel), considered as a pristine ecosystem, and, (ii) on the island of Mayotte, facing regular domestic wastewater discharges. Using an ecophysiological approach, the effects of diluted seawater (DSW) and increased ammonia-N were studied for two fiddler crab species: Gelasimus tetragonon (GT) on the island of Europa and Paraleptuca chlorophthalmus (PC) on the island of Mayotte. Osmoregulation curves and osmoregulatory capacity were determined along with O2 consumption rates after a 96 h exposure period. Histological analyses were also carried out on two important metabolic organs: the hepatopancreas and the posterior gills. Results indicate that both crab species are good hyper-hypo-osmoregulators but only PC can maintain its osmoregulatory capacity when exposed to ammonia-N. Oxygen consumption is increased in GT after 96 h of exposure to ammonia-N but this does not occur in PC. Finally, a thickening of the gill osmoregulatory epithelium was observed after 96 h in PC when exposed to ammonium but not in GT. Therefore, the two species do not have the same tolerance to DSW and increased ammonia-N. PC shows physiological acclimation capacities in order to better manage nitrogenous enrichments. GT did not show the same physiological plasticity when exposed to ammonia-N and could be more at risk by this kind of stress. These results along with those from other studies regarding the effects of domestic effluents on mangrove crabs are discussed. Therefore, the greater vulnerability of organisms occupying pristine ecosystems could induce major changes in mangrove functioning if crabs, that are engineer species of the ecosystem, are about to reduce their bioturbation activity or, even, disappear from the mangrove forests.
Collapse
|
5
|
Wang Q, Duarte C, Song L, Christakos G, Agusti S, Wu J. Effects of Ecological Restoration Using Non-Native Mangrove Kandelia obovata to Replace Invasive Spartina alterniflora on Intertidal Macrobenthos Community in Maoyan Island (Zhejiang, China). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021; 9:788. [DOI: 10.3390/jmse9080788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spartina alterniflora has extensively invaded the coastline of China, including in Maoyan Island of Zhejiang Province. Ecological restoration has been conducted using non-native mangrove Kandelia obovata to replace S. alterniflora in an attempt to restore the impacted intertidal zones. To illustrate the ecological effectiveness of the restoration projects, macrobenthos communities were studied among different habitats within the restored areas, including one non-restored S. alterniflora marsh (SA) and three differently-aged restored K. obovata stands planted in 2003, 2009, and 2011 respectively (KF14, KF8, and KF6). Besides, one unvegetated mudflat (MF) adjacent to the non-restored S. alterniflora marsh and one K. obovata forest transplanted in 2006 (RKF) at a previously barren mudflat without invasion history of S. alterniflora were set as reference sites. A total of 69 species of macrobenthos were collected from Maoyan Island, and the species richness was dominated by gastropoda (23 species), polychaeta (18 species), and malacostraca (16 species). There was no significant difference between the six sites in terms of the abundance of macrobenthos, with the average values of abundance peaking in KF6 (734.7 ind m−2) and being lowest in RKF (341.3 ind m−2). The six sites had significant differences in terms of the biomass of macrobenthos. The KF8 site contained the highest average biomass (168.3 g m−2), whereas the MF site had the lowest (54.3 g m−2). The Shannon-Wiener diversity index and Pielou’s evenness index of the macrobenthos did not exhibit significant differences among the six sites. However, the results of permutational multivariate analysis of variance (PERMANOVA) revealed significant spatial differences in the macrobenthos community structure between the sites. Since KF14 shared a similar macrobenthos community structure with RKF, while representing a strikingly different structure from SA, we infer that ecological restoration using K. obovata can restore the macrobenthos community to resemble to a normally planted K. obovata forest about 15 years after restoration.
Collapse
Affiliation(s)
- Qiuxuan Wang
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Carlos Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Li Song
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - George Christakos
- Ocean College, Zhejiang University, Zhoushan 316000, China
- Department of Geography, San Diego State University, San Diego, CA 92182, USA
| | - Susana Agusti
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan 316000, China
| |
Collapse
|