1
|
Wang S, Jiao L, Yan J, Zhao S, Tian R, Sun X, Dai S, Zhang X, Zhang M. Impact of sea ice on the physicochemical characteristics of marine aerosols in the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175135. [PMID: 39084396 DOI: 10.1016/j.scitotenv.2024.175135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Marine aerosols (MA) can be influenced by sea ice concentration, potentially playing a pivotal role in the formation of cloud condensation nuclei and exerting an impact on regional climate. In this study, a high-resolution aerosol observation system was employed to measure the concentration and size of aerosols in the floating ice region and seawater region of the Arctic Ocean during the 8th and 9th Chinese Arctic Expedition Research Cruise. The identification of aerosol sources was conducted using a modified positive definite matrix factorization method and a backward air mass trajectory model. Two types of MA including the sea-salt aerosol (SSA) and the marine biogenic aerosol (BA) were identified and their concentrations were calculated. Then the physical-chemical characteristics of MA in the floating ice region and seawater region were compared under normalized conditions (-2.5 °C < T < -0.1 °C; 5.80 m/s < WS < 10.95 m/s) to discern the impact of sea ice. A unimodal distribution was observed for MA number concentration with a dominant peak ranging from 0.5 μm to 1.0 μm in size range. The findings revealed that the presence of sea ice cover led to a significant reduction of 52.2 % in the number concentration of SSA, while exerting minimal influence on its composition. BA number concentration in the floating ice region was 33.3 % higher than that in the seawater region. Strong winds (wind speed >6.5 m/s) transported organic matter and nutrients entrapped in sea ice into the atmosphere, leading to an increase in BA concentration. However, the presence of sea ice cover hampered the exchange of biogenic gases between the ocean and air, resulting in a reduction of secondary BA formation. Our study elucidates the correlation between MA release and sea ice coverage in the Arctic Ocean, thereby establishing a theoretical foundation for climate prediction models.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, China; Third Institute of Oceanography, Ministry of Natural Resources of China, China
| | - Liping Jiao
- Xiamen Environmental Monitoring Station, Xiamen, China
| | - Jinpei Yan
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, China; Third Institute of Oceanography, Ministry of Natural Resources of China, China.
| | - Shuhui Zhao
- School of Tourism, Taishan University, Tai'an, China
| | - Rong Tian
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, China; Third Institute of Oceanography, Ministry of Natural Resources of China, China
| | - Xia Sun
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, China; Third Institute of Oceanography, Ministry of Natural Resources of China, China
| | - Siying Dai
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, China; Third Institute of Oceanography, Ministry of Natural Resources of China, China
| | - Xiaoke Zhang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, China; Third Institute of Oceanography, Ministry of Natural Resources of China, China
| | - Miming Zhang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, China; Third Institute of Oceanography, Ministry of Natural Resources of China, China
| |
Collapse
|
2
|
Wang L, Yan J, Saiz-Lopez A, Jiang B, Yue F, Yu X, Xie Z. Mixing state and distribution of iodine-containing particles in Arctic Ocean during summertime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155030. [PMID: 35390390 DOI: 10.1016/j.scitotenv.2022.155030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Iodine chemistry plays a key role in ozone destruction and new aerosol formation in the marine boundary layer (MBL), especially in polar regions. We investigated iodine-containing particles (0.2-2 μm) in the Arctic Ocean using a ship-based single particle aerosol mass spectrometer from July to August 2017. Seven main particle types were identified: dust, biomass combustion particles, sea salt, organic S, aromatics, hydrocarbon-like compounds, and amines. The number fraction of iodine-containing particles was higher inside the Arctic Circle (>65°N) than outside (55-65°N). According to the air mass back trajectories, the latitudinal distribution of iodine-containing particles can be mainly attributed to iodine emissions from the sea ice edge region. Diurnal trends were found, especially during the second half of cruise, with peak iodine-containing particle number fractions during low-light conditions and relatively low number fractions at midday. These results imply that solar radiation plays a significant role in modulating particulate iodine in the Arctic atmosphere.
Collapse
Affiliation(s)
- Longquan Wang
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinpei Yan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Bei Jiang
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fange Yue
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiawei Yu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Jang E, Park KT, Yoon YJ, Kim K, Gim Y, Chung HY, Lee K, Choi J, Park J, Park SJ, Koo JH, Fernandez RP, Saiz-Lopez A. First-year sea ice leads to an increase in dimethyl sulfide-induced particle formation in the Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150002. [PMID: 34482143 DOI: 10.1016/j.scitotenv.2021.150002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Dimethyl sulfide (DMS) produced by marine algae represents the largest natural emission of sulfur to the atmosphere. The oxidation of DMS is a key process affecting new particle formation that contributes to the radiative forcing of the Earth. In this study, atmospheric DMS and its major oxidation products (methanesulfonic acid, MSA; non-sea-salt sulfate, nss-SO42-) and particle size distributions were measured at King Sejong station located in the Antarctic Peninsula during the austral spring-summer period in 2018-2020. The observatory was surrounded by open ocean and first-year and multi-year sea ice. Importantly, oceanic emissions and atmospheric oxidation of DMS showed distinct differences depending on source regions. A high mixing ratio of atmospheric DMS was observed when air masses were influenced by the open ocean and first-year sea ice due to the abundance of DMS producers such as pelagic phaeocystis and ice algae. However, the concentrations of MSA and nss-SO42- were distinctively increased for air masses originating from first-year sea ice as compared to those originating from the open ocean and multi-year sea ice, suggesting additional influences from the source regions of atmospheric oxidants. Heterogeneous chemical processes that actively occur over first-year sea ice tend to accelerate the release of bromine monoxide (BrO), which is the most efficient DMS oxidant in Antarctica. Model-estimates for surface BrO confirmed that high BrO mixing ratios were closely associated with first-year sea ice, thus enhancing DMS oxidation. Consequently, the concentration of newly formed particles originated from first-year sea ice, which was a strong source area for both DMS and BrO was greater than from open ocean (high DMS but low BrO). These results indicate that first-year sea ice plays an important yet overlooked role in DMS-induced new particle formation in polar environments, where warming-induced sea ice changes are pronounced.
Collapse
Affiliation(s)
- Eunho Jang
- Korea Polar Research Institute, Incheon, South Korea; University of Science and Technology, Daejeon, South Korea
| | - Ki-Tae Park
- Korea Polar Research Institute, Incheon, South Korea; University of Science and Technology, Daejeon, South Korea.
| | | | - Kitae Kim
- Korea Polar Research Institute, Incheon, South Korea; University of Science and Technology, Daejeon, South Korea
| | - Yeontae Gim
- Korea Polar Research Institute, Incheon, South Korea
| | - Hyun Young Chung
- Korea Polar Research Institute, Incheon, South Korea; University of Science and Technology, Daejeon, South Korea
| | - Kitack Lee
- Department of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinhee Choi
- Korea Polar Research Institute, Incheon, South Korea
| | - Jiyeon Park
- Korea Polar Research Institute, Incheon, South Korea
| | | | - Ja-Ho Koo
- Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
| | - Rafael P Fernandez
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| |
Collapse
|
4
|
Liu J, Ning A, Liu L, Wang H, Kurtén T, Zhang X. A pH dependent sulfate formation mechanism caused by hypochlorous acid in the marine atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147551. [PMID: 34000527 DOI: 10.1016/j.scitotenv.2021.147551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Secondary sulfate plays a crucial role in forming marine aerosol, which in turn is an important source of natural aerosol at a global level. Recent experimental studies suggest that oxidation of S(IV) compounds, in practice dissolved sulfur dioxide, to sulfate (S(VI)) by hypochloric acid could be one of the most significant pathways for sulfate formation in marine areas. However, the exact mechanism responsible for this process remains unknown. Using high-level quantum chemical calculations, we studied the reaction between dissolved sulfur dioxide and hypochloric acid. We account for the dominant protonation states of reactants in the pH range 3.0-9.0. We also consider possible catalytic effects of species such as H2O. Our results show that sulfate formation in HOCl+HOSO2- and HOCl+SO32- reactions relevant to acidic and nearly neutral conditions can occur either through previously proposed Cl+ transfer or through a novel HO+ transfer mechanism. In alkaline conditions, where the dominant reactants are OCl- and SO32-, an O atom transfer mechanism proposed in previous experimental studies may be more important than Cl+ transfer. Catalysis by common cloud-water species is found to lower barriers of Cl+ transfer mechanisms substantially. Nevertheless, we find that the dominant S(IV) + HOCl reaction mechanism for the full studied pH range is HO+ transfer from HOCl to SO32-, which leads directly to sulfate formation without ClSO3- intermediates. The rate-limiting barrier of this reaction is low, leading to an essentially diffusion-controlled reaction rate. S(IV) lifetimes due to this reaction decrease with increasing pH due to the increasing fractional population of SO32-. Especially in neutral and alkaline conditions, depletion of HOCl by the reaction is so rapid that S(IV) oxidation will be controlled mainly by mass transfer of gas-phase HOCl to the liquid phase. The mechanism proposed here may help to explain marine sulfate sources missing from current atmospheric models.
Collapse
Affiliation(s)
- Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huixian Wang
- Beijing Guodian Longyuan Environment Engineering Co. Ltd, Beijing 100081, China
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Liu J, Liang D, Liu L, Ning A, Zhang X. Catalytic sulfate formation mechanism influenced by important constituents of cloud water via the reaction of SO 2 oxidized by hypobromic acid in marine areas. Phys Chem Chem Phys 2021; 23:15935-15949. [PMID: 34296723 DOI: 10.1039/d1cp01981c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive investigations of the possible formation pathways of sulfate, the main composition of atmospheric aerosol in marine areas, continue to challenge atmospheric chemists. As one of the most important oxidation routes of S(iv) contributing to sulfate formation, the reaction process of S(iv) oxidized by hypobromic acid, which is ubiquitous with the gas-phase mixing ratios of ∼310 ppt and has a well-known oxidative capacity, has attracted wide attention. However, little information is available about the detailed reaction mechanism. Especially, due to the abundant species in cloud water, the potential effect of these compositions on these reaction processes and the corresponding effect mechanism are also uncertain. Using high-level quantum chemical calculations, we theoretically elucidate the two-step mechanism of Br+ transfer proposed by experiment through the verification of the key BrSO3- intermediate formation and subsequent hydrolysis reaction or the uncovered reaction of BrSO3- intermediate with OH-. Further, the novel and more competitive mechanisms (OH+ or O atom transfer pathways) that have not been considered in previous studies, leading to sulfate formation directly, have been found. Furthermore, it should be mentioned that we revealed the effect mechanism of constituents catalyzed in cloud water, especially the important H2O-catalyzed mechanism. In addition, all the above pathways follow this catalytic mechanism. This finding indicates a linkage between the complex nature of the atmospheric constituents and related atmospheric reaction, as well as the enhanced occurrence of atmospheric secondary sulfate formation in the atmosphere. Hence, this exploration of sulfate formation related to hypobromic acid could provide a better understanding about the sources of sulfate in marine areas.
Collapse
Affiliation(s)
- Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|