1
|
Jensen MR, Agersnap S, Sigsgaard EE, Ávila MDP, Glenner H, Wisz MS, Thomsen PF. The Core of the Matter-Importance of Identification Method and Biological Replication for Benthic Marine Monitoring. Ecol Evol 2024; 14:e70556. [PMID: 39544386 PMCID: PMC11563695 DOI: 10.1002/ece3.70556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Benthic macrofauna are important and widely used biological indicators of marine ecosystems as they have limited mobility and therefore integrate the effects of local environmental stressors over time. Recently, environmental DNA (eDNA) analysis has provided a potentially more resource-efficient approach for benthic biomonitoring than traditional morphology-based methods. Several studies have compared eDNA with morphology-based monitoring, but few have compared the two approaches using the exact same sediment cores. In addition, the meiofauna and pelagic organisms obtained as 'bycatch' using eDNA have largely been disregarded from comparisons. Here, we address these shortcomings through comparative invertebrate analyses of six sediment sample replicates from each of four stations in Denmark, using eDNA metabarcoding and morphological identification. Our results revealed large variation between the six replicates for both methods and little overlap in taxon compositions between methods. While the morphological dataset was dominated by molluscs and annelids, the eDNA dataset was dominated by arthropods and annelids. Using community composition data, we found that sampling stations could be distinguished both with eDNA and morphology. Finally, we inferred expected total richness from extrapolated accumulation curves of detected taxa from each method. This indicated that eDNA metabarcoding requires less replication than morphology for maximum coverage of diversity to be reached. However, both methods required high levels of replication, and our results on taxonomic composition add to the evidence that morphological and eDNA-based methods should preferably be used as complimentary tools for marine bioassessment.
Collapse
Affiliation(s)
- Mads Reinholdt Jensen
- Department of BiologyAarhus UniversityAarhus CDenmark
- Norwegian College of Fishery ScienceUiT—The Arctic University of NorwayTromsøNorway
| | - Sune Agersnap
- Department of BiologyAarhus UniversityAarhus CDenmark
| | - Eva Egelyng Sigsgaard
- Department of BiologyAarhus UniversityAarhus CDenmark
- Center for Sustainable Landscapes under Global Change (SustainScapes)Aarhus UniversityAarhus CDenmark
| | | | - Henrik Glenner
- Department of Biological SciencesUniversity of BergenBergenNorway
- Center of Macroecology and Climate, GLOBEUniversity of CopenhagenCopenhagenDenmark
| | - Mary S. Wisz
- Ocean Sustainability, Governance and ManagementWorld Maritime UniversityMalmöSweden
| | | |
Collapse
|
2
|
Li Z, Xu K, Meng M, Xu Y, Ji D, Wang W, Xie C. Environmental heterogeneity caused by large-scale cultivation of Pyropia haitanensis shapes multi-group biodiversity distribution in coastal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172692. [PMID: 38663622 DOI: 10.1016/j.scitotenv.2024.172692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
The response of marine biodiversity to mariculture has long been a research focus in marine ecology. However, the effects of seaweed cultivation on biological community assembly are poorly understood, especially in diverse communities with distinct ecological characteristics. In this study, we used environmental DNA metabarcoding to investigate the spatial distribution patterns of bacterial, protistan, and metazoan diversity, aiming to reveal the mechanisms of community assembly in the Pyropia haitanensis cultivation zone along the Fujian coast, China. We found that, compared with the biological communities in control zones, those in P. haitanensis cultivation zones exhibited stronger geographic distance-decay patterns and displayed more complex and stable network structures. Deterministic processes (environmental selection) played a more important role in the assembly of bacterial, protistan, and metazoan communities in P. haitanensis cultivation zones, especially metazoan communities. Variance partitioning analysis showed that environmental variables made greater contributions to the diversity of the three types of communities within the P. haitanensis cultivation zones than in the control zones. Partial least squares path modeling analysis identified nitrate‑nitrogen (NO3-N), pH, particulate organic carbon (POC), and dissolved organic carbon (DOC) as the key environmental variables affecting biodiversity. Overall, the environmental heterogeneity caused by the large-scale cultivation of P. haitanensis could be the crucial factor influencing the composition and structure of various biological communities. Our results highlight the importance of the responses of multi-group organisms to the cultivation of seaweed, and provide insights into the coexistence patterns of biodiversity at the spatial scale.
Collapse
Affiliation(s)
- Zongtang Li
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China
| | - Muhan Meng
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China.
| |
Collapse
|
3
|
Stein ED, Jerde CL, Allan EA, Sepulveda AJ, Abbott CL, Baerwald MR, Darling J, Goodwin KD, Meyer RS, Timmers MA, Thielen PM. Critical considerations for communicating environmental DNA science. ENVIRONMENTAL DNA (HOBOKEN, N.J.) 2024; 6:1-12. [PMID: 38784600 PMCID: PMC11110536 DOI: 10.1002/edn3.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/17/2023] [Indexed: 05/25/2024]
Abstract
The economic and methodological efficiencies of environmental DNA (eDNA) based survey approaches provide an unprecedented opportunity to assess and monitor aquatic environments. However, instances of inadequate communication from the scientific community about confidence levels, knowledge gaps, reliability, and appropriate parameters of eDNA-based methods have hindered their uptake in environmental monitoring programs and, in some cases, has created misperceptions or doubts in the management community. To help remedy this situation, scientists convened a session at the Second National Marine eDNA Workshop to discuss strategies for improving communications with managers. These include articulating the readiness of different eDNA applications, highlighting the strengths and limitations of eDNA tools for various applications or use cases, communicating uncertainties associated with specified uses transparently, and avoiding the exaggeration of exploratory and preliminary findings. Several key messages regarding implementation, limitations, and relationship to existing methods were prioritized. To be inclusive of the diverse managers, practitioners, and researchers, we and the other workshop participants propose the development of communication workflow plans, using RACI (Responsible, Accountable, Consulted, Informed) charts to clarify the roles of all pertinent individuals and parties and to minimize the chance for miscommunications. We also propose developing decision support tools such as Structured Decision-Making (SDM) to help balance the benefits of eDNA sampling with the inherent uncertainty, and developing an eDNA readiness scale to articulate the technological readiness of eDNA approaches for specific applications. These strategies will increase clarity and consistency regarding our understanding of the utility of eDNA-based methods, improve transparency, foster a common vision for confidently applying eDNA approaches, and enhance their benefit to the monitoring and assessment community.
Collapse
Affiliation(s)
- Eric D Stein
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Christopher L Jerde
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | | | - Adam J Sepulveda
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, USA
| | | | - Melinda R Baerwald
- Division of Integrated Science and Engineering, California Department of Water Resources, West Sacramento, California, USA
| | - John Darling
- U.S. Environmental Protection Agency, Environmental Genomics Branch, Watershed and Ecosystem Characterization Division, Research Triangle Park, North Carolina, USA
| | - Kelly D Goodwin
- National Oceanic and Atmospheric Administration, NOAA Ocean Exploration, Stationed at SWFSC/NMFS, La Jolla, California, USA
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of Santa Cruz, Santa Cruz, California, USA
| | - Molly A Timmers
- Pristine Seas, National Geographic Society, Washington, DC, USA
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Peter M Thielen
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| |
Collapse
|
4
|
Burian A, Bruce K, Tovela E, Bakker J, Balcells L, Bennett R, Chordekar S, Costa HM, Crampton-Platt A, de Boer H, Ross-Gillespie V, de Sacramento A, Sidat N, Simbine L, Ready J, Tang C, Mauvisseau Q. Merging two eDNA metabarcoding approaches and citizen-science-based sampling to facilitate fish community monitoring along vast Sub-Saharan coastlines. Mol Ecol Resour 2023; 23:1641-1655. [PMID: 37464467 DOI: 10.1111/1755-0998.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
The coastline of Sub-Saharan Africa hosts highly diverse fish communities of great conservation value, which are also key resources for local livelihoods. However, many costal ecosystems are threatened by overexploitation and their conservation state is frequently unknown due to their vast spatial extent and limited monitoring budgets. Here, we evaluated the potential of citizen science-based eDNA surveys to alleviate such chronic data deficiencies and assessed fish communities in Mozambique using two 12S metabarcoding primer sets. Samples were either collected by scientific personnel or trained community members and results from the two metabarcoding primers were combined using a new data merging approach. Irrespective of the background of sampling personnel, a high average fish species richness was recorded (38 ± 20 OTUs per sample). Individual sections of the coastline largely differed in the occurrence of threatened and commercially important species, highlighting the need for regionally differentiated management strategies. A detailed comparison of the two applied primer sets revealed an important trade-off in primer choice with MiFish primers amplifying a higher number of species but Riaz primers performing better in the detection of threatened fish species. This trade-off could be partly resolved by applying our new data-merging approach, which was especially designed to increase the robustness of multiprimer assessments in regions with poor reference libraries. Overall, our study provides encouraging results but also highlights that eDNA-based monitoring will require further improvements of, for example, reference databases and local analytical infrastructure to facilitate routine applications in Sub-Saharan Africa.
Collapse
Affiliation(s)
- Alfred Burian
- Department of Computational Landscape Ecology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Marine Ecology Department, Lurio University, Nampula, Mozambique
| | | | - Erica Tovela
- Natural History Museum, University Eduardo Mondlane, Maputo, Mozambique
| | | | | | | | | | - Hugo M Costa
- Wildlife Conservation Society, Maputo, Mozambique
| | | | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | | | - Luisa Simbine
- Instituto Oceanográfico de Moçambique, Ministério do Mar, Águas Interiores e Pescas, Maputo, Mozambique
| | - Jonathan Ready
- Universidade Federal do Pará, Grupo de Investigação Biológica Integrada, Centro de Estudos Avançados da Biodiversidade, Belem, Brazil
| | | | | |
Collapse
|
5
|
Carvalho S, Shchepanik H, Aylagas E, Berumen ML, Costa FO, Costello MJ, Duarte S, Ferrario J, Floerl O, Heinle M, Katsanevakis S, Marchini A, Olenin S, Pearman JK, Peixoto RS, Rabaoui LJ, Ruiz G, Srėbalienė G, Therriault TW, Vieira PE, Zaiko A. Hurdles and opportunities in implementing marine biosecurity systems in data-poor regions. Bioscience 2023; 73:494-512. [PMID: 37560322 PMCID: PMC10408360 DOI: 10.1093/biosci/biad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnoticed or unreported. Collaborative surveillance programs can enhance the early detection of mNIS, when response may still be possible, and can foster capacity building around a common threat. Regional or international databases curated for mNIS can inform local monitoring programs and can foster real-time information exchange on mNIS of concern. When combined, local species reference libraries, publicly available mNIS databases, and predictive modeling can facilitate the development of biosecurity programs in regions lacking baseline data. Biosecurity programs should be practical, feasible, cost-effective, mainly focused on prevention and early detection, and be built on the collaboration and coordination of government, nongovernment organizations, stakeholders, and local citizens for a rapid response.
Collapse
Affiliation(s)
- Susana Carvalho
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Hailey Shchepanik
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Eva Aylagas
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
- Red Sea Global, Riyadh 12382-6726, Saudi Arabia
| | - Michael L Berumen
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jasmine Ferrario
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | | | - Moritz Heinle
- Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- International Centre for Water Resources and Global Change, Federal Institute of Hydrology, Koblenz, Germany
| | | | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Sergej Olenin
- Marine Research Institute, Klaipeda University, Lithuania
| | | | - Raquel S Peixoto
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Lotfi J Rabaoui
- Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- National Center for Wildlife, Riyadh, Saudi Arabia
| | - Greg Ruiz
- Smithsonian Environmental Research Center, Edgewater, Maryland
| | | | | | - Pedro E Vieira
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Dias HQ, Sukumaran S. Are genomic indices effective alternatives to morphology based benthic indices in biomonitoring studies? Perspectives from a major harbour and marine protected area. MARINE POLLUTION BULLETIN 2023; 187:114586. [PMID: 36652865 DOI: 10.1016/j.marpolbul.2023.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Ecological assessments are currently being conducted by traditional morpho-taxonomical identification techniques that are time-consuming and often inaccurate. Biomonitoring programs are increasingly being complemented by the more rapid and efficient DNA barcoding approach. We compared the congruency of morpho-taxonomic (AMBI - AZTI's Marine Biotic Index) and genomic (gAMBI) benthic indices in ecological quality status (EcoQS) assignation in Mumbai harbour and Malvan Marine Protected area (MPA). The study, first of its kind to adopt the gAMBI tool in the selected milieu, contributed substantial number of macrobenthic cytochrome c oxidase subunit I gene (COI) sequences that were previously unavailable in the reference library, adding sufficient genetic resources for establishing ecostatus. AMBI and gAMBI values based on presence/absence data related significantly with those derived from abundance data matrices. Taxonomic and genomic indices derived ecostatus corresponded sufficiently well despite minor discrepancies, underscoring the viability of gAMBI as a superior alternative to AMBI in monitoring studies.
Collapse
Affiliation(s)
- Heidy Q Dias
- CSIR-National Institute of Oceanography, Regional Centre Andheri (W), Mumbai 400 053, India
| | - Soniya Sukumaran
- CSIR-National Institute of Oceanography, Regional Centre Andheri (W), Mumbai 400 053, India.
| |
Collapse
|
7
|
Rogers AD, Appeltans W, Assis J, Ballance LT, Cury P, Duarte C, Favoretto F, Hynes LA, Kumagai JA, Lovelock CE, Miloslavich P, Niamir A, Obura D, O'Leary BC, Ramirez-Llodra E, Reygondeau G, Roberts C, Sadovy Y, Steeds O, Sutton T, Tittensor DP, Velarde E, Woodall L, Aburto-Oropeza O. Discovering marine biodiversity in the 21st century. ADVANCES IN MARINE BIOLOGY 2022; 93:23-115. [PMID: 36435592 DOI: 10.1016/bs.amb.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.
Collapse
Affiliation(s)
- Alex D Rogers
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom.
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, Oostende, Belgium
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lisa T Ballance
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | | | - Carlos Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Fabio Favoretto
- Autonomous University of Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Lisa A Hynes
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Joy A Kumagai
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Patricia Miloslavich
- Scientific Committee on Oceanic Research (SCOR), College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States; Departamento de Estudios Ambientales, Universidad Simón Bolívar, Venezuela & Scientific Committee for Oceanic Research (SCOR), Newark, DE, United States
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | | | - Bethan C O'Leary
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom; Department of Environment and Geography, University of York, York, United Kingdom
| | - Eva Ramirez-Llodra
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Gabriel Reygondeau
- Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven, CT, United States; Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Callum Roberts
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Yvonne Sadovy
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Oliver Steeds
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Tracey Sutton
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL, United States
| | | | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Veracruz, Mexico
| | - Lucy Woodall
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Zaiko A, von Ammon U, Stuart J, Smith KF, Yao R, Welsh M, Pochon X, Bowers HA. Assessing the performance and efficiency of environmental
DNA
/
RNA
capture methodologies under controlled experimental conditions. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anastasija Zaiko
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
- Institute of Marine Science University of Auckland, Private Bag 92019, Auckland 1142 New Zealand
| | - Ulla von Ammon
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
| | - Jacqui Stuart
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
| | - Kirsty F. Smith
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
- School of Biological Sciences University of Auckland, Private Bag 92019, Auckland 1142 New Zealand
| | - Richard Yao
- Scion (NZ Forest Research Institute), Te Papa Tipu Innovation Park, Titokorangi Drive, Whakarewarewa Rotorua 3010 New Zealand
| | - Melissa Welsh
- Scion (NZ Forest Research Institute), P.O. Box 29237 Christchurch 8540 New Zealand
| | - Xavier Pochon
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
- Institute of Marine Science University of Auckland, Private Bag 92019, Auckland 1142 New Zealand
| | - Holly A. Bowers
- Moss Landing Marine Laboratories San Jose State University Moss Landing, California, 95039 USA
| |
Collapse
|
9
|
Zhao F, Zheng T, Liu Z, Fu W, Fang J. Transcriptomic Analysis Elaborates the Resistance Mechanism of Grapevine Rootstocks against Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1167. [PMID: 35567166 PMCID: PMC9103662 DOI: 10.3390/plants11091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Grapes are subject to a wide range of climatic conditions during their life cycle, but the use of rootstocks can effectively ameliorate the effects of abiotic stress. However, the tolerance mechanism of different grape rootstock varieties varies under various stresses, and systematic research on this aspect is limited. On the basis of previous research, transcriptome sequencing was performed on three tolerant grape rootstock varieties (3309C, 520A, 1103P) and three intolerant grape rootstock varieties (5BB, 101-14, Beta). In total, 56,478,468 clean reads were obtained. One hundred and ten genes only existed in all combinations during P1 with a downregulated trend, and 178 genes existed only in P1 of tolerant grape rootstock varieties. Salt treatment firstly affected the photosynthesis of leaves, and tolerant varieties weakened or even eliminated this effect through their own mechanisms in the later stage. Tolerant varieties mobilized a large number of MFs during the P2 stage, such as hydrolase activity, carboxypeptidase activity, and dioxygenase activity. Carbon metabolism was significantly enriched in P1, while circadian rhythm and flavonoid biosynthesis were only enriched in tolerant varieties. In the intolerant varieties, photosynthesis-related pathways were always the most significantly enriched. There were large differences in the gene expression of the main signal pathways related to salt stress in different varieties. Salt stress affected the expression of genes related to plant abiotic stress, biotic stress, transcription factors, hormones, and secondary metabolism. Tolerant varieties mobilized more bHLH, WRKY, and MYB transcription factors to respond to salt stress than intolerant varieties. In the tolerant rootstocks, SOS was co-expressed. Among these, SOS1 and SOS2 were upregulated, and the SOS3 and SOS5 components were downregulated. The genes of heat shock proteins and the phenylalanine pathway were upregulated in the tolerant varieties. These findings outline a tolerance mechanism model for rootstocks for coping with osmotic stress, providing important information for improving the resistance of grapes under global climate change.
Collapse
Affiliation(s)
- Fanggui Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (T.Z.); (Z.L.); (W.F.)
| | - Ting Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (T.Z.); (Z.L.); (W.F.)
| | - Weihong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (T.Z.); (Z.L.); (W.F.)
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (T.Z.); (Z.L.); (W.F.)
| |
Collapse
|
10
|
Pawlowski J, Bruce K, Panksep K, Aguirre FI, Amalfitano S, Apothéloz-Perret-Gentil L, Baussant T, Bouchez A, Carugati L, Cermakova K, Cordier T, Corinaldesi C, Costa FO, Danovaro R, Dell'Anno A, Duarte S, Eisendle U, Ferrari BJD, Frontalini F, Frühe L, Haegerbaeumer A, Kisand V, Krolicka A, Lanzén A, Leese F, Lejzerowicz F, Lyautey E, Maček I, Sagova-Marečková M, Pearman JK, Pochon X, Stoeck T, Vivien R, Weigand A, Fazi S. Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151783. [PMID: 34801504 DOI: 10.1016/j.scitotenv.2021.151783] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.
Collapse
Affiliation(s)
- J Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - K Bruce
- NatureMetrics Ltd, CABI Site, Bakeham Lane, Egham TW20 9TY, UK
| | - K Panksep
- Institute of Technology, University of Tartu, Tartu 50411, Estonia; Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia; Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Estonia
| | - F I Aguirre
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - S Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - L Apothéloz-Perret-Gentil
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Baussant
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Bouchez
- INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - L Carugati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - K Cermakova
- ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - C Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - F O Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - A Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - S Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - U Eisendle
- University of Salzburg, Dept. of Biosciences, 5020 Salzburg, Austria
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - F Frontalini
- Department of Pure and Applied Sciences, Urbino University, Urbino, Italy
| | - L Frühe
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - A Haegerbaeumer
- Bielefeld University, Animal Ecology, 33615 Bielefeld, Germany
| | - V Kisand
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - A Krolicka
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - F Leese
- University of Duisburg-Essen, Faculty of Biology, Aquatic Ecosystem Research, Germany
| | - F Lejzerowicz
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - E Lyautey
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - I Maček
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - M Sagova-Marečková
- Czech University of Life Sciences, Dept. of Microbiology, Nutrition and Dietetics, Prague, Czech Republic
| | - J K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - X Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Warkworth 0941, New Zealand
| | - T Stoeck
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - R Vivien
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - A Weigand
- National Museum of Natural History Luxembourg, 25 Rue Münster, L-2160 Luxembourg, Luxembourg
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy.
| |
Collapse
|
11
|
Pearman JK, Wood SA, Vandergoes MJ, Atalah J, Waters S, Adamson J, Thomson-Laing G, Thompson L, Howarth JD, Hamilton DP, Pochon X, Biessy L, Brasell KA, Dahl J, Ellison R, Fitzsimons SJ, Gard H, Gerrard T, Gregersen R, Holloway M, Li X, Kelly DJ, Martin R, McFarlane K, McKay NP, Moody A, Moy CM, Naeher S, Newnham R, Parai R, Picard M, Puddick J, Rees ABH, Reyes L, Schallenberg M, Shepherd C, Short J, Simon KS, Steiner K, Šunde C, Terezow M, Tibby J. A bacterial index to estimate lake trophic level: National scale validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152385. [PMID: 34942258 DOI: 10.1016/j.scitotenv.2021.152385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Lakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored. Lake surface sediments provide a temporally integrated representation of environmental conditions and contain high microbial biomass. Based on these attributes, we hypothesized that bacteria associated with lake trophic states could be identified and used to develop an index that would not be confounded by non-nutrient stressor gradients. Metabarcoding (16S rRNA gene) was used to assess bacterial communities present in surface sediments from 259 non-saline lakes in New Zealand encompassing a range of trophic states from alpine microtrophic lakes to lowland hypertrophic lakes. A subset of lakes (n = 96) with monitoring data was used to identify indicator amplicon sequence variants (ASVs) associated with different trophic states. A total of 10,888 indicator taxa were identified and used to develop a Sediment Bacterial Trophic Index (SBTI), which signficantly correlated (r2 = 0.842, P < 0.001) with the Trophic Lake Index. The SBTI was then derived for the remaining 163 lakes, providing new knowledge of the trophic state of these unmonitored lakes. This new, robust DNA-based tool provides a rapid and cost-effective method that will allow a greater number of lakes to be monitored and more effectively managed in New Zealand and globally. The SBTI could also be applied in a paleolimnological context to investigate changes in trophic status over centuries to millennia.
Collapse
Affiliation(s)
- John K Pearman
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | | | - Javier Atalah
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Sean Waters
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Janet Adamson
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | | | - Lucy Thompson
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Jamie D Howarth
- Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Qld 4111, Australia
| | - Xavier Pochon
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Laura Biessy
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | | | - Jenny Dahl
- GNS Science, PO, Box 30-368, Lower Hutt 5040, New Zealand
| | - Riki Ellison
- Waka Taurua Consulting, Lower Hutt 5040, New Zealand
| | | | - Henry Gard
- GNS Science, PO, Box 30-368, Lower Hutt 5040, New Zealand
| | - Tania Gerrard
- GNS Science, PO, Box 30-368, Lower Hutt 5040, New Zealand
| | - Rose Gregersen
- Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | | | - Xun Li
- GNS Science, PO, Box 30-368, Lower Hutt 5040, New Zealand
| | - David J Kelly
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | | | | | - Nicholas P McKay
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, United States
| | - Adelaine Moody
- Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - Chris M Moy
- University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | | | - Rewi Newnham
- Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - Russleigh Parai
- Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - Maïlys Picard
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | | | - Andrew B H Rees
- Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - Lizette Reyes
- GNS Science, PO, Box 30-368, Lower Hutt 5040, New Zealand
| | | | | | - Julia Short
- Adelaide University, Adelaide, South Australia 5005, Australia
| | - Kevin S Simon
- Auckland University, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | - John Tibby
- Adelaide University, Adelaide, South Australia 5005, Australia
| |
Collapse
|
12
|
Evaluating eDNA for Use within Marine Environmental Impact Assessments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, the use of environmental DNA (eDNA) within Environmental Impact Assessment (EIA) is evaluated. EIA documents provide information required by regulators to evaluate the potential impact of a development project. Currently eDNA is being incorporated into biodiversity assessments as a complementary method for detecting rare, endangered or invasive species. However, questions have been raised regarding the maturity of the field and the suitability of eDNA information as evidence for EIA. Several key issues are identified for eDNA information within a generic EIA framework for marine environments. First, it is challenging to define the sampling unit and optimal sampling strategy for eDNA with respect to the project area and potential impact receptor. Second, eDNA assay validation protocols are preliminary at this time. Third, there are statistical issues around the probability of obtaining both false positives (identification of taxa that are not present) and false negatives (non-detection of taxa that are present) in results. At a minimum, an EIA must quantify the uncertainty in presence/absence estimates by combining series of Bernoulli trials with ad hoc occupancy models. Finally, the fate and transport of DNA fragments is largely unknown in environmental systems. Shedding dynamics, biogeochemical and physical processes that influence DNA fragments must be better understood to be able to link an eDNA signal with the receptor’s state. The biggest challenge is that eDNA is a proxy for the receptor and not a direct measure of presence. Nonetheless, as more actors enter the field, technological solutions are likely to emerge for these issues. Environmental DNA already shows great promise for baseline descriptions of the presence of species surrounding a project and can aid in the identification of potential receptors for EIA monitoring using other methods.
Collapse
|
13
|
Testing the Influence of Incomplete DNA Barcode Libraries on Ecological Status Assessment of Mediterranean Transitional Waters. BIOLOGY 2021; 10:biology10111092. [PMID: 34827084 PMCID: PMC8614736 DOI: 10.3390/biology10111092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary The biodiversity and ecological status assessment of transitional water ecosystems by benthic macroinvertebrates investigation could use DNA barcode tools for more rapid and efficient outputs. The principal limits of this application are the incompleteness of DNA barcode databases, the identification of optimal primers set, and the gap in the species sequences. The influence of the incompleteness of DNA barcode libraries on species diversity indices, ecological indicators, and ecological status assessment in transitional waters of the southeast Mediterranean were analysed, underlying the importance to implement DNA barcode libraries and to put an effort toward specific species at a local level. Abstract The ecological assessment of European aquatic ecosystems is regulated under the framework directives on strategy for water and marine environments. Benthic macroinvertebrates are the most used biological quality element for ecological assessment of rivers, coastal-marines, and transitional waters. The morphological identification of benthic macroinvertebrates is the current tool for their assessment. Recently, DNA-based tools have been proposed as effective alternatives. The main current limits of DNA-based applications include the incompleteness of species recorded in the DNA barcode reference libraries and the primers bias. Here, we analysed the influence of the incompleteness of DNA barcode databases on species diversity indices, ecological indicators, and ecological assessment in transitional waters of the southeast Mediterranean, taking into account the availability of commonly sequenced and deposited genomic regions for listed species. The ecological quality status assigned through the potential application of both approaches to the analysed transitional water ecosystems was different in 27% of sites. We also analysed the inter-specific genetic distances to evaluate the potential application of the DNA metabarcoding method. Overall, this work highlights the importance to expand the barcode databases and to analyse, at the regional level, the gaps in the DNA barcodes.
Collapse
|
14
|
Malashenkov DV, Dashkova V, Zhakupova K, Vorobjev IA, Barteneva NS. Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches. Sci Rep 2021; 11:16130. [PMID: 34373491 PMCID: PMC8352915 DOI: 10.1038/s41598-021-95223-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
We analyzed phytoplankton assemblages' variations in oligo-mesotrophic Shchuchie and Burabay lakes using traditional morphological and next-generation sequencing (NGS) approaches. The total phytoplankton biodiversity and abundance estimated by both microscopy and NGS were significantly higher in Lake Burabay than in Lake Shchuchie. NGS of 16S and 18S rRNA amplicons adequately identify phytoplankton taxa only on the genera level, while species composition obtained by microscopic examination was significantly larger. The limitations of NGS analysis could be related to insufficient coverage of freshwater lakes phytoplankton by existing databases, short algal sequences available from current instrumentation, and high homology of chloroplast genes in eukaryotic cells. However, utilization of NGS, together with microscopy allowed us to perform a complete taxonomic characterization of phytoplankton lake communities including picocyanobacteria, often overlooked by traditional microscopy. We demonstrate the high potential of an integrated morphological and molecular approach in understanding the processes of organization in aquatic ecosystem assemblages.
Collapse
Affiliation(s)
- Dmitry V. Malashenkov
- grid.428191.70000 0004 0495 7803National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.14476.300000 0001 2342 9668Present Address: Department of General Ecology and Hydrobiology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Veronika Dashkova
- grid.428191.70000 0004 0495 7803National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.428191.70000 0004 0495 7803School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kymbat Zhakupova
- grid.428191.70000 0004 0495 7803Core Facilities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ivan A. Vorobjev
- grid.428191.70000 0004 0495 7803National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.428191.70000 0004 0495 7803Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Natasha S. Barteneva
- grid.428191.70000 0004 0495 7803National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.428191.70000 0004 0495 7803Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.428191.70000 0004 0495 7803EREC, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
15
|
Pawlowski J, Bonin A, Boyer F, Cordier T, Taberlet P. Environmental DNA for biomonitoring. Mol Ecol 2021; 30:2931-2936. [PMID: 34176165 PMCID: PMC8451586 DOI: 10.1111/mec.16023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Jan Pawlowski
- Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
- Institute of OceanologyPolish Academy of SciencesSopotPoland
- ID‐Gene EcodiagnosticsGenevaSwitzerland
| | - Aurélie Bonin
- Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly
| | - Frédéric Boyer
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Tristan Cordier
- Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
- NORCE ClimateNORCE Norwegian Research Centre ASBjerknes Centre for Climate ResearchBergenNorway
| | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
- Tromsø MuseumUiT – The Arctic University of NorwayTromsøNorway
| |
Collapse
|
16
|
Madueño L, Starevich VA, Agnello AC, Coppotelli BM, Laprida C, Vidal NC, Di Marco P, Oneto ME, Del Panno MT, Morelli IS. Assessment of Biological Contribution to Natural Recovery of Anthropized Freshwater Sediments From Argentina: Autochthonous Microbiome Structure and Functional Prediction. Front Microbiol 2021; 12:601705. [PMID: 33897628 PMCID: PMC8059475 DOI: 10.3389/fmicb.2021.601705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Monitored natural recovery (MNR) is an in situ technique of conventional remediation for the treatment of contaminated sediments that relies on natural processes to reduce the bioavailability or toxicity of contaminants. Metabarcoding and bioinformatics approaches to infer functional prediction were applied in bottom sediments of a tributary drainage channel of Río de La Plata estuary, in order to assess the biological contribution to MNR. Hydrocarbon concentration in water samples and surface sediments was below the detection limit. Surface sediments were represented with high available phosphorous, alkaline pH, and the bacterial classes Anaerolineae, Planctomycetia, and Deltaproteobacteria. The functional prediction in surface sediments showed an increase of metabolic activity, carbon fixation, methanogenesis, and synergistic relationships between Archaeas, Syntrophobacterales, and Desulfobacterales. The prediction in non-surface sediments suggested the capacity to respond to different kinds of environmental stresses (oxidative, osmotic, heat, acid pH, and heavy metals), predicted mostly in Lactobacillales order, and the capacity of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinomyces classes to degrade xenobiotic compounds. Canonical correspondence analysis (CCA) suggests that depth, phosphate content, redox potential, and pH were the variables that structured the bacterial community and not the hydrocarbons. The characterization of sediments by metabarcoding and functional prediction approaches, allowed to assess how the microbial activity would contribute to the recovery of the site.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Laprida
- Instituto de Estudios Andinos, CONICET/UBA, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Pearman JK, Keeley NB, Wood SA, Laroche O, Zaiko A, Thomson-Laing G, Biessy L, Atalah J, Pochon X. Comparing sediment DNA extraction methods for assessing organic enrichment associated with marine aquaculture. PeerJ 2020; 8:e10231. [PMID: 33194417 PMCID: PMC7597629 DOI: 10.7717/peerj.10231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
Marine sediments contain a high diversity of micro- and macro-organisms which are important in the functioning of biogeochemical cycles. Traditionally, anthropogenic perturbation has been investigated by identifying macro-organism responses along gradients. Environmental DNA (eDNA) analyses have recently been advocated as a rapid and cost-effective approach to measuring ecological impacts and efforts are underway to incorporate eDNA tools into monitoring. Before these methods can replace or complement existing methods, robustness and repeatability of each analytical step has to be demonstrated. One area that requires further investigation is the selection of sediment DNA extraction method. Environmental DNA sediment samples were obtained along a disturbance gradient adjacent to a Chinook (Oncorhynchus tshawytscha) salmon farm in Otanerau Bay, New Zealand. DNA was extracted using four extraction kits (Qiagen DNeasy PowerSoil, Qiagen DNeasy PowerSoil Pro, Qiagen RNeasy PowerSoil Total RNA/DNA extraction/elution and Favorgen FavorPrep Soil DNA Isolation Midi Kit) and three sediment volumes (0.25, 2, and 5 g). Prokaryotic and eukaryotic communities were amplified using primers targeting the 16S and 18S ribosomal RNA genes, respectively, and were sequenced on an Illumina MiSeq. Diversity and community composition estimates were obtained from each extraction kit, as well as their relative performance in established metabarcoding biotic indices. Differences were observed in the quality and quantity of the extracted DNA amongst kits with the two Qiagen DNeasy PowerSoil kits performing best. Significant differences were observed in both prokaryotes and eukaryotes (p < 0.001) richness among kits. A small proportion of amplicon sequence variants (ASVs) were shared amongst the kits (~3%) although these shared ASVs accounted for the majority of sequence reads (prokaryotes: 59.9%, eukaryotes: 67.2%). Differences were observed in the richness and relative abundance of taxonomic classes revealed with each kit. Multivariate analysis showed that there was a significant interaction between "distance" from the farm and "kit" in explaining the composition of the communities, with the distance from the farm being a stronger determinant of community composition. Comparison of the kits against the bacterial and eukaryotic metabarcoding biotic index suggested that all kits showed similar patterns along the environmental gradient. Overall, we advocate for the use of Qiagen DNeasy PowerSoil kits for use when characterizing prokaryotic and eukaryotic eDNA from marine farm sediments. We base this conclusion on the higher DNA quality values and richness achieved with these kits compared to the other kits/amounts investigated in this study. The additional advantage of the PowerSoil Kits is that DNA extractions can be performed using an extractor robot, offering additional standardization and reproducibility of results.
Collapse
Affiliation(s)
- John K. Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | - Susanna A. Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | | | - Laura Biessy
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Javier Atalah
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|