1
|
Wu YJ, Lei J, Zhao J, Cao XW, Wang FJ. Design and characterization of a novel tumor-homing cell-penetrating peptide for drug delivery in TGFBR3 high-expressing tumors. Chem Biol Drug Des 2023; 102:1421-1434. [PMID: 37620132 DOI: 10.1111/cbdd.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Targeted therapy has attracted more and more attention in cancer treatment in recent years. However, due to the diversity of tumor types and the mutation of target sites on the tumor surface, some existing targets are no longer suitable for tumor therapy. In addition, the long-term administration of a single targeted drug can also lead to drug resistance and attenuate drug potency, so it is important to develop new targets for tumor therapy. The expression of Type III transforming growth factor β receptor (TGFBR3) is upregulated in colon, breast, and prostate cancer cells, and plays an important role in the occurrence and development of these cancers, so TGFBR3 may be developed as a novel target for tumor therapy, but so far there is no report on this research. In this study, the structure of bone morphogenetic protein 4 (BMP4), one of the ligands of TGFBR3 was analyzed through the docking analysis with TGFBR3 and sequence charge characteristic analysis, and a functional tumor-targeting penetrating peptide T3BP was identified. The results of fluorescent labeling experiments showed that T3BP could target and efficiently enter tumor cells with high expression of TGFBR3, especially A549 cells. When the expression of TGFBR3 on the surface of tumor cells (HeLa) was knocked down by RNA interference, the high delivery efficiency of T3BP was correspondingly reduced by 40%, indicating that the delivery was TGFBR3-dependent. Trichosanthin (TCS, a plant-derived ribosome inactivating protein) fused with T3BP can enhance the inhibitory activity of the fusion protein on A549 cells by more than 200 times that of TCS alone. These results indicated that T3BP, as a novel targeting peptide that can efficiently bind TGFBR3 and be used for targeted therapy of tumors with high expression of TGFBR3. This study enriches the supply of tumor-targeting peptides and provides a new potential application option for the treatment of tumors with high expression of TGFBR3.
Collapse
Affiliation(s)
- Yi-Jie Wu
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jin Lei
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd, Dongyang, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Gomez-Flores A, Bradford SA, Hong G, Kim H. Statistical analysis, machine learning modeling, and text analytics of aggregation attachment efficiency: Mono and binary particle systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131482. [PMID: 37119570 DOI: 10.1016/j.jhazmat.2023.131482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
The aggregation attachment efficiency (α) is the fraction of particle-particle collisions resulting in aggregation. Despite significant research, α predictions have not accounted for the full complexity of systems due to constraints imposed by particle types, dispersed matter, water chemistry, quantification methods, and modeling. Experimental α values are often case-specific, and simplified systems are used to rule out complexity. To address these challenges, statistical analysis was performed on α databases to identify gaps in current knowledge, and machine learning (ML) was used to predict α under various particle types and conditions. Moreover, text analytics was employed to support knowledge from statistics and ML, as well as gain insight into the ideas communicated by current literature. Most studies investigated α in mono-particle systems, but binary or higher systems require more investigation. Furthermore, our work highlights that numerous variables, interactions, and mechanisms influence α behavior, making its investigation complex and difficult for both experiments and modeling. Consequently, future research should incorporate more particle types, shapes, coatings, and surface heterogeneities, and aim to address overlooked variables and conditions. Therefore, building a comprehensive α database can enable the development of more accurate empirical models for prediction.
Collapse
Affiliation(s)
- Allan Gomez-Flores
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Scott A Bradford
- USDA, ARS, Sustainable Agricultural Water Systems Unit, 239 Hopkins Road, Davis, CA 95616, USA
| | - Gilsang Hong
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Guo Y, Tang N, Guo J, Lu L, Li N, Hu T, Zhu Z, Gao X, Li X, Jiang L, Liang J. The aggregation of natural inorganic colloids in aqueous environment: A review. CHEMOSPHERE 2023; 310:136805. [PMID: 36223821 DOI: 10.1016/j.chemosphere.2022.136805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Natural inorganic colloids (NICs) are the most common and dominant existence in the ecosystem, with high concentration and wide variety. In spite of the low toxicity, they can alter activity and mobility of hazardous engineered nanoparticles (ENPs) through different interactions, which warrants the necessity to understand and predict the fate and transport of NICs in aquatic ecosystems. Here, this review summarized NICs properties and behaviors, interaction mechanisms and environmental factors at the first time. Various representative NICs and their physicochemical properties were introduced across the board. Then, the aggregation and sedimentation behaviors were discussed systematically, mainly concerning the heteroaggregation between NICs and ENPs. To speculate their fate and elucidate the corresponding mechanisms, the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (X-DLVO) theories were focused. Furthermore, a range of intrinsic and extrinsic factors was presented in different perspective. Last but not the least, this paper pointed out theoretical and analytical gaps in current researches, and put forward suggestions for further research, aiming to provide a more comprehensive and original perspective in the fields of natural occurring colloids.
Collapse
Affiliation(s)
- Yihui Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Na Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Tingting Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
4
|
Li B, Ma J, Qiu W, Li W, Zhang B, Ding A, He X. In-situ utilization of membrane foulants (FeO x+MnO x) for the efficient membrane cleaning. WATER RESEARCH 2022; 210:118004. [PMID: 34973544 DOI: 10.1016/j.watres.2021.118004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 05/09/2023]
Abstract
Preoxidation-ultrafiltration process is an effective method for Fe2+ and Mn2+removal, in which Fe2+ (Mn2+) are firstly oxidized to FeOx (MnOx), then collected by the ultrafiltration membrane. However, the simultaneous presence of Fe2+, Mn2+, and organics in feed can cause severe membrane fouling, which inhibits the overall performance of this method prominently. In this study, a novel FeOx+MnOx+H2O2 membrane cleaning method is proposed based on the idea of turning in-situ generated membrane foulants, i.e., FeOx+MnOx, into the catalysts for membrane cleaning. The results demonstrate that the FeOx+MnOx+H2O2 system can achieve more than 95% membrane flux recovery and remove almost all irreversible membrane foulants within only 5 min and with only 0.5%wt% H2O2 solution. The outstanding performance of the system is mainly attributed to the catalytic decomposition of H2O2 to generate both highly reactive radicals, such as hydroxyl radicals (·OH), and abundant oxygen. In addition, when the membrane is loaded by only MnOx, polyaluminium chloride (PAC) as the coagulator demonstrates prominent influence on the performance of membrane cleaning. However, PAC makes almost no contribution to membrane cleaning when the membrane is loaded by FeOx. This is because coagulation induced by PAC exerts more prominent impact on the particle size distribution of MnOx than that of FeOx. In conclusion, the catalytic decomposition of H2O2 by in-situ generated FeOx+MnOx is a promising advanced oxidation process to achieve outstanding membrane cleaning performance under the condition of low H2O2 concentration and no extra dosage of catalysts. The novel membrane cleaning system exhibits high potential for the practical membrane treatment processes to treat water with high contents of Fe and Mn.
Collapse
Affiliation(s)
- Boda Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenqian Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Xia X, Wang J, Hu Y, Liu J, Darma AI, Jin L, Han H, He C, Yang J. Molecular Insights into Roles of Dissolved Organic Matter in Cr(III) Immobilization by Coprecipitation with Fe(III) Probed by STXM-Ptychography and XANES Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2432-2442. [PMID: 35109654 DOI: 10.1021/acs.est.1c07528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coprecipitation of heavy metals (HMs) with Fe(III) in the presence of dissolved organic matter (DOM) is a crucial process to control the mobility of HMs in the environment, but its underlying immobilization mechanisms are unclear. In this study, Cr(III) immobilization by coprecipitation with Fe(III) in the presence of straw-derived DOMs under different Fe/C molar ratios, pHs, and ionic strengths was investigated using scanning transmission X-ray microscopy (STXM) and ptychography and X-ray absorption near-edge structure (XANES) spectroscopy. The results showed that Cr(III) retention was enhanced in the presence of DOM, a maximum of which was achieved at an Fe/C molar ratio of 0.5. The increase of pH and ionic strength could also promote Cr(III) immobilization. Cr K-edge XANES results indicated that Fe (oxy)hydroxide fractions, instead of organics, provided the predominant binding sites for Cr(III), which was directly confirmed by high spatial resolution STXM-ptychography analysis at the sub-micron- and nanoscales. Moreover, organics could indirectly facilitate Cr immobilization by improving the aggregation and deposition of coprecipitate particles through DOM bridging or electrostatic interactions. Additionally, C K-edge XANES analysis further indicated that the carboxylic groups of DOM were complexed with Fe (oxy)hydroxides, which probably contributed to DOM bridging. This study provides a new insight into Cr(III) immobilization mechanisms in its coprecipitation with Fe(III) and DOM, which could have important implications on the management of Cr(III)-enriched soils, particularly with crop straw returning.
Collapse
Affiliation(s)
- Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Yongfeng Hu
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Aminu Inuwa Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Jin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Liu Y, Xiang Y, Xu H, Li H. The reuse of nano-TiO2 under different concentration of CO32– using coagulation process and its photocatalytic ability in treatment of methyl orange. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Cheng H, Yang T, Jiang J, Lu X, Wang P, Ma J. Mn 2+ effect on manganese oxides (MnO x) nanoparticles aggregation in solution: Chemical adsorption and cation bridging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115561. [PMID: 33254660 DOI: 10.1016/j.envpol.2020.115561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Manganese oxides (MnOx) and Mn2+ usually co-exist in the natural environment, as well as in water treatments for Mn2+ removal. Therefore, it is necessary to investigate the influence of Mn2+ on the stability of MnOx nanoparticles, as it is vital to their fate and reactivity. In this study, we used the time-resolved dynamic light scattering technique to study the influence of Mn2+ on the initial aggregation kinetics of MnOx nanoparticles. The results show that Mn2+ was highly efficient in destabilizing MnOx nanoparticles. The critical coagulation concentration ratio of Mn2+ (0.3 mM) to Na+ (30 mM) was 2-6.64, which is beyond the ratio range indicated by the Schulze-Hardy rule. This is due to the coordination bond formed between Mn2+ and the surface O of MnOx, which could efficiently decrease the negative surface charge of MnOx. As a result, in the co-presence of Mn2+ and Na+, a small amount of Mn2+ (5 μM) could efficiently neutralize the negative charge of MnOx, thereby decreasing the amount of Na+, which mainly destabilized nanoparticles through electric double-layer compression, required to initiate aggregation. Further, Mn2+ behaved as a cation bridge linking both the negatively charged MnOx and humic acid, thereby increasing the stability of the MnOx nanoparticles as a result of the steric repulsion of the adsorbed humic acid. The results of this study enhance the understanding of the stability of the MnOx nanoparticles in the natural environment, as well as in water treatments.
Collapse
Affiliation(s)
- Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, Guangdong Province, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Panxin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|