1
|
Wang Z, Li D, Shi Y, Sun Y, Okeke SI, Yang L, Zhang W, Zhang Z, Shi Y, Xiao L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:641. [PMID: 36679438 PMCID: PMC9866333 DOI: 10.3390/s23020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Hydrogel materials have been used extensively in microbial electrochemical technology (MET) and sensor development due to their high biocompatibility and low toxicity. With an increasing demand for sensors across different sectors, it is crucial to understand the current state within the sectors of hydrogel METs and sensors. Surprisingly, a systematic review examining the application of hydrogel-based METs to sensor technologies has not yet been conducted. This review aimed to identify the current research progress surrounding the incorporation of hydrogels within METs and sensors development, with a specific focus on microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). The manufacturing process/cost, operational performance, analysis accuracy and stability of typical hydrogel materials in METs and sensors were summarised and analysed. The current challenges facing the technology as well as potential direction for future research were also discussed. This review will substantially promote the understanding of hydrogel materials used in METs and benefit the development of electrochemical biosensors using hydrogel-based METs.
Collapse
Affiliation(s)
- Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Saviour I. Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Zihan Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yanqi Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- TrinityHaus, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
2
|
Jiang X, Yan N, Wang M, Feng M, Guan Q, Xu L. Magnetic nanostructure and biomolecule synergistically promoted Suaeda-inspired self-healing hydrogel composite for seawater evaporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154545. [PMID: 35304147 DOI: 10.1016/j.scitotenv.2022.154545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Multifunctional hydrogels with excellent comprehensive performance are essential prerequisite for the implementation of effective water resources technology with high efficiency and low energy consumption. Inspired by the water purification and self-healing properties of natural plants, and based on the synergy of photothermal and biological effects, high photothermal Fe3O4 nanoparticles and natural polyhydroxy oligomeric proanthocyanidin (OPC) are introduced into a water-active polyvinyl alcohol (PVA) hydrogel. Two new bio-hydrogels of PVA/Fe3O4/graphite and PVA/OPC with self-healing and stretchable properties are proposed and designed. The obtained hydrogels exhibit reversible covalent cross-linked water-promoted healing (chemically) and photothermal melting/recrystallization healing (physically). The double-layered hydrogel composite demonstrates a dual response function (sunlight and near-infrared light), along with water purification properties. It is prepared through a water spray triggered self-healing process. The ultimate fracture strain of the photothermal layer and purification layer hydrogel was more than 1000% and 400% respectively after self-healing.After 48 h of hydrogel composite adsorption, the color of a methylene blue solution faded, and the absorption peak at 664 nm decreased. In addition, this research adopts a phased evaporation method to concentrate local energy and provide power for seawater evaporation. The evaporation efficiency of seawater induced by near-infrared (NIR) light was up to 3.15 kg m-2 h-1, whereas that under sunlight was 1.25 kg m-2 h-1. Selection of the evaporation excitation light source allowed control of the evaporation efficiency. The proposed technology is expected to be widely applicable to the staged evaporation of seawater as well as water purification.
Collapse
Affiliation(s)
- Xizhi Jiang
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nina Yan
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Min Wang
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Min Feng
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Xu
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
3
|
Yuan C, Li P, Zeng L, Duan H, Wang J, Wei Z. Poly(vinyl alcohol)-Based Hydrogel Anion Exchange Membranes for Alkaline Fuel Cell. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caili Yuan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Pan Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lingping Zeng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hanzhao Duan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jianchuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|