1
|
Liu J, Yu M, Shi R, Ge Y, Li J, Zeb A, Cheng Z, Liu W. Comparative toxic effect of tire wear particle-derived compounds 6PPD and 6PPD-quinone to Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175592. [PMID: 39154997 DOI: 10.1016/j.scitotenv.2024.175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely used antioxidant in rubber products, and its corresponding ozone photolysis product N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), have raised public concerns due to their environmental toxicity. However, there is an existing knowledge gap on the toxicity of 6PPD and 6PPD-Q to aquatic plants. A model aquatic plant, Chlorella vulgaris (C. vulgaris), was subjected to 6PPD and 6PPD-Q at concentrations of 50, 100, 200, and 400 μg/L to investigate their effects on plant growth, photosynthetic, antioxidant system, and metabolic behavior. The results showed that 6PPD-Q enhanced the photosynthetic efficiency of C. vulgaris, promoting growth of C. vulgaris at low concentrations (50, 100, and 200 μg/L) while inhibiting growth at high concentration (400 μg/L). 6PPD-Q induced more oxidative stress than 6PPD, disrupting cell permeability and mitochondrial membrane potential stability. C. vulgaris responded to contaminant-induced oxidative stress by altering antioxidant enzyme activities and active substance levels. Metabolomics further identified fatty acids as the most significantly altered metabolites following exposure to both contaminants. In conclusion, this study compares the toxicity of 6PPD and 6PPD-Q to C. vulgaris, with 6PPD-Q demonstrating higher toxicity. This study provides valuable insight into the risk assessment of tire wear particles (TWPs) derived chemicals in aquatic habitats and plants.
Collapse
Affiliation(s)
- Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
2
|
Zhang Z, Gao M, Xu Y, Wang H, Sun D, Zhu Z, Zhang Z. Toxicological effects, absorption and biodegradation of bisphenols with different functional groups in Chromochloris zofingiensis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135728. [PMID: 39236535 DOI: 10.1016/j.jhazmat.2024.135728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Bisphenols (BPs) are recognized as endocrine disrupting compounds and have garnered increasing attention due to their widespread utilization. However, the varying biological toxicities and underlying mechanisms of BPs with different functional groups remain unknown. In the present study, the toxic effects of four BPs (BPA, BPS, BPAF, and TBBPA) on a photosynthetic microalgae Chromochloris zofingiensis were compared. Results showed that halogen-containing BPs exhibited higher cellular uptake, leading to more severe oxidative stress, lower photosynthetic efficiency, and greater accumulation of starch and lipids. Specifically, TBBPA with bromine groups showed a greater toxicity than BPAF with fluorine groups, possibly due to the incomplete debromination in C. zofingiensis. Transcriptomic analysis revealed that halogen-containing BPs triggered greater number of differentially expressed genes (DEGs), and only 64 common DEGs were found among different BPs, indicating that the effects of BPs with different functional groups varied greatly. Genes involved in endocytosis, peroxisomes, and endoplasmic reticulum protein processing pathways were mostly upregulated across different BPs, while photosynthesis-related genes showed varied expression, possibly due to their distinct functional groups. Additionally, SIN3A, ZFP36L, CHMP, and ATF2 emerged as potential key regulatory genes. Overall, this study thoroughly explained how functional groups impact the toxicity and biodegradation of BPs in C. zofingiensis.
Collapse
Affiliation(s)
- Ziyue Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Min Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaqi Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Haitong Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
3
|
Mehariya S, Das P, Thaher MI, Abdul Quadir M, Khan S, Sayadi S, Hawari AH, Verma P, Bhatia SK, Karthikeyan OP, Zuorro A, Al-Jabri H. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. CHEMOSPHERE 2024; 351:141245. [PMID: 38242513 DOI: 10.1016/j.chemosphere.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to μg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | | | | | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
4
|
Fabrello J, Ciscato M, Moschin E, Vecchia FD, Moro I, Matozzo V. Can BPA Analogs Affect Cellular and Biochemical Responses in the Microalga Phaeodactylum tricornutum Bohlin? J Xenobiot 2023; 13:479-491. [PMID: 37754842 PMCID: PMC10532965 DOI: 10.3390/jox13030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Bisphenol A analogs (BPA analogs) are emerging contaminants with a rising production caused by the replacement of BPA with these compounds. The increased production of BPA analogs is leading to their increased release into various ecosystems, including marine ones. The aim of this study was to evaluate the biological effects of BPA analogs on a primary producer, the diatom Phaeodactylum tricornutum Bohlin. Three different BPA analogs (BPAF, BPF, and BPS) and their mixture were tested at the environmental relevant concentration of 300 ng/L. Growth, cell size and several biomarkers of oxidative stress and oxidative damage were measured. Our results indicated that the tested compounds caused a reduced growth rate and induced oxidative stress, altering many antioxidant enzymes in P. tricornutum. However, no oxidative damages were observed.
Collapse
Affiliation(s)
| | | | | | | | | | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131 Padova, Italy; (J.F.); (M.C.); (E.M.); (F.D.V.); (I.M.)
| |
Collapse
|
5
|
Noszczyńska M, Pacwa-Płociniczak M, Bondarczuk K, Piotrowska-Seget Z. The microbial removal of bisphenols in aquatic microcosms and associated alteration in bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85292-85304. [PMID: 37386218 PMCID: PMC10404205 DOI: 10.1007/s11356-023-28305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The concept of the study resulted from numerous concerns around bisphenol A (BPA) and bisphenol S (BPS) in aquatic environments. In this study, river water and sediment microcosms highly polluted with bisphenols and bioaugmented with two BPs-removing bacterial strains were constructed. The study aimed to determine the rate of high-concentrated BPA and BPS (BPs) removal from river water and sediment microniches, and the effect of water bioaugmentation with bacterial consortium on the removal rates of these pollutants. Moreover, the impact of introduced strains and exposure to BPs on the structural and functional composition of the autochthonous bacterial communities was elucidated. Our findings indicate that the removal activity of autochthonous bacteria was sufficient for effectively BPA elimination and reducing BPS content in the microcosms. The number of introduced bacterial cells decreased continuously until day 40, and on consecutive sampling days, no bioaugmented cells were detected. Sequencing analysis of the total 16S rRNA genes revealed that the community composition in bioaugmented microcosms amended with BPs differed significantly from those treated either with bacteria or BPs. A metagenomic analysis found an increase in the abundance of proteins responsible for xenobiotics removal in BPs-amended microcosms. This study provides new insights into the effects of bioaugmentation with a bacterial consortium on bacterial diversity and BPs removal in aquatic environments.
Collapse
Affiliation(s)
- Magdalena Noszczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Magdalena Pacwa-Płociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Kinga Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
6
|
Yadav N, Ahn HJ, Kurade MB, Ahn Y, Park YK, Khan MA, Salama ES, Li X, Jeon BH. Fate of five bisphenol derivatives in Chlamydomonas mexicana: Toxicity, removal, biotransformation and microalgal metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131504. [PMID: 37121039 DOI: 10.1016/j.jhazmat.2023.131504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Bisphenols (BPs) are recognized as emerging contaminants because of their estrogenic properties and frequent occurrence in environmental matrices. Here, we evaluated the toxic effects of five common BPs on freshwater microalga Chlamydomonas mexicana and removal of the BPs by the alga. Bisphenols -AF (BPAF), -B (BPB), and -Z (BPZ) (96 h, EC50 1.78-12.09 mg·L-1) exhibited higher toxicity to C. mexicana compared to bisphenol -S (BPS) and -F (BPF) (96 h, EC50 30.53-85.48 mg·L-1). In contrast, the mixture of BPs exhibited acute toxicity (96 h, EC50 8.07 mg·L-1). After 14 days, C. mexicana had effectively removed 61%, 99%, 55%, 87%, and 89% of BPS, BPF, BPAF, BPB, and BPZ, respectively, at 1 mg L-1. The biotransformed products of all five BPs were analyzed using UHPLC QTOF, and their toxicity was predicted. All biotransformed products were observed to be less toxic than the parent compounds. The fatty acid composition of C. mexicana after exposure to the BP mixture was predominantly palmitic acid (34.14%), followed by oleic acid (18.9%), and γ-linolenic acid (10.79%). The results provide crucial information on the ecotoxicity of these five BPs and their removal by C. mexicana; the resulting biomass is a potential feedstock for producing biodiesel.
Collapse
Affiliation(s)
- Nikita Yadav
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Jo Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Mao W, Li M, Xue X, Cao W, Wang X, Xu F, Jiang W. Bioaccumulation and toxicity of perfluorooctanoic acid and perfluorooctane sulfonate in marine algae Chlorella sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161882. [PMID: 36731575 DOI: 10.1016/j.scitotenv.2023.161882] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The ocean is an important sink for perfluorinated alkyl acids (PFAAs), but the toxic mechanisms of PFAAs to marine organisms have not been clearly studied. In this study, the growth rate, photosynthetic activity, oxidative stress and bioaccumulation were investigated using marine algae Chlorella sp. after the exposure of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate acid (PFOS). The results showed that PFOA of <40 mg/L and PFOS of <20 mg/L stimulated algal reproduction, and high doses inhibited the algal growth. The absorbed PFOA and PFOS by algal cells damaged cell membrane and caused metabolic disorder. The photosynthesis activity was inhibited, which was revealed by the significantly reduced maximal quantum yield (Fv/Fm), relative electron transfer rate (rETR) and carbohydrate synthesis. However, the chlorophyll a content increased along with the up-regulation of its encoding genes (psbB and chlB), probably due to an overcompensation effect. The increase of ROS and antioxidant substances (SOD, CAT and GSH) indicated that PFOA and PFOS caused oxidative stress. The BCF of marine algae Chlorella sp. to PFOA and PFOS was calculated to be between 82 and 200, confirming the bioaccumulation of PFOA and PFOS in marine algae. In summary, PFOA and PFOS can accumulate in Chlorella sp. cells, disrupt photosynthesis, trigger oxidative stress and inhibit algal growth. PFOS shows higher toxicity and bioaccumulation than PFOA. The information is important to evaluate the environmental risks of PFAAs.
Collapse
Affiliation(s)
- Wenqian Mao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingyang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xingyan Xue
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Cao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Czarny-Krzymińska K, Krawczyk B, Szczukocki D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. CHEMOSPHERE 2023; 315:137763. [PMID: 36623601 DOI: 10.1016/j.chemosphere.2023.137763] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol A is classified as a high production volume chemical commonly used in the manufacture of polycarbonate plastics, epoxy resins and thermal paper. The endocrine disrupting properties of this xenobiotic have led to the restriction and prohibition of its use in many consumer products. To date, many chemical compounds with a chemical structure similar to bisphenol A have been used in consumer products as its replacement. The ubiquitous occurrence of bisphenol A and its substitutes in the environment and their endocrine activity as well as adverse effects on aquatic organisms is a global concern, especially because many available literature reports show that many substitutes (e.g. bisphenol AF, bisphenol AP, bisphenol B, bisphenol C, bisphenol F, bisphenol G, bisphenol FL, tetrabromobisphenol A) exert adverse effects on aquatic organisms, similar to, or even stronger than bisphenol A. Therefore, the objective of this paper is to provide a comprehensive overview of the production, sources, occurrence and associated toxicity, as well as the endocrine activity of bisphenol A and its substitutes on aquatic species. The environmental levels and ecotoxicological data presented in this review allowed for a preliminary assessment and prediction of the risk of bisphenol A and its substitutes for aquatic organisms. Furthermore, the data collected in this paper highlight that several compounds applied in bisphenol A-free products are not safe alternatives and regulations regarding their use should be introduced.
Collapse
Affiliation(s)
- Karolina Czarny-Krzymińska
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland.
| | - Barbara Krawczyk
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| | - Dominik Szczukocki
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| |
Collapse
|
9
|
Ren T, Perdana MC, Kříženecká S, Sochacki A, Vymazal J. Constructed wetlands for the treatment of household organic micropollutants with contrasting degradation behaviour: Partially-saturated systems as a performance all-rounder. CHEMOSPHERE 2023; 314:137645. [PMID: 36572365 DOI: 10.1016/j.chemosphere.2022.137645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The degradability of specific organic micropollutants in constructed wetlands (CWs) may differ depending on the prevalence of oxic or anoxic conditions. These conditions are governed, among other factors, by the water saturation level in the system. This study investigated the removal of three environmentally-relevant organic micropollutants: bisphenol-group plasticizer bisphenol S (BPS), household-use insecticide fipronil (FPN) and non-steroidal anti-inflammatory drug ketoprofen (KTP) in the model CWs set up in an outdoor column system. BPS and KTP, in contrast to FPN, exhibit higher biodegradability potential under oxic conditions. The experimental CWs were operated under various saturation conditions: unsaturated, partially saturated and saturated, and mimicked the conditions occurring in unsaturated, partially-saturated intermittent vertical-flow CWs and in horizontal-flow CWs, respectively. The CWs were fed with synthetic household wastewater with the concentration of the micropollutants at the level of 30-45 μg/L. BPS and KTP exhibited contrasting behaviour against FPN in the CWs in the present experiment. Namely, BPS and KTP were almost completely removed in the unsaturated CWs without a considerable effect of plants, but their removal in saturated CWs was only moderate (approx. 50%). The plants had only a pronounced effect on the removal of BPS in saturated systems, in which they enhanced the removal by 46%. The removal of FPN (approx. 90%) was the highest in the saturated and partially-saturated CWs, with moderate removal (66.7%) in unsaturated systems. Noteworthy, partially-saturated CWs provided high or very high removal of all three studied substances despite their contrasting degradability under saturated and unsaturated conditions. Namely, their removal efficiencies in planted CWs were 95.9%, 94.5% and 81.6%, for BPS, KTP and FPN, respectively. The removal of the micropollutants in partially-saturated CWs was comparable or only slightly lower than in the best treatment option making it the performance all-rounder for the compounds with contrasting biodegradability properties.
Collapse
Affiliation(s)
- Tongxin Ren
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Mayang Christy Perdana
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Sylvie Kříženecká
- J.E. Purkyně University in Ústí nad Labem, Faculty of the Environment, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic.
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| |
Collapse
|
10
|
Ding T, Cai M, Wu CC, Bao LJ, Li J. Distribution profiles of bisphenols in school supplies and implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157938. [PMID: 35952887 DOI: 10.1016/j.scitotenv.2022.157938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol compounds (BPs) are usually applied in the production of school supplies, however, little is known on the occurrence of BPs in school supplies. In this study, 15 BPs were detected in 121 samples of school supplies collected from commercial market. Among all compounds studied, BPA, BPF, and BPS were the dominant compounds in school supplies with the detection frequency of 93.15 %, 85.62 % and 82.53 %, respectively, and at median concentrations of 161, 23.64 and 14.11 ng g-1 dw. The total concentrations of BPs varied among types of school supplies in the following order: paper (median: 1347 ng g-1 dw) > fabric (521.4 ng g-1 dw) > plastic (472.7 ng g-1 dw) > rubber (352.4 ng g-1 dw). Risk assessment of BPs in school supplies was evaluated by the estimated daily intake (EDI) via dermal absorption, and the median EDIs of ∑15 BPs were 156.78 ng d-1 (11.27-37,042.37 ng d-1) and 432.75 ng d-1 (32.44-91,624.22 ng d-1) for general and occupational people, respectively.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miao Cai
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chen-Chou Wu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Zhang L, Cheng Y, Qian Y, Ding T, Li J. Bisphenol S degradation in soil and the dynamics of microbial community associated with degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157451. [PMID: 35868379 DOI: 10.1016/j.scitotenv.2022.157451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) has been widely applied as a replacement for BPA in industrial application, leading to the frequent detection in the environment. However, its impact on soil microbial communities has not been well reported. Here, effects of BPS exposure on soil microbial communities in the presence of polystyrene (PS) microplastics were revealed. Rapid degradation of BPS occurred with a degradation rate of up to 98.9 ± 0.001 % at 32 d. The presence of BPS reduced the diversity of soil microbial communities, and changed community structures. After BPS treatment, Proteobacteria, and its members Methylobacillus, Rhodobacteraceae and Mesorhizobium became dominant, and were considered as potential biomarkers indicating BPS contamination. Co-occurrence network analysis revealed the increased relationships of certain groups of microbes after BPS treatment. The resultant low stability and resilience towards environment disturbance of microbial community networks implied the biotoxicity of BPS towards soil ecosystems. The degradation and biotoxicity of BPS (p > 0.05) in soil was not affected by the presence of PS. Our findings showed that exposure to BPS could reshape soil microbial communities and impair the robustness of microbial co-occurrence networks.
Collapse
Affiliation(s)
- Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanan Cheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
12
|
Zhang L, Cheng Y, Qian Y, Ding T, Li J. Phytotoxicity and accumulation of BPS to Pistia stratiotes under the influence of microplastics. CHEMOSPHERE 2022; 307:135854. [PMID: 35952788 DOI: 10.1016/j.chemosphere.2022.135854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) is a contaminant of emerging concern, its exposure and phytotoxicity towards plants, however, is scarce. This study aimed at revealing the BPS translocation in plants and phytotoxicity in the presence of Polystyrene (PS) microplastics. Results found that BPS and PS showed no effect on plant growth, indicating the tolerance of plants towards BPS and PS co-contamination. In addition, plants enriched BPS from soil, and a major part of absorbed BPS was accumulated in roots, as supported by the higher BCF value in roots compared with leaves. Besides, the low TF (<1) suggested the capacity of plants to accumulate BPS in roots, and less translocation to leaves. PS negatively affected the translocation of BPS in plants. PS with large size (5 μm) also increased the distribution of BPS in organelles. Exposure risk assessment suggested low concern of BPS carried in plants to human health. This study underlines the bioaccumulation of BPS in plants, and the effects of PS in the translocation process.
Collapse
Affiliation(s)
- Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanan Cheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Wu P, Zhang Z, Luo Y, Bai Y, Fan J. Bioremediation of phenolic pollutants by algae - current status and challenges. BIORESOURCE TECHNOLOGY 2022; 350:126930. [PMID: 35247559 DOI: 10.1016/j.biortech.2022.126930] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Industrial production processes, especially petroleum processing, will produce high concentration phenolic wastewater. Traditional wastewater treatment technology is costly and may lead to secondary pollution. In order to avoid the adverse effects of incompletely treated phenolics, more advanced methods are required. Algae bioremediate phenolics through green pathways such as adsorption, bioaccumulation, biodegradation, and photodegradation. At the same time, the natural carbon fixation capacity of algae and its potential to produce high-value products make algal wastewater treatment technology economically feasible. This paper reviews the environmental impact of several types of phenolic pollutants in wastewater and different strategies to improve bioremediation efficiency. This paper focuses on the progress of algae removing phenols by different mechanisms and the potential of algae biomass for further biofuel production. This technology holds great promise, but more research on practical wastewater treatment at an industrial scale is needed in the future.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhaofei Zhang
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yeling Luo
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
14
|
Škufca D, Prosenc F, Griessler Bulc T, Heath E. Removal and fate of 18 bisphenols in lab-scale algal bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149878. [PMID: 34508933 DOI: 10.1016/j.scitotenv.2021.149878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The removal of 18 bisphenols at wastewater relevant concentrations (μg L-1 range) was investigated and compared between Chlorella vulgaris cultures with pH adjusted to 6.8 and pH non-adjusted cultures where pH raised to above 10. Bisphenols with a high partition coefficient (log P > 6) partitioned to biomass soon after spiking, whereas bisphenols with a low partition coefficient (log P < 4) remained largely in the aqueous phase. Hydrophobic bisphenols and BPF isomers were removed to a large degree in pH adjusted conditions, while BPS and BPAF were the most recalcitrant. The overall average removal after 13 days was similar in both experiments, with 72 ± 2% and 73 ± 5% removed in pH non-adjusted and pH adjusted series, respectively. The removal correlated with chlorophyll a concentration for most bisphenols meaning that algae played a crucial role in their removal, while culture pH also governed the removal of some compounds.
Collapse
Affiliation(s)
- David Škufca
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Franja Prosenc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Tjaša Griessler Bulc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Li J, Li W, Huang X, Ding T. Comparative study on the toxicity and removal of bisphenol S in two typical freshwater algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36861-36869. [PMID: 33710491 DOI: 10.1007/s11356-021-13224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol S (BPS), one of the most widely used bisphenol A substitutes, has recently received more attention because of its high detection in water and potential toxicity. In the present study, the toxicity and removal of BPS in typical freshwater algae Navicula sp. were investigated under laboratory conditions and the comparative study with Chlorella vulgaris was also explored. BPS was more toxic to Navicula sp. than C. vulgaris with their 120-h EC50 values of 3.89 and 25.19 mg/L, respectively. It may be mainly ascribed to the high tolerance of C. vulgaris to BPS. For instance, the superoxide dismutase (SOD) and catalase (CAT) activities of C. vulgaris were increased under the exposure of 20 mg BPS/L, whereas they were increased in Navicula sp. at 1 mg BPS/L. It is implied that the detoxification mechanism of C. vulgaris was activated until BPS concentration reach to 20 mg L-1. Moreover, the results had demonstrated that both algae had promoted the removal of BPS at 0.5 mg/L, but the removal could be inhibited as BPS concentration increased. Navicula sp. presented a better removal of BPS because of their higher accumulation, implying that they may be good materials for the removal of BPS. In addition, the sharp increase of BCF value at 72 h in Navicula sp. under the exposure of environmental-related BPS concentration (0.5 mg/L) may indicate a high risk of BPS to aquatic ecosystem. These findings will provide a reference for the risk assessment of BPS in natural waters.
Collapse
Affiliation(s)
- Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wen Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaotong Huang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
16
|
Zhang H, Ding T, Luo X, Li J. Toxic effect of fluorene-9-bisphenol to green algae Chlorella vulgaris and its metabolic fate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112158. [PMID: 33798865 DOI: 10.1016/j.ecoenv.2021.112158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a bisphenol A (BPA) alternative, has recently attracted attention due to its wide use and potential toxicity. However, the toxic effects and fate of BHPF in freshwater algae remains to be elucidated. In this study, the impact of BHPF on Chlorella vulgaris was explored and the removal and bioaccumulation of BHPF by Chlorella vulgaris were investigated. Results showed that C. vulgaris was sensitive to BHPF at the concentration of >1 mg L-1, and lipid peroxidation was significantly increased under the exposure of >0.1 mg BHPF L-1. An oxidative stress was caused by BHPF, as the activities of superoxide dismutase (SOD) were significantly decreased in algal cells by >0.5 mg BHPF L-1. The removal rate of BHPF was significantly enhanced by the addition of algae. In addition, the increasing accumulation of BHPF in algae at concentrations ranging from 0.5 to 5 mg L-1 was observed and may contribute for the increased toxicity of BHPF to C. vulgaris. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) results demonstrated that three metabolites of BHPF were identified in algal cells, which may pose an unexpected effect in aquatic environment.
Collapse
Affiliation(s)
- Huijun Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xu Luo
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|