1
|
Zhang B, Wang X, Meng F, Du S, Li H, Xia Y, Yao Y, Zhang P, Cui J, Cui Z. Metabolic variation and oxidative stress responses of clams (Ruditapes philippinarum) perturbed by ofloxacin exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135783. [PMID: 39276738 DOI: 10.1016/j.jhazmat.2024.135783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Ofloxacin (OFL), one of the most widely used fluoroquinolone antibiotics, has been frequently detected in marine environments. Nonetheless, researchers are yet to focus on the effects of OFL on the benthos. In the present study, marine clams (Ruditapes philippinarum) were exposed to OFL (0.5, 50, and 500 μg/L) for 14 d, followed by a 7 d depuration period. The accumulation of OFL, antioxidative defense responses, neurotoxicity, burrowing behavior, and metabolomic changes in clams were evaluated. The results indicated that OFL could accumulate in clams, albeit with a low bioaccumulation capacity. The intermediate (50 μg/L) and high (500 μg/L) levels of OFL induced significant antioxidative responses in the gills and digestive glands of clams, mainly manifesting as the inhibition of catalase activities and the induction of superoxide dismutase and glutathione S-transferase activities, which ultimately elevated the content of malondialdehyde, causing oxidative damage. Furthermore, the significant induction of acetylcholinesterase activities was observed, coinciding with a significant increase in burrowing rates of clams. The high level of OFL affected glycerophospholipid, arachidonic acid, steroid hormone biosynthesis, unsaturated fatty acids biosynthesis, and glycolysis/glycogenesis metabolism. In conclusion, this study has contributed to the understanding of the physiological and biochemical effects and molecular toxicity mechanisms of OFL to marine bivalves.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Shuhao Du
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yu Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ping Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Carena L, Bertolotti S, Minutoli V, Sarakha M, Fernandes A, Lopes A, Sordello F, Minella M, Vione D. Direct and indirect photolysis of oxolinic acid in surface waters and its inhibition by antioxidant effects. WATER RESEARCH 2024; 271:122880. [PMID: 39637690 DOI: 10.1016/j.watres.2024.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Oxolinic acid is a quinolone antibiotic used in aquaculture to prevent and treat animal diseases. Because of its application and the large expansion of aquaculture in the latest decades, oxolinic acid enters environmental waters through the effluents of aquaculture facilities, posing concerns due to its potential adverse effects on aquatic ecosystems. It is thus important to study the fate of this antibiotic in water bodies. This work investigated the reactivity of the anionic form of oxolinic acid (OxA) by direct and indirect photolysis. The quantum yield of direct photolysis and the bimolecular rate constants of OxA reactions with reactive species photochemically produced in fresh- and seawater (i.e., HO•, CO3•-, triplet states of dissolved organic matter, 1O2, and Br2•-) were determined through steady-state irradiation experiments and laser flash photolysis measurements. Results showed that OxA photoreactivity is significant, in particular towards HO• and CO3•- radicals. However, the direct photolysis and reactions with CO3•- and the triplet states of dissolved organic matter were found to be significantly inhibited in the presence of phenol, here used as a representative compound for antioxidant dissolved organic matter, most likely because of a back-reduction process. Photochemical modeling predicted an antibiotic half-life time of some days in fresh- and seawater, showing that OxA degradation is mainly due to direct photolysis in both environments plus reactions with CO3•- (freshwater) and Br2•- (seawater).
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino, Torino, Italy.
| | - Silvia Bertolotti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Torino, Italy; Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Viola Minutoli
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Mohamed Sarakha
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Annabel Fernandes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Lopes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, Covilhã, Portugal
| | | | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| |
Collapse
|
3
|
Li Y, Zhang J, Cheng D, Guo W, Liu H, Guo A, Chen X, Wang Y, Ngo HH. Magnetic biochar serves as adsorbents and catalyst supports for the removal of antibiotics from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121872. [PMID: 39018848 DOI: 10.1016/j.jenvman.2024.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Numerous antibiotics are being released into the natural environment through wastewater. As antibiotic usage increases annually, its detrimental impact on the environment is escalating. Addressing environmental sustainability and human health requires significant attention towards antibiotic removal. In recent years, magnetic biochar (MBC) has gained widespread application in water treatment due to its exceptional adsorption and catalytic degradation capabilities. Antibiotics such as sulfamethoxazole (SMX), tetracycline (TC), ciprofloxacin (CIP), and others commonly exhibit an adsorption capacity by MBC ranging from 5 mg/g to 900 mg/g. Moreover, MBC typically removes over 90% of these antibiotics within 60 min. The effectiveness of antibiotic removal is significantly influenced by various preparation and modification methods. Furthermore, the incorporation of magnetism enables the material to be recycled and reused multiple times, thereby reducing consumption costs. This article discusses recent studies on antibiotic removal using MBC. It has been observed that variations in the selection of raw material and preparation procedures significantly affect antibiotic removal, while the mechanisms involved in antibiotic removal remain ambiguous. Additionally, it has been noted that the removal process may lead to secondary pollution and high preparation costs. Therefore, this review comprehensively outlines the utilization of MBC in the removal of antibiotics from wastewater, including aspects such as modification, preparation, removal mechanism, and factors influencing removal, and providing recommendations for antibiotic development. The aim is to offer researchers a clear understanding to advance the field of MBC materials.
Collapse
Affiliation(s)
- Yudong Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Aiyun Guo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xinhan Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia.
| |
Collapse
|
4
|
Li Y, Zhao Z, Zhang D, Li B, Yin P. Contamination status, source analysis and exposure assessments of quinolone antibiotics in the south of Yancheng Coastal Wetland, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:310. [PMID: 39001928 DOI: 10.1007/s10653-024-02095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Yancheng coastal wetland, the largest coastal wetland in the west coast of the Pacific Ocean and the margin of the Asian continent, has significant environmental, economic and social effects on local human beings. The extensive contamination and potential risk of quinolone antibiotics (QNs) on local aquaculture and human health are still not clear until now. In this study, 52 surface sediment samples were collected to investigate the contamination status and polluted sources, and evaluate ecological risks of QNs in the south of Yancheng coastal wetland. The total contents of QNs ranged from 0.33 to 21.60 ng/g dw (mean value of 4.51 ng/g dw), following the detection frequencies of QNs ranging from 19.23 to 94.23%. The highest content of QNs occurred around an aquaculture pond dominated by flumequine. The total organic carbon contents of sediment were positively correlated with sarafloxacin and lomefloxacin (p < 0.05), indicating the enhanced absorption of these QNs onto sediments. Partial QNs, such as lomefloxacin, enrofloxacin, sarafloxacin and flumequine, presented the homology features originating from the emission of medical treatment and aquaculture. There was no potential risk of QNs to human beings but a potential risk to aquatic organisms (algae > plant > invertebrate). Totally, the management and protection of Yancheng coastal wetland should be of concern with aquaculture as the important industry.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Daolai Zhang
- Qingdao Institute of Marine Geology, Qingdao, 266071, China.
| | - Biying Li
- Qingdao Institute of Marine Geology, Qingdao, 266071, China
| | - Ping Yin
- Qingdao Institute of Marine Geology, Qingdao, 266071, China
| |
Collapse
|
5
|
Hu Y, Sun S, Gu X, Li Z, Zhang J, Xing Y, Wang L, Zhang W. Linking the removal of enrofloxacin to the extracellular polymers of microalgae in water bodies: A case study focusing on the shifts in microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48062-48072. [PMID: 39017865 DOI: 10.1007/s11356-024-34238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Microalgae can promote antibiotic removal, which has attracted growing attention. However, its synergistic removal performance with bacteria in antibiotic pollutants is still poorly understood. In this study, firstly, we selected two green algae (Dictyosphaerium sp. and Chlorella sp.) and exposed them to Enrofloxacin (ENR) to observe their extracellular polysaccharides (EPS) concentration dynamic and the removal of antibiotics. Secondly, EPS was extracted and added to in situ lake water (no algae) to investigate its combined effect with bacteria. The results indicate that both Dictyosphaerium sp. and Chlorella sp. exhibited high tolerance to ENR stress. When the biomass of microalgae was low, ENR could significantly stimulate algae to produce EPS. The removal rates of Dictyosphaerium sp. and Chlorella sp. were 15.8% and 10.5%, respectively. The addition of EPS can both alter the microbial community structure in the lake water and promote the removal of ENR. The LEfSe analysis showed that there were significant differences in the microbial marker taxa, which promoted the increase of special functional bacteria for decomposing ENR, between the EPS-added group and the control group. The EPS of Dictyosphaerium sp. increased the abundance of Moraxellaceae and Spirosomaceae, while the EPS of Chlorella sp. increased the abundance of Sphingomonadaceae and Microbacteriaceae. Under the synergistic effect, Chlorella sp. achieved a maximum removal rate of 24.2%, while Dictyosphaerium sp. achieved a maximum removal rate of 28.9%. Our study provides new insights into the removal performance and mechanism of antibiotics by freshwater microalgae in water bodies and contribute to the development of more effective water treatment strategies.
Collapse
Affiliation(s)
- Youyin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Shangsheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuewei Gu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ziyi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jialin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Xing
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqing Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Lee JM, Lee YJ, Jeong YJ, Cho IS, Jho EH, Park SJ, Lee CG. Graphitic-carbon-nitride-hydrophilicity-dependent photocatalytic degradation of antibiotics with different log K ow. CHEMOSPHERE 2024; 352:141511. [PMID: 38401862 DOI: 10.1016/j.chemosphere.2024.141511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The surface hydrophilicity of a photocatalyst is an important factor that directly influences its interactions with organic pollutants and significantly impacts its degradation. In this study, we investigated the impact of increased hydrophilicity of g-C3N4 (CN) by alkaline solvothermal treatment on the degradations of three antibiotics (oxytetracycline (OTC), oxolinic acid (OA), and sulfamethoxazole (SMX)) with different log Kow values. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier-transform infrared (FT-IR) spectroscopy showed no significant differences in the morphology, crystalline structure, and surface functional groups of CN after alkaline solvothermal treatment (Nv-HPCN). However, contact angle analysis revealed that Nv-HPCN (31.8°) was more hydrophilic than CN (61.1°). To assess the hydrophilicity of the antibiotics, the log Kow values of SMX (0.77), OA (0.43), and OTC (-0.34) were measured. Nv-HPCN showed faster OTC degradation than CN, whereas the opposite pattern was observed for the degradation of OA. Scavenger tests showed that O2•- and h+ mainly contributed to the degradation of these antibiotics. Furthermore, the influences of NOM and coexisting anions on antibiotic degradation were investigated. This study thus offers perspectives on the impact of surface hydrophilicity of photocatalysts on the degradation of antibiotics.
Collapse
Affiliation(s)
- Jong-Min Lee
- Dept. of Environmental and Safety Engineering, Ajou University, Suwon, 16419, Republic of Korea
| | - Youn-Jun Lee
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea
| | - Yoo Jae Jeong
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Materials Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - In Sun Cho
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Materials Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Eun Hea Jho
- Dept. of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Jik Park
- Dept. of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chang-Gu Lee
- Dept. of Environmental and Safety Engineering, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Silva V, Louros VL, Silva CP, Tacão M, Otero M, Calisto V, Lima DLD. A solar flow photo-reactor for antibiotic removal from aquaculture effluents using TiO 2/carbon quantum dots. CHEMOSPHERE 2024; 348:140723. [PMID: 37977528 DOI: 10.1016/j.chemosphere.2023.140723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Effluents contaminated with antibiotics must be treated before reuse or even discharge into the aquatic environment, avoiding the increase of antimicrobial resistance (AMR) - a major public health problem of the 21st century. Little is known regarding the natural solar photodegradation of antibiotics in tubular reactors operated under flow mode and even less concerning the application of photocatalysts. The use of photocatalysts is considered a promising strategy for a sustainable solar-driven removal of antibiotics from effluents. In this work, the photodegradation of two antibiotics widely used in aquaculture, namely, sulfadiazine (SDZ) and oxolinic acid (OXA), was investigated under solar flow mode in the absence and presence of carbon quantum dots (CQDs) coupled with titanium dioxide (TiO2) (4% (w/w)). The obtained results showed that TiO2/CQDs (4% (w/w)) enhanced the photodegradation of both antibiotics, which is highly beneficial for their application in the treatment of aquaculture effluents. The accumulated UV energy needed for SDZ removal using the photocatalyst was less than 4 kJ L-1 in both simulated freshwater (phosphate buffer solution (PBS)) and simulated brackish water (sea salt solution (SSS)), while for OXA less than 5 kJ L-1 and around 15 kJ L-1 were needed for removal in PBS and in SSS, respectively. Moreover, results demonstrated that the proposed photocatalytic treatment was also efficient in the elimination of OXA and SDZ antibacterial activity, either in PBS or SSS. Therefore, photocatalysis under flow mode using TiO2/CQDs constitutes a promising and sustainable treatment for antibiotics' efficient removal from aquaculture effluents.
Collapse
Affiliation(s)
- Valentina Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Vitória L Louros
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patrícia Silva
- Polytechnic University of Coimbra, Coimbra Health School, Department of General Sciences, Rua 5 de Outubro - S, Martinho Do Bispo, Apartado 7006, 3046-854, Coimbra, Portugal
| | - Marta Tacão
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Otero
- Departamento de Química y Física Aplicadas, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Vânia Calisto
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Polytechnic University of Coimbra, Coimbra Health School, Department of General Sciences, Rua 5 de Outubro - S, Martinho Do Bispo, Apartado 7006, 3046-854, Coimbra, Portugal.
| |
Collapse
|
8
|
Silva V, Invêncio I, Silva CP, Otero M, Lima DLD. Photodegradation of oxolinic acid in aquaculture effluents under solar irradiation: is it possible to enhance efficiency by the use of TiO 2/carbon quantum dots composites? CHEMOSPHERE 2022; 308:136522. [PMID: 36150486 DOI: 10.1016/j.chemosphere.2022.136522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics, such as oxolinic acid (OXA), in aquaculture effluents contribute to the dissemination of antimicrobial resistance, which makes it urgent to develop efficient and sustainable processes for their removal. Aiming a photocatalytic degradation under solar radiation, different carbon quantum dots (CQDs) were produced in this work through a bottom-up hydrothermal methodology and incorporated into TiO2 by a simple calcination method. A total of thirteen materials were synthesized and tested for OXA photocatalytic removal from synthetic and real matrices. Among them, CQDs produced with citric acid and incorporated into TiO2 at 4% (w/w) (TiO2/CQDs-CA 4% (w/w)) were the most efficient photocatalysts, providing an OXA half-life time (t1/2) decrease of 91%, 79% and 85% in phosphate buffer solution (PBS), synthetic sea salts (SSS) and brackish aquaculture effluent (BAE), respectively. Therefore, the herein synthesized TiO2/CQDs-CA 4% (w/w) composites have shown to be promising materials for a sustainable solar-driven removal of antibiotics from aquaculture effluents.
Collapse
Affiliation(s)
- Valentina Silva
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Invêncio
- Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Otero
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Departmento de Química y Física Aplicadas, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Louros VL, Silva V, Silva CP, Calisto V, Otero M, Esteves VI, Freitas R, Lima DLD. Sulfadiazine's photodegradation using a novel magnetic and reusable carbon based photocatalyst: Photocatalytic efficiency and toxic impacts to marine bivalves. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115030. [PMID: 35417811 DOI: 10.1016/j.jenvman.2022.115030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 05/27/2023]
Abstract
In the present study, waste-based biochar functionalized with titanium dioxide (TiO2) and afterwards magnetized by an ex-situ approach, defined as synthetic photosensitizer (SPS), was explored for the photocatalytic degradation of sulfadiazine (SDZ), an antibiotic widely used in the aquaculture industry, under solar irradiation. The use of the SPS enhanced the photodegradation efficiency, with a half-life time (t1/2) reduction from 12.2 ± 0.1 h (without SPS) to 5.6 ± 0.4 h. The applied magnetization procedure allowed to obtain a SPS with good reusability for SDZ photodegradation even after five consecutive cycles. To evaluate the effects on marine bivalves of SDZ, before and after photodegradation and in presence or absence of the SPS, a typical bioindicator species, the mussel Mytilus galloprovincialis, was used and different biochemical markers were analysed. Results obtained indicated that the exposure to SDZbefore irradiation, both in absence and presence of SPS, caused an increase in mussels' metabolism and defence mechanisms, evidencing great biochemical impacts. However, after irradiation (in the absence and presence of SPS), biochemical responses were similar to those observed in organisms exposed to control conditions, without SDZ. Therefore, this work provided a promising eco-friendly treatment for the removal of SDZ from aquaculture effluents.
Collapse
Affiliation(s)
- Vitória L Louros
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Valentina Silva
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; CESAM, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patrícia Silva
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Otero
- CESAM, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Applied Chemistry and Physics, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Valdemar I Esteves
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- CESAM, Department of Biology, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Diana L D Lima
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Bavumiragira JP, Ge J, Yin H. Fate and transport of pharmaceuticals in water systems: A processes review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153635. [PMID: 35124044 DOI: 10.1016/j.scitotenv.2022.153635] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals are globally consumed by humans and animals to support daily health and to treat disease. Following consumption, they may reach the aquatic environment either directly through the discharge of untreated wastewater to water bodies, or indirectly via treated wastewater as a result of their incomplete removal from wastewater treatment plants. This paper reviews the processes that control the occurrence and fate of pharmaceuticals in water systems, including sorption, photodegradation, hydrolysis and biodegradation. The degree to which these four processes occur is influenced by pharmaceutical types and their chemical structure as well as environmental factors such as sunlight, water depth, organic matter content, water chemistry, sediment properties, and type and abundance of microorganisms. Depending on the complex interactions of these factors, pharmaceutical compounds may be mineralized, partially degraded, or remain intact because they are resistant to degradation. Kinetic rate parameters and the half-life of a variety of pharmaceutical products are provided herein for the above processes under different environmental conditions. Usually, photodegradation and biodegradation represent dominant reaction processes, while hydrolysis only affects some pharmaceuticals, particularly antibiotics. The identified sorption and reaction rate parameters can be incorporated into a concise modeling framework to assess and predict longitudinal concentration profiles of pharmaceutical products in the manmade and natural systems, particularly when large amounts of pharmaceuticals are discharged during abnormal events such as a virus outbreak. Finally, future research is suggested, including the fate of transformed products (intermediates) in water systems.
Collapse
Affiliation(s)
- Jean Pierre Bavumiragira
- UNEP-Tongji Institute of Environment for Sustainable Development, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Jia'ning Ge
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Hailong Yin
- UNEP-Tongji Institute of Environment for Sustainable Development, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Louros VL, Ferreira LM, Silva VG, Silva CP, Martins MA, Otero M, Esteves VI, Lima DLD. Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO 2 Nanocomposites. TOXICS 2021; 9:toxics9120330. [PMID: 34941763 PMCID: PMC8704068 DOI: 10.3390/toxics9120330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.
Collapse
Affiliation(s)
- Vitória L. Louros
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (V.L.L.); (L.M.F.); (V.G.S.); (C.P.S.); (V.I.E.)
| | - Liliana M. Ferreira
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (V.L.L.); (L.M.F.); (V.G.S.); (C.P.S.); (V.I.E.)
| | - Valentina G. Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (V.L.L.); (L.M.F.); (V.G.S.); (C.P.S.); (V.I.E.)
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| | - Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (V.L.L.); (L.M.F.); (V.G.S.); (C.P.S.); (V.I.E.)
| | - Manuel A. Martins
- CICECO & Department of Materials and Ceramic Engineering, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| | - Marta Otero
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| | - Valdemar I. Esteves
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (V.L.L.); (L.M.F.); (V.G.S.); (C.P.S.); (V.I.E.)
| | - Diana L. D. Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (V.L.L.); (L.M.F.); (V.G.S.); (C.P.S.); (V.I.E.)
- Correspondence:
| |
Collapse
|
12
|
Silva CP, Pereira D, Calisto V, Martins MA, Otero M, Esteves VI, Lima DLD. Biochar-TiO 2 magnetic nanocomposites for photocatalytic solar-driven removal of antibiotics from aquaculture effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112937. [PMID: 34119993 DOI: 10.1016/j.jenvman.2021.112937] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Contamination of surrounding waters with antibiotics by aquaculture effluents can be problematic due to the possible increase of bacterial resistance, making it crucial the efficient treatment of those effluents before their release into the environment. In this work, the application of waste-based magnetic biochar/titanium dioxide (BC/TiO2) composite materials on the photodegradation of two antibiotics widely used in aquaculture (sulfadiazine (SDZ) and oxolinic acid (OXA)) was assessed. Four materials were synthesized: BCMag (magnetized BC), BCMag_TiO2 (BCMag functionalized with TiO2), BC_TiO2_MagIn and BC_TiO2_MagEx (BC functionalized with TiO2 and afterwards magnetized by in-situ and ex-situ approaches, respectively). SDZ half-life time (t1/2) noticeably decreased 3.9 and 3.4 times in presence of BCMag_TiO2 and BC_TiO2_MagEx, respectively. In the case of OXA, even though differences were not so substantial, the produced photocatalysts also allowed for a decrease in t1/2 (2.6 and 1.7 times, in presence of BCMag_TiO2 and BC_TiO2_MagEx, respectively). Overall, the here synthesized BC/TiO2 magnetic nanocomposites through a circular economy process are promising photocatalysts for a sustainable solar-driven removal of antibiotics from aquaculture effluents.
Collapse
Affiliation(s)
- Carla Patrícia Silva
- CESAM, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Diogo Pereira
- CESAM, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM, Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- CESAM, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A Martins
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Otero
- CESAM, Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Diana L D Lima
- CESAM, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Silva CP, Louros V, Silva V, Otero M, Lima DLD. Antibiotics in Aquaculture Wastewater: Is It Feasible to Use a Photodegradation-Based Treatment for Their Removal? TOXICS 2021; 9:toxics9080194. [PMID: 34437512 PMCID: PMC8402555 DOI: 10.3390/toxics9080194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Aquacultures are a sector facing a huge development: farmers usually applying antibiotics to treat and/or prevent diseases. Consequently, effluents from aquaculture represent a source of antibiotics for receiving waters, where they pose a potential threat due to antimicrobial resistance (AMR) induction. This has recently become a major concern and it is expectable that regulations on antibiotics’ discharge will be established in the near future. Therefore, it is urgent to develop treatments for their removal from wastewater. Among the different possibilities, photodegradation under solar radiation may be a sustainable option. Thus, this review aims at providing a survey on photolysis and photocatalysis in view of their application for the degradation of antibiotics from aquaculture wastewater. Experimental facts, factors affecting antibiotics’ removal and employed photocatalysts were hereby addressed. Moreover, gaps in this research area, as well as future challenges, were identified.
Collapse
Affiliation(s)
- Carla Patrícia Silva
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
- Correspondence:
| | - Vitória Louros
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
| | - Valentina Silva
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
- CESAM & Department of Environment and Planning, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marta Otero
- CESAM & Department of Environment and Planning, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Diana L. D. Lima
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
| |
Collapse
|