1
|
Romdhane S, Spor A, Banerjee S, Breuil MC, Bru D, Chabbi A, Hallin S, van der Heijden MGA, Saghai A, Philippot L. Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. ENVIRONMENTAL MICROBIOME 2022; 17:1. [PMID: 34991714 PMCID: PMC8740439 DOI: 10.1186/s40793-021-00396-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/23/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Soil microbial communities are major drivers of cycling of soil nutrients that sustain plant growth and productivity. Yet, a holistic understanding of the impact of land-use intensification on the soil microbiome is still poorly understood. Here, we used a field experiment to investigate the long-term consequences of changes in land-use intensity based on cropping frequency (continuous cropping, alternating cropping with a temporary grassland, perennial grassland) on bacterial, protist and fungal communities as well as on their co-occurrence networks. RESULTS We showed that land use has a major impact on the structure and composition of bacterial, protist and fungal communities. Grassland and arable cropping differed markedly with many taxa differentiating between both land use types. The smallest differences in the microbiome were observed between temporary grassland and continuous cropping, which suggests lasting effects of the cropping system preceding the temporary grasslands. Land-use intensity also affected the bacterial co-occurrence networks with increased complexity in the perennial grassland comparing to the other land-use systems. Similarly, co-occurrence networks within microbial groups showed a higher connectivity in the perennial grasslands. Protists, particularly Rhizaria, dominated in soil microbial associations, as they showed a higher number of connections than bacteria and fungi in all land uses. CONCLUSIONS Our findings provide evidence of legacy effects of prior land use on the composition of the soil microbiome. Whatever the land use, network analyses highlighted the importance of protists as a key element of the soil microbiome that should be considered in future work. Altogether, this work provides a holistic perspective of the differential responses of various microbial groups and of their associations to agricultural intensification.
Collapse
Affiliation(s)
- Sana Romdhane
- Department of Agroecology, University Bourgogne Franche Comte, INRAE, AgroSup Dijon, Dijon, France
| | - Aymé Spor
- Department of Agroecology, University Bourgogne Franche Comte, INRAE, AgroSup Dijon, Dijon, France
| | - Samiran Banerjee
- Agroscope, Plant-Soil Interactions Group, Zurich, Switzerland
- Department of Biological Sciences, North Dakota State University, Fargo, 58102, USA
| | - Marie-Christine Breuil
- Department of Agroecology, University Bourgogne Franche Comte, INRAE, AgroSup Dijon, Dijon, France
| | - David Bru
- Department of Agroecology, University Bourgogne Franche Comte, INRAE, AgroSup Dijon, Dijon, France
| | - Abad Chabbi
- ECOSYS, UMR INRAE, AgroParisTech, Thiverval-Grignon, France
- CNRS, Institute of Ecology and Environmental Sciences-Paris (iEES-Paris, UMR Sorbonne Université, CNRS, INRAE), Thiverval-Grignon, France
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marcel G A van der Heijden
- Agroscope, Plant-Soil Interactions Group, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Aurélien Saghai
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Laurent Philippot
- Department of Agroecology, University Bourgogne Franche Comte, INRAE, AgroSup Dijon, Dijon, France.
| |
Collapse
|
2
|
Escobar Diaz PA, Gil OJA, Barbosa CH, Desoignies N, Rigobelo EC. Aspergillus spp. and Bacillus spp. as Growth Promoters in Cotton Plants Under Greenhouse Conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.709267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to verify the potential of three Aspergillus and Bacillus species as growth promoters in cotton plants under greenhouse conditions. The experiment was conducted with a completely randomized design with seven treatments (six microorganisms plus one control) and five replicates until the flowering stage at 70 days after emergence. The inoculation of cotton plants with Bacillus velezensis (Bv188) and Bacillus subtilis (Bs248 and Bs290) had a positive effect on total nitrogen extraction (899.31, 962.18, and 755.41 mg N/kg dry matter, respectively) compared to the control (459.31 mg N/kg dry weight), total phosphorus extraction (121.94, 124.31, and 99.27 mg P/kg dry matter, respectively) compared to the control (65.10 mg P/kg dry matter), and total dry matter (41.08, 43.59, and 49.86 g/plant, respectively) compared to the control (26.70 g/plant), as well as biomass carbon (72.26, 35.18, and 14.7 mg/kg soil, respectively). Cotton plants inoculated with Aspergillus brasiliensis (F111), Aspergillus sydowii (F112), and Aspergillus sp. (versicolor section) (F113) had higher total nitrogen extraction (953.33, 812.59, and 891.62 mg N/kg dry matter, respectively) compared to the control (459.31 mg N/kg dry matter), a higher total phosphorus (122.30, 104.86, and 118.45 mg P/kg dry matter, respectively) compared to the control (65.10 mg P/kg dry matter), a higher total dry matter (37.52, 37.41, and 53.02 g/plant) compared to the control (26.70 g/plant), and greater respiratory activity (14.98, 10.43, and 7.11 mg CO2/100 g soil, respectively) compared to the control (3.5 mg CO2/100 g soil). The fungi A. brasiliensis (F111) and A. sydowii (F112) promoted higher phosphorus absorption by cotton plants, which was reflected by the lower amount of nutrients in the soil (7.10 and 16.96 g P/dm3 soil) than in the control (26.91 g P/dm3 soil). The results suggest that B. subtilis 248 promoted an increase in phosphorus extracted from the roots and total and phosphorous compounds from the root dry matter and increased the value of soil respiratory activity, and this bacterium could be used as an inoculant in cotton crops.
Collapse
|